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Focus Optimize Optimize Optimize Optimize

Program Number (Oliver Exhibit 10) 1 1 1 1

Component Number 1 2 3 4

Reference 1.1 1.2 1.3 1.4

Program  

Weight Metric                                       

Component

                                              Metric Rankings                                                

Capacity 

Projects

Connectivity 

Projects

Automation 

Projects

Advanced 

Distribution 

Management 

System 

(ADMS)

2

TRANSFORMATIVE: Does the program allow the 

utility to do something on the grid that it could not 

do before?

1 = No new capabilities; current procedures provide similar 

capabilities

2 = Adds some limited new capabilities

3 = Adds significant new capabilities

1.0 1.0 3.0 3.0

1

TIMING: What is the level of urgency to complete 

this program?

1 = Ongoing work; continue normal pace

2 = New work; 3-year timeline is not critical to grid op

3 = Urgent; 3-year timeline is critical to grid op 1.0 1.0 2.0 2.0

1

GRID ARCHITECTURE: How does this program 

fit into the broader grid modernization 

architecture? 

1 = This program is standalone and operates outside grid 

modernization architecture. 

2 = This program is an application dependent upon core 

components.

3 = This program is a core component of grid mod (foundational).

3.0 3.0 3.0 3.0

6 6 11 11

Grid Transformation Matrix

Driving Question: What is "grid transformation", and 

how do we determine whether each program fits that 

designation?

Weighted Grid Transformation Score (min=4; max=12)

Self Optimizing Grid

I/A 
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Focus

Program Number (Oliver Exhibit 10)

Component Number

Reference

Program  

Weight Metric                                       

Component

                                              Metric Rankings                                                

2

TRANSFORMATIVE: Does the program allow the 

utility to do something on the grid that it could not 

do before?

1 = No new capabilities; current procedures provide similar 

capabilities

2 = Adds some limited new capabilities

3 = Adds significant new capabilities

1

TIMING: What is the level of urgency to complete 

this program?

1 = Ongoing work; continue normal pace

2 = New work; 3-year timeline is not critical to grid op

3 = Urgent; 3-year timeline is critical to grid op

1

GRID ARCHITECTURE: How does this program 

fit into the broader grid modernization 

architecture? 

1 = This program is standalone and operates outside grid 

modernization architecture. 

2 = This program is an application dependent upon core 

components.

3 = This program is a core component of grid mod (foundational).

Grid Transformation Matrix

Driving Question: What is "grid transformation", and 

how do we determine whether each program fits that 

designation?

Weighted Grid Transformation Score (min=4; max=12)

Optimize Optimize Optimize Optimize Optimize

2 3 4 5 5

1 2

2. 3. 4. 5.1 5.2

Line H&R Substation 

Flooding 

H&R

1.0 1.0 3.0 1.0 1.0

1.0 1.0 2.0 1.0 1.0

1.0 3.0 2.0 1.0 1.0

4 6 10 4 4

Transmission Hard   

Resiliency
Distribution 

Hardening 

and 

Resiliency - 

Flood 

Hardening

Distribution 

Transformer 

Retrofit

IVVC

I/A 
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Focus

Program Number (Oliver Exhibit 10)

Component Number

Reference

Program  

Weight Metric                                       

Component

                                              Metric Rankings                                                

2

TRANSFORMATIVE: Does the program allow the 

utility to do something on the grid that it could not 

do before?

1 = No new capabilities; current procedures provide similar 

capabilities

2 = Adds some limited new capabilities

3 = Adds significant new capabilities

1

TIMING: What is the level of urgency to complete 

this program?

1 = Ongoing work; continue normal pace

2 = New work; 3-year timeline is not critical to grid op

3 = Urgent; 3-year timeline is critical to grid op

1

GRID ARCHITECTURE: How does this program 

fit into the broader grid modernization 

architecture? 

1 = This program is standalone and operates outside grid 

modernization architecture. 

2 = This program is an application dependent upon core 

components.

3 = This program is a core component of grid mod (foundational).

Grid Transformation Matrix

Driving Question: What is "grid transformation", and 

how do we determine whether each program fits that 

designation?

Weighted Grid Transformation Score (min=4; max=12)

Optimize Optimize Modernize Optimize

5 6 7 8

3 1

5.3 6. 7. 8.1

Substation 

Animal 

Mitigation

Transmission 

Class (SF6)

1.0 1.0 3.0 1.0

1.0 1.0 2.0 1.0

1.0 3.0 3.0 3.0

4 6 11 6

 ening & 
Oil Breaker Re

Transformer 

Bank 

Replacements

Transmission 

System 

Intelligence

I/A 
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Focus

Program Number (Oliver Exhibit 10)

Component Number

Reference

Program  

Weight Metric                                       

Component

                                              Metric Rankings                                                

2

TRANSFORMATIVE: Does the program allow the 

utility to do something on the grid that it could not 

do before?

1 = No new capabilities; current procedures provide similar 

capabilities

2 = Adds some limited new capabilities

3 = Adds significant new capabilities

1

TIMING: What is the level of urgency to complete 

this program?

1 = Ongoing work; continue normal pace

2 = New work; 3-year timeline is not critical to grid op

3 = Urgent; 3-year timeline is critical to grid op

1

GRID ARCHITECTURE: How does this program 

fit into the broader grid modernization 

architecture? 

1 = This program is standalone and operates outside grid 

modernization architecture. 

2 = This program is an application dependent upon core 

components.

3 = This program is a core component of grid mod (foundational).

Grid Transformation Matrix

Driving Question: What is "grid transformation", and 

how do we determine whether each program fits that 

designation?

Weighted Grid Transformation Score (min=4; max=12)

Optimize Optimize Optimize Modernize

8 9 11 12

2 1

8.2 9. 11. 12.1

Distribution 

Class 

(Vacuum)

Next 

Generation 

Cellular

1.0 1.0 1.0 1.0

1.0 1.0 1.0 3.0

3.0 3.0 1.0 3.0

6 6 4 8

 reaker R placements  

Targeted 

Underground 

(TUG)

Long 

Duration 

Int/High 

Impact 

Sites

I/A 
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Focus

Program Number (Oliver Exhibit 10)

Component Number

Reference

Program  

Weight Metric                                       

Component

                                              Metric Rankings                                                

2

TRANSFORMATIVE: Does the program allow the 

utility to do something on the grid that it could not 

do before?

1 = No new capabilities; current procedures provide similar 

capabilities

2 = Adds some limited new capabilities

3 = Adds significant new capabilities

1

TIMING: What is the level of urgency to complete 

this program?

1 = Ongoing work; continue normal pace

2 = New work; 3-year timeline is not critical to grid op

3 = Urgent; 3-year timeline is critical to grid op

1

GRID ARCHITECTURE: How does this program 

fit into the broader grid modernization 

architecture? 

1 = This program is standalone and operates outside grid 

modernization architecture. 

2 = This program is an application dependent upon core 

components.

3 = This program is a core component of grid mod (foundational).

Grid Transformation Matrix

Driving Question: What is "grid transformation", and 

how do we determine whether each program fits that 

designation?

Weighted Grid Transformation Score (min=4; max=12)

Modernize Modernize Modernize Modernize

12 12 12 12

2 3 4 5

12.2 12.3 12.4 12.5

Mission 

Critical 

Voice

POC BizWAN GridWAN

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

3.0 1.0 3.0 3.0

6 4 6 6

Enterprise Communi

I/A 
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Focus

Program Number (Oliver Exhibit 10)

Component Number

Reference

Prog am  

Weight Metric                                       

Component

                                              Metric Rankings                                                

2

TRANSFORMATIVE: Does the program allow the 

utility to do something on the grid that it could not 

do before?

1 = No new capabilities; current procedures provide similar 

capabilities

2 = Adds some limited new capabilities

3 = Adds significant new capabilities

1

TIMING: What is the level of urgency to complete 

this program?

1 = Ongoing work; continue normal pace

2 = New work; 3-year timeline is not critical to grid op

3 = Urgent; 3-year timeline is critical to grid op

1

GRID ARCHITECTURE: How does this program 

fit into the broader grid modernization 

architecture? 

1 = This program is standalone and operates outside grid 

modernization architecture. 

2 = This program is an application dependent upon core 

components.

3 = This program is a core component of grid mod (foundational).

Grid Transformation Matrix

Driving Question: What is "grid transformation", and 

how do we determine whether each program fits that 

designation?

Weighted Grid Transformation Score (min=4; max=12)

Modernize Modernize Modernize Modernize

12 12 12 12

6 7 8 9

12.6 12.7 12.8 12.9

Mission 

Critical 

Transport

Tower, 

shelters, and 

Power 

Supplies

Network 

Asset 

Systems

Vehicle Area 

Network

1.0 1.0 1.0 1.0

1.0 1.0 2.0 2.0

3.0 3.0 2.0 2.0

6 6 6 6

 Commun cations

I/A 
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Focus

Program Number (Oliver Exhibit 10)

Component Number

Reference

Program  

Weight Metric                                       

Component

                                              Metric Rankings                                                

2

TRANSFORMATIVE: Does the program allow the 

utility to do something on the grid that it could not 

do before?

1 = No new capabilities; current procedures provide similar 

capabilities

2 = Adds some limited new capabilities

3 = Adds significant new capabilities

1

TIMING: What is the level of urgency to complete 

this program?

1 = Ongoing work; continue normal pace

2 = New work; 3-year timeline is not critical to grid op

3 = Urgent; 3-year timeline is critical to grid op

1

GRID ARCHITECTURE: How does this program 

fit into the broader grid modernization 

architecture? 

1 = This program is standalone and operates outside grid 

modernization architecture. 

2 = This program is an application dependent upon core 

components.

3 = This program is a core component of grid mod (foundational).

Grid Transformation Matrix

Driving Question: What is "grid transformation", and 

how do we determine whether each program fits that 

designation?

Weighted Grid Transformation Score (min=4; max=12)

Modernize Modernize Modernize Modernize

13 13 13 13

1 2 3 4

13.1 13.2 13.3 13.4

Hydraulic 

to 

Electronic 

Recloser

System 

Intelligence 

and 

Monitoring

Fuse 

Replacement

UG System 

Automation

2.0 2.0 2.0 3.0

1.0 1.0 1.0 2.0

3.0 3.0 3.0 3.0

8 8 8 11

Distribution Automation

I/A 
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Focus

Program Number (Oliver Exhibit 10)

Component Number

Reference

Program  

Weight Metric                                       

Component

                                              Metric Rankings                                                

2

TRANSFORMATIVE: Does the program allow the 

utility to do something on the grid that it could not 

do before?

1 = No new capabilities; current procedures provide similar 

capabilities

2 = Adds some limited new capabilities

3 = Adds significant new capabilities

1

TIMING: What is the level of urgency to complete 

this program?

1 = Ongoing work; continue normal pace

2 = New work; 3-year timeline is not critical to grid op

3 = Urgent; 3-year timeline is critical to grid op

1

GRID ARCHITECTURE: How does this program 

fit into the broader grid modernization 

architecture? 

1 = This program is standalone and operates outside grid 

modernization architecture. 

2 = This program is an application dependent upon core 

components.

3 = This program is a core component of grid mod (foundational).

Grid Transformation Matrix

Driving Question: What is "grid transformation", and 

how do we determine whether each program fits that 

designation?

Weighted Grid Transformation Score (min=4; max=12)

Modernize Modernize Modernize Modernize

14 15 16 18

14. 15. 16. 18.

2.0 3.0 2.0 2.0

1.0 3.0 1.0 2.0

2.0 3.0 2.0 3.0

7 12 7 9

ISOP

DER 

Dispatch 

Tool

Power 

Electronics 

for Volt/VAR 

Control

Enterprise 

Applications

I/A 
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Focus

Program Number (Oliver Exhibit 10)

Component Number

Reference

Program  

Weight Metric                                       

Component

                                              Metric Rankings                                                

2

TRANSFORMATIVE: Does the program allow the 

utility to do something on the grid that it could not 

do before?

1 = No new capabilities; current procedures provide similar 

capabilities

2 = Adds some limited new capabilities

3 = Adds significant new capabilities

1

TIMING: What is the level of urgency to complete 

this program?

1 = Ongoing work; continue normal pace

2 = New work; 3-year timeline is not critical to grid op

3 = Urgent; 3-year timeline is critical to grid op

1

GRID ARCHITECTURE: How does this program 

fit into the broader grid modernization 

architecture? 

1 = This program is standalone and operates outside grid 

modernization architecture. 

2 = This program is an application dependent upon core 

components.

3 = This program is a core component of grid mod (foundational).

Grid Transformation Matrix

Driving Question: What is "grid transformation", and 

how do we determine whether each program fits that 

designation?

Weighted Grid Transformation Score (min=4; max=12)

Protect Protect Protect Protect Protect

19 19 19 19 19

1 2 3 4 5

19.1 19.2 19.3 19.4 19.5

Substation 

Physical 

security

Windows 

Based 

unit 

change 

outs

Device 

entry 

alert 

system

Secure 

Access 

Device 

Managem

ent

Line 

Device 

Protection

1.0 1.0 2.0 2.0 2.0

1.0 1.0 1.0 1.0 1.0

1.0 1.0 3.0 2.0 3.0

4 4 8 7 8

Physical and Cyber Security

I/A 
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MOODY'S INVESTORS SERVICE INFRASTRUCTURE AND PROJECT FINANCE

» Financial metrics are under pressure

Rating Outlook
The stable rating outlook considers the utility's relatively low business risk profile and primarily credit supportive regulatory frameworks
in both North and South Carolina. The outlook reflects our expectation that management will manage and finance Duke Carolinas
relatively large capital expenditure program in a manner that allows the utility to demonstrate financial credit metrics that are
consistent with its credit profile. The stable outlook also reflects our expectation that the company will continue to be able to fully
recover the majority of its coal ash closure and remediation costs in rates.

Factors that Could Lead to an Upgrade

» Credit positive changes in the utility's regulatory framework, including more riders and trackers to reduce regulatory lag for ongoing
capital investment, and real time recovery of coal ash remediation costs

» A sustained improvement in cash flow credit metrics, for example if the ratio of cash from operations excluding changes in working
capital (CFO pre-W/C) to debt were to move above 30% on a sustained basis

Factors that Could Lead to a Downgrade

» A decline in the credit supportiveness of Duke Carolina’s regulatory relationships in North or South Carolina, particularly with
regards to coal ash remediation recovery in North Carolina

» Additional capital expenditures or other capital needs that result in a material increase in debt levels or are not recoverable

» A ratio of CFO pre-W/C to debt remaining below 25% on a sustained basis

Key Indicators

Duke Energy Carolinas, LLC [1]

Dec-15 Dec-16 Dec-17 Dec-18 LTM Jun-19

CFO Pre-W/C + Interest / Interest 6.9x 7.2x 7.0x 6.9x 7.0x

CFO Pre-W/C / Debt 31.5% 29.5% 27.2% 24.5% 24.6%

CFO Pre-W/C – Dividends / Debt 26.8% 9.3% 21.2% 18.1% 22.5%

Debt / Capitalization 32.8% 36.4% 41.6% 43.3% 43.0%

[1]All ratios are based on 'Adjusted' financial data and incorporate Moody's Global Standard Adjustments for Non-Financial Corporations.
Source: Moody's Financial Metrics

Corporate Profile
Duke Carolinas is a vertically integrated electric utility serving approximately 2.6 million customers in North Carolina (about 2 million)
and South Carolina. The utility is the largest subsidiary of Duke Energy Corporation (Duke Energy, Baa1 stable) and is regulated by the
North Carolina Utilities Commission (NCUC) and the Public Service Commission of South Carolina (PSCSC).

Detailed Credit Considerations
Historically credit supportive regulatory environments, but uncertainty is increasing
The regulatory environments in both North and South Carolina have historically been credit supportive. While the PSCSC’s May 2019
order in Duke Carolina’s recent rate case denied recovery of around 25% of Duke Carolinas' spending on coal ash remediation, the
balance of the order (which included recovery of development costs associated with a canceled nuclear project and an approved
53% equity ratio) was generally credit supportive. Duke Energy is planning to appeal the coal ash disallowance. On a positive note,
the South Carolina order did continue authorization of the utility’s ability to earn a full weighted average cost of capital return on

This publication does not announce a credit rating action. For any credit ratings referenced in this publication, please see the ratings tab on the issuer/entity page on
www.moodys.com for the most updated credit rating action information and rating history.
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MOODY'S INVESTORS SERVICE INFRASTRUCTURE AND PROJECT FINANCE

its approved coal ash remediation spending. The order also shortened the recovery period to five years, versus a previously approved
fifteen years.

In North Carolina (71% of retail rate base), the utility’s July 2018 rate order authorized a partial settlement agreement with respect to
certain traditional rate making parameters, such as return on equity (9.9%) and equity ratio (52%). The order also deemed spending for
coal ash remediation to be reasonable and prudent and, with the exception of a specific, manageable penalty, authorized the company
to recover its prior expenditures over five years with a full debt and equity return. Ongoing expenditures will continue to be deferred for
future recovery, and thus remain subject to regulatory lag.

We view Duke Carolinas ability to earn a full return on its coal ash remediation expenditures, and to recover them over reasonable time
frames, as credit positive. As a result of this rate base like treatment, we currently view the spending for coal ash remediation to be akin
to a capital expenditure. We note however that there is increasing regulatory uncertainty as a portion of these expenditures have been
disallowed in South Carolina, while the North Carolina decision authorizing recovery has been appealed by the state Attorney General
and the Public Staff. Depending on the outcome of these appeals, we may modify our treatment of the portion of expenditures that are
not recoverable.

In both of Duke Carolinas’ jurisdictions, the utility has historically been able to recover its prudently incurred costs, and it has been
authorized equity returns and approved equity layers in the capital structure that have been among the most credit supportive in the
U.S. However, Duke Carolinas’ requests for rider recovery for grid modernization investments and ongoing coal ash remediation have
been denied, a credit negative as it maintains the utility’s exposure to regulatory lag.

In North Carolina, Duke has been working with lawmakers in an attempt to pass legislation that would allow securitization of storm
costs as well as the consideration of alternative rate adjustment mechanisms such as rider recovery, multiyear plans, incentive
mechanisms or ROE bands. On October 30th, the North Carolina House and Senate both approved a bill that, if signed by the
Governor, will authorize securitization of storm costs; however, the more controversial proposal that would have allowed the
implementation of alternative rate plans was dropped. Our stable outlook assumes that, in the absence of alternative rate mechanisms
the company will continue to file frequent, likely annual, rate cases. The outlook also assumes and that regulatory outcomes will
provide an opportunity for Duke Carolinas to maintain cash flow based credit metrics at levels that are supportive of its current credit
quality.

In September 2019, Duke Carolinas filed a base rate case in North Carolina requesting an approximate 6% increase in revenue premised
on a 53% equity ratio and a 10.3% return on equity. The filing also seeks recovery of $480 million of coal ash remediation costs
deferred from January 2018-January 2020 over five years. The utility requested rates become effective no later than August 2020. Our
stable outlook assumes Duke Carolinas will continue to be allowed to recover the majority of its coal ash remediation spending, and
that it will be able to earn a return on the deferred balance.

Capital expenditures expected to remain elevated
Capital expenditures (inclusive of coal ash remediation spending) at Duke Carolinas have been on the rise, growing steadily from about
$1.7 billion in 2013 to around $3 billion for the twelve months ending June 2019. We expect spending to remain near these levels
for at least the next year or so as spending for new generation, environmental compliance and grid modernization investments in
transmission and distribution continue.

Duke Carolina's current profile incorporates our expectation that the utility will continue to recover its capital expenditures as part of
its rate proceedings. Although there will likely be some regulatory lag, particularly with regard to coal ash as discussed below, we expect
the utility to seek to mitigate the lag through frequent rate case filings.

Coal ash remediation is well underway, but costs are rising and uncertainty is increasing
In 2014, North Carolina lawmakers overwhelmingly passed the Coal Ash Management Act which regulates and requires the closure
of coal ash basins at all coal plant sites throughout the state. The legislation, which was amended in 2016, required Duke to take
costly, immediate action to excavate and close coal ash basins at three of its highest risk sites by the end of 2019. These basins were
all successfully closed ahead of schedule by July 2019. A fourth basin is required to be closed by August 2022. The 2016 amendment
required the remaining sites to be closed by either 2024 or 2029, depending on their priority designation.

3          31 October 2019 Duke Energy Carolinas, LLC: Update to credit analysis
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MOODY'S INVESTORS SERVICE INFRASTRUCTURE AND PROJECT FINANCE

In April 2019, the North Carolina Department of Environmental Quality (NCDEQ) ordered Duke Energy to excavate coal ash at all
of its low-risk sites in North Carolina where specific closure plans had not been determined. The decision is credit negative as it will
cost substantially more than alternative closure options proposed by Duke for these six sites - Duke estimated full excavation would
cost $4-$5 billion more than its previously projected aggregate cost of $5.6 billion to close all basins in the Carolinas. The company
also believes in some cases excavation may take decades, stretching well beyond current state and federal deadlines. The company is
required to submit closure plans by December 31, 2019. Duke has appealed the order to the North Carolina Office of Administrative
Hearings. In August and October 2019 the court issued orders dismissing several of Duke’s claims relating to procedure, but allowing
the substantive claims to move forward. The company expects the process will take 9-12 months.

Through June 2019, Duke Carolinas had spent approximately $1 billion on coal ash remediation. Management continues to refine the
estimated cost of its coal ash remediation obligations as work continues on the sites and there is additional information around closure
requirements. As of June 2019, Duke Energy’s total asset retirement obligation relating to coal ash was reported at $6.5 billion (versus
$4.8 billion in June 2018) and included $5.7 billion for the Carolinas. Duke Carolinas asset retirement obligation was reported as $2.9
billion versus $1.8 billion in June 2018.

As noted above, in its most recent South Carolina rate case, recovery of certain coal ash costs were denied. We expect the company to
appeal this decision and note that it represents a relatively modest portion of total incurred costs. Depending on the outcome of the
appeal, we may modify our treatment of the portion of expenditures that are not recoverable.

Historically strong financial coverage metrics are being impacted by storm activity, coal ash remediation spend and delayed
rate relief
Duke Carolinas’ historically strong financial coverage metrics have been under pressure in recent years as the company has been
spending for coal ash remediation, new generation, and grid modernization, while rates have essentially remained at levels established
in 2013. Duke Carolina’s 2018 rate order established a new base-line, and determined the utility’s spending on coal ash remediation
should be recovered over five years with a full return, a credit positive. However, the authorized increase in rates was entirely offset by a
reduction in revenue due to the lower corporate tax rate.

In addition, in the second half of 2018, a succession of unusually severe storms resulted in over $1 billion of unplanned costs across
Duke’s territories in the Carolinas and Florida. The impact of the storms put downward pressure on financial metrics for all of the
impacted utilities. For the twelve months ending June 2019, Duke Carolinas’ ratio of CFO pre-WC to debt was around 25%. Absent the
unusual storm activity, we estimate this ratio would have been around 26%.

Going forward, lag in the recovery of ongoing coal ash remediation spending and grid modernization will maintain negative pressure
on financial credit metrics. As a result, Duke Carolinas will need to file regular, possibly annual, rate cases to help sustain credit metrics.
In its current rate case filed in October, Duke Carolinas is requesting an approximate $290 million (6% rate increase) with rates to
become effective no later than August 2020. Our stable outlook assumes that management will manage and finance Duke Carolinas
relatively large capital expenditure program with a balanced mix of debt and equity, including the retention of utility cash flow, in a
manner enables the utility to demonstrate financial credit metrics that are consistent with its credit profile. For example, a ratio of
CFO pre-WC to debt above 25%, which is in the middle of the “A” scoring range for this factor in our rating methodology for regulated
electric and gas utilities.

Environmental, social and governance considerations
Duke Carolinas has a moderate carbon transition risk within the regulated utility sector because, as an integrated utility, its generation
ownership places it at a higher risk profile than transmission and distribution companies. As of December 31, 2018, approximately
33% of Duke Carolinas’ 20,209 MW generation portfolio is coal fired. In 2018, Duke Carolina’s generated energy was produced
approximately 52% from nuclear fuel, which lowers the company’s carbon footprint, 26% from coal, and 19% from natural gas. When
considering all sources of energy, purchased power (which includes renewables), made up 11% of the energy supply, with nuclear
contributing 46%, coal 23%, natural gas 17% and owned renewables 3%.

Natural gas is playing an important role in the company’s plans to transition to a cleaner generation mix, and we expect the proportion
of energy supplied by natural gas to increase as coal declines. In 2019, gas co-firing capability was added at the 1,388 MW Rodgers
plant, and the 560 MW Ashville combined cycle plant is scheduled to come on line. By 2024, Duke Carolinas plans to retire three coal
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fired units at its Allen Station (totaling 604 MW) and to add 468 MW of gas-fired capacity at its Lincoln Station. By 2021, gas-firing
optionality is planned at Duke Carolinas 2,220 MW Belews Creek and its 2,060 MW Marshall plants. The remaining two coal-fired Allen
units (totaling 526 MW) are expected to be retired by 2028.

Liquidity Analysis
Given its large capital expenditure program, continuing dividends, and current borrowing capacity under Duke Energy's bank credit
facility, Duke Carolinas is reliant on market access to maintain adequate liquidity. For the twelve months ended June 30, 2019,
Duke Carolinas generated approximately $2.6 billion of cash from operations (CFO), invested approximately $2.8 billion in capital
expenditures and up streamed approximately $250 million in dividend payments to parent Duke Energy, resulting in negative free cash
flow (FCF) of $424 million. In 2018, Duke Carolinas generated approximately $2.5 billion of CFO, invested about $2.7 billion in capital
expenditures and up streamed $750 million in dividend payments, resulting in negative FCF of $926 million. Going forward, we expect
Duke Carolinas will remain cash flow negative.

Duke Carolinas’ alternate liquidity sources include access to funding from the parent company's commercial paper program through
the Duke Energy system money pool, and direct borrowings from the money pool. As of June 2019, the utility had $1.75 billion of
borrowing capacity under Duke Energy’s $8 billion master credit facility. As of June 2019, the utility had $1.1 billion of commercial paper
outstanding, $4 million of letters of credit outstanding, and $250 million set aside to meet its obligations related to a May 2015 Plea
Agreement with the US Department of Justice related to coal ash, reducing available capacity to $397 million from the parent master
credit facility.

Duke Energy’s $8 billion master credit facility terminates in March 2024. The facility does not contain a material adverse change
clause for new borrowings and has a single financial covenant requiring that Duke Energy and its utility subsidiaries each maintain a
consolidated debt to capitalization ratio of no more than 65%, except for Piedmont. The debt to capitalization covenant for Piedmont
is a maximum of 70%. As of June 2019, we estimate Duke Carolinas’ ratio to be about 49%. Duke Carolinas’ nearest long-term debt
maturity is $450 million of first mortgage bonds due in June 2020.
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Rating Methodology and Scorecard Factors

Exhibit 3

Rating Factors
Duke Energy Carolinas, LLC

Regulated Electric and Gas Utilities Industry Scorecard [1][2]   

Factor 1 : Regulatory Framework (25%) Measure Score Measure Score

a) Legislative and Judicial Underpinnings of the Regulatory Framework A A A A

b) Consistency and Predictability of Regulation Aa Aa Aa Aa

Factor 2 : Ability to Recover Costs and Earn Returns (25%)

a) Timeliness of Recovery of Operating and Capital Costs A A A A

b) Sufficiency of Rates and Returns A A A A

Factor 3 : Diversification (10%)

a) Market Position A A A A

b) Generation and Fuel Diversity A A A A

Factor 4 : Financial Strength (40%)

a) CFO pre-WC + Interest / Interest  (3 Year Avg) 7.1x Aa 6.5x - 7x Aa

b) CFO pre-WC / Debt  (3 Year Avg) 26.2% A 24% - 26% A

c) CFO pre-WC – Dividends / Debt  (3 Year Avg) 19.7% A 16% - 19% A

d) Debt / Capitalization  (3 Year Avg) 41.2% A 40% - 43% A

Rating:

Grid-Indicated Outcome Before Notching Adjustment A1 A1

HoldCo Structural Subordination Notching 0 0 0 0

a) Scorecard-Indicated Outcome A1 A1

b) Actual Rating Assigned A1 A1

Current 

LTM 6/30/2019

Moody's 12-18 Month Forward 

View

As of Date Published [3]

[1] All ratios are based on 'Adjusted' financial data and incorporate Moody's Global Standard Adjustments for Non-Financial Corporations.
[2] As of 6/30/2019(L)
[3]This represents Moody's forward view; not the view of the issuer; and unless noted in the text, does not incorporate significant acquisitions and divestitures.
Source: Moody's Financial Metrics

6          31 October 2019 Duke Energy Carolinas, LLC: Update to credit analysis

Public Staff 
Hinton Exhibit 3 

Docket No. E-7, Sub 1214 
Page 6 of 9

I/A



MOODY'S INVESTORS SERVICE INFRASTRUCTURE AND PROJECT FINANCE

Appendix

Exhibit 4

Cash Flow and Credit Metrics [1]

CF Metrics Dec-15 Dec-16 Dec-17 Dec-18 LTM Jun-19

As Adjusted 

     FFO  2,694  2,883  2,915  3,129  3,130 

+/- Other  14  31  (71)  (267)  (175)

     CFO Pre-WC  2,708  2,914  2,844  2,862  2,955 

+/- ΔWC  (128)  349  54  (96)  (83)

     CFO  2,580  3,263  2,898  2,766  2,872 

-    Div  401  2,000  625  750  250 

-    Capex  2,097  2,507  2,788  2,942  3,048 

     FCF  82  (1,244)  (515)  (926)  (426)

(CFO  Pre-W/C) / Debt 31.5% 29.5% 27.2% 24.5% 24.6%

(CFO  Pre-W/C - Dividends) / Debt 26.8% 9.3% 21.2% 18.1% 22.5%

FFO / Debt 31.3% 29.2% 27.9% 26.8% 26.1%

RCF / Debt 26.6% 9.0% 21.9% 20.4% 24.0%

Revenue  7,229  7,322  7,302  7,300  7,322 

Cost of Good Sold  1,872  1,789  1,803  1,800  1,787 

Interest Expense  456  469  474  482  491 

Net Income  985  1,127  1,160  1,025  1,033 

Total Assets  35,553  36,657  37,851  40,121  42,442 

Total Liabilities  24,027  25,975  26,585  28,542  30,270 

Total Equity  11,526  10,682  11,266  11,579  12,172 

[1] All figures and ratios are calculated using Moody's estimates and standard adjustments. Periods are Financial Year-End unless indicated. LTM=Last Twelve Months
Source: Moody's Financial Metrics

Exhibit 5

Peer Comparison Table [1]
     

FYE FYE LTM FYE FYE LTM FYE FYE LTM FYE FYE LTM

(in US millions) Dec-17 Dec-18 Jun-19 Dec-17 Dec-18 Jun-19 Dec-17 Dec-18 Jun-19 Dec-17 Dec-18 Jun-19

Revenue 7,302 7,300 7,322 5,129 5,699 5,819 6,039 6,032 5,977 7,556 7,619 7,945

CFO Pre-W/C 2,844 2,862 2,955 1,947 1,763 1,752 2,016 1,879 2,167 2,931 3,198 2,606

Total Debt 10,463 11,665 12,003 8,215 8,975 9,639 7,933 8,500 8,396 13,275 13,697 14,006

CFO Pre-W/C / Debt 27.2% 24.5% 24.6% 23.7% 19.6% 18.2% 25.4% 22.1% 25.8% 22.1% 23.3% 18.6%

CFO Pre-W/C – Dividends / Debt 21.2% 18.1% 22.5% 22.2% 17.7% 16.4% 16.5% 12.7% 16.1% 13.1% 20.0% 15.8%

Debt / Capitalization 41.6% 43.3% 43.0% 45.7% 46.1% 46.8% 44.6% 44.3% 40.8% 47.2% 46.2% 46.8%

Duke Energy Carolinas, LLC Duke Energy Progress, LLC Alabama Power Company Virginia Electric and Power Company

A1 Stable A2 Stable A1 Stable A2 Stable

[1] All figures & ratios calculated using Moody's estimates & standard adjustments. FYE=Financial Year-End. LTM=Last Twelve Months. RUR*=Ratings Under Review, where UPG=for
upgrade and DNG=for downgrade
Source: Moody's Financial Metrics
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Ratings

Exhibit 6
Category Moody's Rating
DUKE ENERGY CAROLINAS, LLC

Outlook Stable
Issuer Rating A1
First Mortgage Bonds Aa2
Bkd Senior Secured Aa2
Senior Unsecured A1

PARENT: DUKE ENERGY CORPORATION

Outlook Stable
Issuer Rating Baa1
Sr Unsec Bank Credit Facility Baa1
Senior Unsecured Baa1
Jr Subordinate Baa2
Pref. Stock Baa3
Commercial Paper P-2

Source: Moody's Investors Service
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Duke Energy Carolinas, LLC
First Mortgage Bonds

Moody's Historical Ratings

Date Rating Rating Action
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13 Jan 2016 Aa2 RATING AFFIRMATION
27 Oct 2015 Aa2 RATING AFFIRMATION
05 Jun 2015 Aa2 RATING AFFIRMATION
31 Jan 2014 Aa2 Upgrade
08 Nov 2013 Aa3 ON WATCH for Possible Upgrade
25 Sep 2013 Aa3 Upgrade
09 Jul 2013 A1 ON WATCH for Possible Upgrade
03 Aug 2009 A1 Upgrade
06 Apr 2006 A2 Upgrade
29 Mar 2006 A3 ON WATCH for Possible Upgrade
17 Jun 2003 A3 Downgrade
31 Mar 2003 A2 ON WATCH for Possible Downgrade
23 Dec 2002 A2 Downgrade
20 Sep 2002 Aa3 ON WATCH for Possible Downgrade
21 Sep 2001 Aa3 Confirmed
20 Sep 1999 Aa3 Confirmed
03 Aug 1999 Aa3 Confirmed
30 Jul 1999 Aa3 Confirmed
18 Feb 1999 Aa3 Confirmed
23 Nov 1998 Aa3 Confirmed
01 Jul 1997 Aa3 Downgrade
25 Nov 1996 Aa2 ON WATCH for Possible Downgrade
14 Nov 1996 Aa2 Confirmed
13 Mar 1996 Aa2 Confirmed
10 Sep 1984 Aa2 Upgrade
02 May 1983 Aa3 Upgrade
26 Apr 1982 A1 Modified Rating Notation
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Duke Energy Corporation
Update to credit analysis

Summary
Duke Energy Corporation (Duke) is one of the largest utility holding companies in the
US. Its credit profile reflects the company’s diverse, low business risk operations in which
about 97% of earnings and cash flow are derived from rate regulated businesses in growing
economies with supportive regulators. These credit supportive factors are balanced against
weak financial metrics that we expect will improve somewhat in 2019, but dip again in 2020
before rebounding in 2021.

Exhibit 1

Historical CFO Pre-WC, Total Debt and CFO Pre-WC to Debt ($MM) [1]
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[1] CFO Pre-WC is defined as cash flow from operations excluding changes in working capital
Source: Moody's Financial Metrics

Credit strengths

» Diverse group of utilities operating in seven states in three geographic regions

» Credit supportive regulatory relationships

» Businesses are essentially all regulated or contracted

» Approved recovery of the majority of coal ash related expenditures

Credit challenges

» Weak consolidated credit metrics

» Significant, primarily debt financed, capital program

» Lag in the recovery of storm related costs and coal ash remediation spending
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» Increasing regulatory uncertainty surrounding coal ash cost recovery

» Delays and cost increases at Atlantic Coast Pipeline (ACP) project

» Relatively high parent company debt levels

Rating outlook
The stable outlook reflects our expectation that Duke will maintain supportive regulatory relationships in all of its jurisdictions. The
outlook also assumes management will manage its operating, capital and financing plans in a manner that supports credit quality and
enables the maintenance of credit metrics that are consistent with our expectations. For example, we anticipate the company’s ratio of
cash flow from operations excluding working capital (CFO pre-WC) to debt will improve to the 15% range.

Factors that could lead to an upgrade

» Ratings could be upgraded if regulatory environments were to become more supportive, leading to increased cash flow and reduced
leverage, and if the ratio of CFO pre-WC to debt can be maintained above 18%.

Factors that could lead to a downgrade

» A deterioration in the credit supportiveness or emergence of a more contentious regulatory relationship which negatively impacts
cash flows or the timeliness of cost recovery, particularly with regards to coal ash remediation recovery in North Carolina

» A ratio of CFO pre-WC that we expect to remain below 15% beyond 2020, or an increase in parent company debt levels above 35%
of total consolidated debt

Key indicators

Exhibit 2

Duke Energy Corporation [1]

Dec-15 Dec-16 Dec-17 Dec-18 LTM Jun-19

CFO Pre-W/C + Interest / Interest 5.3x 4.7x 4.7x 4.4x 4.6x

CFO Pre-W/C / Debt 17.3% 14.6% 14.8% 13.7% 14.0%

CFO Pre-W/C – Dividends / Debt 11.8% 9.9% 10.3% 9.4% 9.8%

Debt / Capitalization 44.2% 47.5% 53.0% 52.9% 53.6%

[1] All ratios are based on 'Adjusted' financial data and incorporate Moody's Global Standard Adjustments for Non-Financial Corporations.
Source: Moody's Financial Metrics

Profile
Duke is a large (2018 revenues of $24.5 billion), diversified energy company with mostly regulated utility operations headquartered
in Charlotte, North Carolina. Its main business consists of its electric utilities and infrastructure business segment, which serves
approximately 7.7 million retail electric customers in six US states and made up about 90% of Duke’s 2018 earnings base. The
company’s gas utilities and infrastructure businesses provide natural gas to over 1.6 million customers located in five states. Duke
has also formed a joint venture to build and own a 47% share of the estimated $7.0-$7.8 billion Atlantic Coast Pipeline, a 600-mile
interstate natural gas pipeline from West Virginia to the Carolinas which has been experiencing permitting delays and increased costs.
The company’s relatively small (about 3% of 2018 adjusted earnings) commercial renewables business segment builds, develops and
operates wind and solar generation projects throughout the continental US.

This publication does not announce a credit rating action. For any credit ratings referenced in this publication, please see the ratings tab on the issuer/entity page on
www.moodys.com for the most updated credit rating action information and rating history.
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Exhibit 3

Duke Organizational Structure

Baa2, Stable

Not rated

Duke Energy Progress

Duke Energy Carolinas 

Duke Energy Ohio

Duke Energy Indiana 

A1, Stable A2, Stable

Cinergy 

Not rated

Baa1, Stable

Duke Energy Kentucky

Baa1, Stable

A3, StableA2, Stable

Duke Energy Florida

Progress Energy

Baa1, Stable

Duke Energy Corporation

Baa1, Stable

Piedmont Natural Gas

A3, Stable

Duke Energy 

Renewables

Source: Moody's Investors Service, Company

Detailed credit considerations
Diverse group of utilities operating in credit supportive regulatory environments
Duke’s overall credit profile is driven by seven regulated utilities operating in seven US states, which provide a high degree of regulatory
and geographic diversity. We consider these regulatory jurisdictions to be supportive with rate settlements in place at most of its
utilities. In addition, the company has achieved reasonably credit supportive outcomes in its major jurisdictions on issues related to the
majority of its coal ash remediation spending and federal tax reform.

In Duke’s largest electric jurisdiction, North Carolina, the North Carolina Utilities Commission (NCUC) issued orders in 2018 for
both Duke Energy Carolinas and Duke Energy Progress (combined approximately 56% of Duke’s 2018 regulated earnings base) that
established revenues based on a 9.9% return on equity, and a 52% equity base. The orders followed settlement agreements on
traditional rate making parameters. We view the ability to regularly settle on more traditional issues as a credit positive.

The North Carolina orders also resolved issues relating to the recovery of costs for coal ash remediation. Spending for coal ash
remediation has been deemed reasonable and prudent and, with the exception of a specific manageable penalty assessed in each case,
the companies have been authorized to recover their prior expenditures over five years with a full debt and equity return. Ongoing
expenditures will continue to be deferred for future recovery. We view the ability to earn a full return on these expenditures, and to
recover them over reasonable time frames, as credit positive. As a result of this rate base like treatment, we currently view the spending
for coal ash remediation to be akin to a capital expenditure.

In 2018, the NCUC also addressed the impact of federal tax reform. During the year, both Duke Energy Carolinas and Duke Energy
Progress’ revenue requirements were reduced by the full amount of the change in tax rate to 21% from 35%. However, the utilities
were allowed to retain all excess deferred taxes for three years, or until its next rate case, whichever is sooner. At that time, the NCUC
will evaluate how to best return this value to customers. We believe the form of return could include accelerated recovery of certain
expenses, or the avoidance of rate increases. We would view such outcomes as credit positive.

The NCUC did however deny Duke’s requests for rider recovery for grid modernization investments and ongoing coal ash remediation,
both credit negatives. As a result, there will continue to be regulatory lag associated with these expenditures and we expect the
utilities will need to file frequent rate cases to minimize this exposure. Duke has been working with lawmakers in an attempt to pass
legislation that would allow securitization of storm costs as well as the consideration of alternative rate adjustment mechanisms such
as rider recovery, multiyear plans, incentive mechanisms or ROE bands. Last week, a North Carolina conference committee produced
a compromise bill that would authorize securitization of storm costs immediately, but would delay the implementation of alternative
rate plans until 2021. The bill was immediately approved by the Senate and must now be approved by the House before heading to
the Governor. A vote in the House is expected in October. Our stable outlook assumes a continuation of regulatory outcomes that will
allow the companies to maintain cash flow based credit metrics at levels that are supportive of their current credit quality.

In South Carolina, in May 2019, the Public Service Commission of South Carolina (PSCSC) issued an order for rate increases at Duke
Energy Carolinas and Duke Energy Progress for $107 million and $41 million respectively based on a 9.5% ROE and a 53% equity

3          13 October 2019 Duke Energy Corporation: Update to credit analysis

Public Staff 
Hinton Exhibit 5 

Docket No. E-7, Sub 1214 
Page 3 of 13

I/A



MOODY'S INVESTORS SERVICE INFRASTRUCTURE AND PROJECT FINANCE

ratio. New rates were effective June 1, 2019. In a credit negative development, the PSCSC denied the recovery of certain coal ash costs
deemed to be related to the North Carolina Coal Ash Management Act and incremental to the federal Coal Combustion Residuals
rule in the amount of $115 million and $65 million at Duke Energy Carolinas and Duke Energy Progress respectively. In May 2019, both
Duke subsidiaries filed a petition for rehearing or reconsideration of the PSCSC’s order contending substantial rights of Duke Energy
Carolinas and Duke Energy Progress were prejudiced by unlawful, arbitrary and capricious rulings by the commission on certain issues,
including its ability to fully recover its coal ash remediation spending. In June 2019, the PSCSC issued a directive denying the company’s
request for rehearing. Duke Energy Carolinas and Duke Energy Progress are currently awaiting the written order detailing the PSCSC’s
decision and are prepared to appeal portions of the case to the South Carolina Supreme Court. Depending on the outcome of the
appeal, we may modify our treatment of the portion of expenditures that are not recoverable.

In Florida (approximately 18% of 2018 regulated earnings base), as part of a 2017 second revised and restated settlement agreement
(which amended a 2013 settlement agreement), Duke Energy Florida will increase base rates by an incremental $67 million
(subsequently adjusted to $55 million to reflect the effects of federal tax reform) each year from 2019 through 2021, subject to an ROE
range of 9.5% to 11.5%. The order also included provisions that addressed the expected passage of federal tax reform and included the
ability to use a portion of future benefits resulting from lower tax rates to accelerate the depreciation of existing coal plants rather than
decreasing revenue. In January 2018, the Florida Public Service Commission authorized Duke Energy Florida to utilize the remainder
of the benefits of lower tax rates to avoid a rate increase for power restoration costs associated with the company’s 2017 response
to Hurricane Irma. In June 2019, the FPSC approved the company’s request to recover approximately $221 million of incremental
operating costs incurred as a result of Hurricane Michael. We view the ability to utilize tax reform savings to offset storm costs as a
credit positive. Approved storm costs are currently expected to be fully recovered around year-end 2022.

Duke Energy Florida also continues to benefit from a credit positive Generation Base Rate Adjustment (GBRA) mechanism for new
generation built or purchased during 2016-2018 that allows recovery of prudently incurred costs through a base rate adjustment when
the generation is placed in service. Duke Florida’s 1,640 MW $1.5 billion Citrus County combined cycle plant was placed into service
in 2018. The 2017 settlement included a similar mechanism for up to 700MW of new solar generation to be acquired or constructed
between 2018 and 2022.

In Indiana (about 11% of 2018 regulated earnings base), in June 2016, the Indiana Utility Regulatory Commission (IURC) approved a
settlement agreement between Duke Energy Indiana and key consumer groups on a seven year $1.4 billion grid modernization plan. As
a result, in accordance with previously approved state legislation, 80% of the plan’s costs will be recovered through a rate rider, with
the remaining 20% recoverable through future base rate proceedings. In May 2017, Duke Energy Indiana received approval to recover
60% of the capital and 80% of the operating costs of complying with the US Environmental Protection Agency’s Coal Combustion
Residuals rules via an environmental mandate tracker, and to defer the remaining difference for recovery in the utility’s next rate case.
In June 2018, Duke Energy Indiana reached a settlement with key intervenors on tax reform. The settlement calls for a flow through of
the reduction in tax rate to 21% from 35% beginning in September. However, the protected portion of excess deferred taxes will be
retained until January 2020, after which it will be returned over approximately 26 years. The unprotected portion will be returned over
10 years, but to mitigate the impact on cash flow based credit metrics, the amount is lower in the first five years.

In July 2019, Duke Energy Indiana filed a request for a $395 million (approximately 15%) base rate increase premised on a 10.4% return
on equity and a 53% equity component. This is Duke Energy Indiana’s first base rate case filing in 16 years and is being driven by capital
investments in generation, improvements in the grid to ensure reliability and a growing customer base. The request includes $138
million relating to a change in depreciation, primarily to accelerate the retirement of certain coal-fired units. The company is also
requesting the use of a forward test year, which was authorized by law in 2013. Duke expects hearings to begin in early 2020 with new
rates effective by mid 2020.

On the natural gas side, Duke’s local gas distribution subsidiary Piedmont Natural Gas (Piedmont), has historically received supportive
treatment from its regulators in North Carolina (73% of rate base), South Carolina (14%) and Tennessee (13%). In addition, all three
states provide cost recovery mechanisms and frameworks that lead to reduced regulatory lag.

In August 2019 Piedmont reached a settlement agreement with the NCUC public staff for a base rate increase of approximately $109
million, after the expiration of various rider credits to flow back federal and state income tax credits. The agreed increase was based
on a 9.7% ROE and a 52% equity layer. Piedmont initially requested an increase of $83 million (net of $37 million of reductions due

4          13 October 2019 Duke Energy Corporation: Update to credit analysis

Public Staff 
Hinton Exhibit 5 

Docket No. E-7, Sub 1214 
Page 4 of 13

I/A



MOODY'S INVESTORS SERVICE INFRASTRUCTURE AND PROJECT FINANCE

to lower tax rates), based on a 10.6% ROE and a 52% equity layer. The settlement allows continuation of an integrity management
rider for federally mandated safety and capital investments and establishes a new distribution integrity management program recovery
mechanism. The settlement is subject to the review and approval of the NCUC.

Operations are essentially all regulated
In 2015, Duke successfully exited the merchant generating business with the sale of Duke Energy Ohio’s competitive generating assets.
In 2016, Duke sold its more volatile Latin American businesses and acquired Piedmont Natural Gas Company (Piedmont), expanding its
relatively low risk local natural gas distribution operations in the historically credit supportive states of North Carolina, South Carolina
and Tennessee. As a result, essentially all of its operations are now either state or federally regulated. Duke’s commercial renewables
segment provides services under long term contracts, and contributed under 5% of the company’s 2018 earnings. The shift to lower
business risk operations has helped to mitigate the decline in credit metrics that followed the Piedmont acquisition.

Exhibit 4

2018 Regulated Utilities Earnings Base
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Consolidated financial credit metrics are weak
Duke's revenues and cash flow are being negatively impacted by the 2017 Tax Cuts and Jobs Act (TCJA), continued lag in recovery of
coal ash remediation costs, severe storm activity, and lag in recovery of grid modernization investments. As a result, cash flow based
credit metrics, which declined in 2016 following Duke's acquisition of Piedmont, have remained below our financial metric downgrade
triggers. For example, for the last twelve months ended June 30, 2019, we calculate Duke’s ratio of cash flow from operations excluding
changes in working capital (CFO pre-WC) to debt to be about 14%, which is at the lower end of the “Baa” scoring range for this metric
in our rating methodology for regulated electric and gas utilities and below our financial metric downgrade trigger of 15%. Absent the
impact of the 2018 storms, we estimate the company’s twelve month trailing ratio of CFO pre-WC to debt would be about 15%.

While we anticipate Duke’s ratio of CFO pre-WC to debt will be around 15% for full year 2019, we believe it could fall toward 14% in
2020 before rebounding in 2021 as a result of rate case activity, operational enhancements, and lower dividend growth. In addition
to planning regular rate cases in the Carolinas, Duke is also actively working with lawmakers on legislation that would allow the
securitization of storm costs as well as alternative rate mechanisms that could reduce the lag in recovery, and would be credit positive.
Our stable outlook assumes management will remain focused on achieving and maintaining a ratio of CFO pre-WC to debt in the
15-16% range, and that the metric will move into this range by 2021.

High capital spending for utility infrastructure and growth initiatives
Capital expenditures at Duke, inclusive of spending for coal ash remediation, have steadily increased year over year, nearly doubling
from about $5.5 billion in 2014 to about $10.1 billion in 2018. As shown in the exhibit below, the largest portion of the plan represents
what Duke terms “growth” capital driven by grid modernization in the Carolinas and natural gas infrastructure. In 2018, maintenance
spending increased to $3.2 billion due in part to restoration efforts related to storm damages; going forward maintenance spending is
expected to range between $2 and $2.5 billion per year.
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Exhibit 5

2019-2023 Capital Expenditures Forecast ($50 Billion)
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In addition to its core utility investment, Duke is growing its natural gas pipeline businesses and plans to continue to selectively invest
in renewables. Included in the company’s capital plan for 2019-2023 is about $2.9 billion for midstream pipelines, primarily the Atlantic
Coast Pipeline (ACP), and about $2.5 billion for utility scale contracted renewables. Although we view the commercial renewables
business as higher risk than its regulated utility business segment, these assets for the most part sell power to investor owned,
cooperative, or municipal utilities under risk mitigating long-term contracts. Duke recently sold a minority share in its commercial
renewables portfolio, generating pre-tax proceeds of approximately $415 million, which will likely also reduce the future capital needs
of this segment.

Delays and cost increases at Atlantic Coast Pipeline (ACP) project
ACP is a 600-mile interstate natural gas pipeline being built by Dominion Energy, Inc. (Baa2 stable) from West Virginia to eastern
North Carolina. Duke holds a 47% share in the project. The pipeline will supply natural gas from the Utica and Marcellus shale basins to
natural gas generation at Duke Energy Carolinas and Duke Energy Progress, as well as to Piedmont and other utilities in the area.

Construction of ACP has been halted due to adverse court rulings on environmental issues, including a biological opinion and a permit
to cross under the Appalachian Trail. As a result, the estimated cost to complete the project increased by about $1 billion, and its
estimated completion schedule was extended by over a year. The pipeline is currently expected to cost between $7 and $7.8 billion
($3.3-$3.7 for Duke) and could be completed in two phases. Construction of the first phase, which does not cross the Appalachian Trail,
could be restarted by year-end if there is a successful re-issuance of its biological opinion.

Construction of the second phase requires resolution of a Fourth Circuit Court of Appeals decision to vacate the permit issued by the
U.S. Forest Service allowing ACP to cross under the Appalachian Trail. ACP has appealed the decision to the U.S. Supreme Court and
just recently learned the Court has accepted the case. A decision is required by June 2020, which if favorable, would allow construction
to begin next summer and the pipeline to be completed by the end of 2021. The increased costs, and delay of cash flow from this
project, are maintaining downward pressure on Duke’s credit metrics.

Lag in the recovery of storm related costs will pressure metrics in the near term
In the fall and winter of 2018, Duke’s operations were impacted by a succession of severe storms. Hurricane Florence arrived in mid-
September and affected the company’s operations in North and South Carolina. One month later, Hurricane Michael came ashore in
the gulf region and caused damage all the way from Florida through North and South Carolina. In December 2018, Winter Storm Diego
was the third major storm to impact Duke Energy Progress and Duke Energy Carolinas service territories.

Total costs for the three storms was in excess of $1 billion, primarily in Duke Energy Progress’ North Carolina and Duke Energy Florida’s
service territories. Utilities in these territories have a good history of storm recovery, albeit with some regulatory lag. Duke has been
working with lawmakers to enact securitization legislation, which would assure recovery of costs at lower cost to customers; however
recovery would likely not begin until 2020 and will be spread out over a number of years. In the meantime, Duke’s consolidated debt
balances are about $1 billion higher than previously forecast, which continues to add negative pressure to credit metrics.
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Recovery of coal ash expenditures primarily resolved, but lag persists and uncertainty is increasing
In 2014, North Carolina lawmakers overwhelmingly passed the Coal Ash Management Act which regulates and requires the closure
of coal ash basins at all coal plant sites throughout the state. The legislation, which was amended in 2016, required Duke to take
costly, immediate action to excavate and close coal ash basins at three of its highest risk sites by the end of 2019. These basins were
all successfully closed ahead of schedule by July 2019. A fourth basin is required to be closed by August 2022. The 2016 amendment
required the remaining sites to be closed by either 2024 or 2029, depending on their priority designation.

In April 2019, the North Carolina Department of Environmental Quality (NCDEQ) ordered Duke Energy to excavate coal ash at all
of its low-risk sites in North Carolina where specific closure plans had not been determined. The decision is credit negative as it will
cost substantially more than the alternative closure options proposed by Duke for these six sites, and in some cases it may take
decades, stretching well beyond current state and federal deadlines. The company is required to submit closure plans by December 31,
2019. Duke has appealed the order to the North Carolina Office of Administrative Hearings. In August 2019 the court issued an order
dismissing several of Duke’s claims relating to procedure, but allowing the substantive claims to move forward. The company expects
the process will take 9-12 months.

In 2014, Duke recognized a $3.5 billion Asset Retirement Obligation (ARO) for its estimated obligations to close its North Carolina coal
ash basins. In the second quarter of 2015, after publication of the EPA’s final Coal Combustion Rules, Duke incrementally increased the
ARO by $1 billion as it created additional obligations for the company in South Carolina, Indiana, and Kentucky, putting its total ARO
at $4.5 billion. Duke continues to refine its estimated obligations as work continues on the sites and there is additional information
around closure requirements. As of June 30, 2019, Duke had spent approximately $2.1 billion and its total ARO had increased to
approximately $6.5 billion ($2 billion more than reported as of December 2018).

In Duke’s largest jurisdictions in North and South Carolina, coal ash basin closure and remediation spending is not recovered via
trackers or other automatic cost recovery provisions and must be recovered via base rate case filings. As a result, there will likely
continue to be regulatory lag in the recovery of these costs. To date, the majority of coal ash expenditures incurred have been
recovered with rate base like treatment. Therefore we currently view the spending for coal ash remediation to be akin to a capital
expenditure. However in their most recent South Carolina rate cases Duke Energy Progress and Duke Energy Carolinas were denied
recovery of certain coal ash costs. The company plans to appeal this decision and we note that it represents a relatively modest portion
of total incurred costs. Depending on the outcome of the appeal, we may modify our treatment of the portion of expenditures that are
not recoverable.

Equity issuance has contained parent leverage – but it will still be relatively high
Duke’s $2 billion 2018 equity issuance, and its plans for ongoing issuance of $500 million per year, have helped control the company’s
need for parent level debt financing. Prior to the announced 2018 equity issuance, we expected the level of parent debt to spike in
2018 and 2019 due in part to investments in ACP. Currently, we expect the proportion of Duke parent debt as a percentage of total
consolidated debt will remain under 35%. This is still relatively high when compared to some other regulated utility holding company
peers, and a factor in the wide differential between Duke and most of its subsidiaries' credit quality.
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Exhibit 6

2018 Reported Debt by Entity
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Environmental, social and governance considerations
Duke has moderate carbon transition risk within the regulated utility sector as the majority of its energy is generated by fossil fuels.
Since 2005, Duke has reduced carbon dioxide emissions by 31% and currently plans a 50% (increased from 40% in 2017) reduction by
2030. Furthermore Duke just announced a goal to achieve net-zero carbon emissions by 2050. As of 2018, the company’s consolidated
net output included about 31% from coal / oil fired resources, versus about 61% in 2005. By 2030 Duke estimates that 15% of its total
company generation will be fired by coal.

Exhibit 7

2005 Fuel Diversity
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Liquidity analysis
Given its large capital programs, Duke is reliant on external sources of liquidity. For the twelve months ending June 2019, Duke’s
consolidated cash flow from operations was approximately $7 billion while cash used for investing activities was about $10.5 billion
and the company paid around $2.6 billion in dividends resulting in negative free cash flow of approximately $6 billion. The shortfall
was funded via a combination of sources including subsidiary and parent level debt as well as preferred and common equity (about $2
billion).

As of June 2019, the Duke had $336 million of cash and short-term investments on hand, $3.9 billion available under its $8 billion
master credit facility, and $500 million available under its $1 billion parent level revolving credit facility (May 2022 expiration). The
master credit facility matures in March 2024 and includes sub-limits for each of its utility subsidiaries. As of June 30, 2019, Duke’s
parent company borrowing sub-limit under the master credit facility was $2.65 billion, and the subsidiary sub-limits were: $1.25 billion
for Duke Energy Progress, $800 million for Duke Energy Florida, $1.75 billion for Duke Energy Carolinas, $600 million for Duke Energy
Indiana, $450 million for Duke Energy Ohio, and $500 million for Piedmont Natural Gas.

The master credit facility supports a $4.85 billion commercial paper program. The facility does not contain a material adverse
change clause for new borrowings and has a single financial covenant requiring that Duke and its utility subsidiaries each maintain a
consolidated debt to capitalization ratio of no more than 65%, except for Piedmont. The debt to capital covenant for Piedmont is a
maximum of 70%. As of June 30, 2019, we estimate Duke’s consolidated ratio to be about 57%.

As of June 30, 2019, Duke had about $3.4 billion of commercial paper outstanding, including about $1 billion allocated to the parent
company under its $2.65 billion credit facility sub-limit. Of the total $8 billion master credit facility, Duke and its utilities had about
$3.9 billion of availability with $3.4 billion of commercial paper, $500 million of coal ash set-aside, $81 million of tax-exempt bonds,
and $53 million of letters of credit outstanding. Duke also maintains a money pool arrangement among its utility subsidiaries allowing
it to more efficiently utilize available cash balances throughout the organization.

As an additional source of liquidity Duke also has the ability to raise short-term debt through a variable rate demand note program
called PremierNotes. The company’s filings with the SEC indicate that no more than $1.5 billion of such notes will be outstanding. The
notes have no stated maturity date and can be redeemed in whole or in part by Duke or at the investor’s option at any time. As of June
30, 2019, Duke had about $991 million of PremierNotes outstanding. Although not explicitly backed by Duke’s bank credit facility, the
facility could be used to fund the maturities of such notes. These notes are classified as part of the $3.8 billion total notes payable and
commercial paper outstanding as of June 30, 2019.

Duke’s scheduled long-term debt maturities over the twelve months beginning June 30, 2019 total approximately $2.35 billion,
including approximately $830 million at the parent level Duke Corp., $350 million at Progress Energy, $450 million at Duke Carolinas,
$600 million at Duke Florida, $100 million at Duke Kentucky. We expect most of this debt will be refinanced.
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Rating methodology and scorecard factors

Exhibit 10

Rating Factors
Duke Energy Corporation

Regulated Electric and Gas Utilities Industry Scorecard [1][2]   

Factor 1 : Regulatory Framework (25%) Measure Score Measure Score

a) Legislative and Judicial Underpinnings of the Regulatory Framework A A A A

b) Consistency and Predictability of Regulation Aa Aa Aa Aa

Factor 2 : Ability to Recover Costs and Earn Returns (25%)

a) Timeliness of Recovery of Operating and Capital Costs A A A A

b) Sufficiency of Rates and Returns Baa Baa Baa Baa

Factor 3 : Diversification (10%)

a) Market Position Aa Aa Aa Aa

b) Generation and Fuel Diversity A A A A

Factor 4 : Financial Strength (40%) [4]

a) CFO pre-WC + Interest / Interest  (3 Year Avg) 4.6x A 4.6x - 5x A

b) CFO pre-WC / Debt  (3 Year Avg) 14.3% Baa 14% - 16% Baa

c) CFO pre-WC – Dividends / Debt  (3 Year Avg) 10.0% Baa 10% - 12% Baa

d) Debt / Capitalization  (3 Year Avg) 51.8% Baa 50% - 54% Baa

Rating:

Scorecard-Indicated Outcome Before Notching Adjustment A3 A3

HoldCo Structural Subordination Notching -1 -1 -1 -1

a) Scorecard-Indicated Outcome Baa1 Baa1

b) Actual Rating Assigned Baa1 Baa1

Current 

LTM 6/30/2019

Moody's 12-18 Month Forward View

As of Date Published [3]

[1] All ratios are based on 'Adjusted' financial data and incorporate Moody's Global Standard Adjustments for Non-Financial Corporations.
[2] As of 6/30/2019(L)
[3] This represents Moody's forward view; not the view of the issuer; and unless noted in the text, does not incorporate significant acquisitions and divestitures.
[4] Standard risk grid for financial strength
Source: Moody's Financial Metrics
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Appendix

Exhibit 11

Cash Flow and Credit Metrics [1]

CF Metrics Dec-15 Dec-16 Dec-17 Dec-18 LTM Jun-19

As Adjusted 

     FFO  7,638  7,586  8,514  8,954  9,540 

+/- Other  (459)  (323)  (496)  (1,047)  (931)

     CFO Pre-WC  7,179  7,263  8,018  7,907  8,609 

+/- ΔWC  181  394  (752)  (138)  (993)

     CFO  7,360  7,657  7,266  7,769  7,616 

-    Div  2,269  2,338  2,457  2,484  2,587 

-    Capex  7,278  8,697  8,687  9,959  11,209 

     FCF  (2,187)  (3,378)  (3,878)  (4,674)  (6,179)

(CFO  Pre-W/C) / Debt 17.3% 14.6% 14.8% 13.7% 14.0%

(CFO  Pre-W/C - Dividends) / Debt 11.8% 9.9% 10.3% 9.4% 9.8%

FFO / Debt 18.4% 15.2% 15.7% 15.5% 15.5%

RCF / Debt 12.9% 10.5% 11.2% 11.2% 11.3%

Debt / EBITDA 4.4x 5.1x 5.0x 5.5x 5.6x

Revenue  22,371  22,743  23,565  24,521  24,779 

Cost of Good Sold  7,338  6,789  6,863  7,396  7,390 

EBITDA  9,417  9,728  10,737  10,480  10,927 

Interest Expense  1,681  1,977  2,171  2,330  2,388 

Net Income  2,530  2,119  3,106  2,281  2,627 

Total Assets  119,812  131,655  136,911  144,659  151,314 

Total Liabilities  80,026  90,739  95,410  101,027  106,786 

Total Equity  39,785  40,916  41,501  43,633  44,529 

[1] All figures and ratios are calculated using Moody’s estimates and standard adjustments. Periods are Financial Year-End unless indicated. LTM = Last Twelve Months
Source: Moody's Financial Metrics

Exhibit 12

Peer Comparison Table [1]
DO NOT USE FOR MIDSTREAM 

FYE FYE LTM FYE FYE LTM FYE FYE LTM FYE FYE LTM

(in US millions) Dec-17 Dec-18 Jun-19 Dec-17 Dec-18 Jun-19 Dec-17 Dec-18 Jun-19 Dec-17 Dec-18 Jun-19

Revenue 23,565 24,521 24,779 15,425 16,196 15,765 23,031 23,495 22,006 11,404 11,537 11,646

CFO Pre-W/C 8,018 7,907 8,609 4,580 4,831 4,572 7,242 7,107 6,245 3,314 3,116 3,083

Total Debt 54,169 57,787 61,455 24,138 26,588 28,552 51,414 47,808 46,185 16,917 18,376 19,243

CFO Pre-W/C / Debt 14.8% 13.7% 14.0% 19.0% 18.2% 16.0% 14.1% 14.9% 13.5% 19.6% 17.0% 16.0%

CFO Pre-W/C – Dividends / Debt 10.3% 9.4% 9.8% 14.0% 13.4% 11.4% 9.4% 9.7% 5.3% 15.3% 13.0% 12.1%

Debt / Capitalization 53.0% 52.9% 53.6% 49.2% 50.6% 51.6% 60.2% 56.2% 53.3% 52.8% 53.2% 53.9%

Baa1 Stable Baa1 Stable Baa2 Stable Baa1 Stable

Duke Energy Corporation American Electric Power Company, Inc. Southern Company (The) Xcel Energy Inc.

[1] All figures & ratios calculated using Moody’s estimates & standard adjustments. FYE = Financial Year-End. LTM = Last Twelve Months. RUR* = Ratings under Review, where UPG = for
upgrade and DNG = for downgrade
Source: Moody's Financial Metrics
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Ratings

Exhibit 13
Category Moody's Rating
DUKE ENERGY CORPORATION

Outlook Stable
Issuer Rating Baa1
Sr Unsec Bank Credit Facility Baa1
Senior Unsecured Baa1
Jr Subordinate Baa2
Pref. Stock Baa3
Commercial Paper P-2

DUKE ENERGY CAROLINAS, LLC

Outlook Stable
Issuer Rating A1
First Mortgage Bonds Aa2
Bkd Senior Secured Aa2
Senior Unsecured A1

DUKE ENERGY PROGRESS, LLC

Outlook Stable
Issuer Rating A2
First Mortgage Bonds Aa3
Senior Secured Aa3

DUKE ENERGY INDIANA, LLC.

Outlook Stable
Issuer Rating A2
First Mortgage Bonds Aa3
Senior Secured Aa3
Senior Unsecured A2

PROGRESS ENERGY, INC.

Outlook Stable
Senior Unsecured Baa1

PIEDMONT NATURAL GAS COMPANY, INC.

Outlook Stable
Senior Unsecured A3
Commercial Paper P-2

DUKE ENERGY OHIO, INC.

Outlook Stable
Issuer Rating Baa1
First Mortgage Bonds A2
Senior Unsecured Baa1

DUKE ENERGY KENTUCKY, INC.

Outlook Stable
Senior Unsecured Baa1

Source: Moody's Investors Service
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Abstract 

This report updates the 2009 meta-analysis that provides estimates of the value of service 
reliability for electricity customers in the United States (U.S.). The meta-dataset now includes 34 
different datasets from surveys fielded by 10 different utility companies between 1989 and 2012. 
Because these studies used nearly identical interruption cost estimation or willingness-to-
pay/accept methods, it was possible to integrate their results into a single meta-dataset describing 
the value of electric service reliability observed in all of them. Once the datasets from the various 
studies were combined, a two-part regression model was used to estimate customer damage 
functions that can be generally applied to calculate customer interruption costs per event by 
season, time of day, day of week, and geographical regions within the U.S. for industrial, 
commercial, and residential customers. This report focuses on the backwards stepwise selection 
process that was used to develop the final revised model for all customer classes. Across 
customer classes, the revised customer interruption cost model has improved significantly 
because it incorporates more data and does not include the many extraneous variables that were 
in the original specification from the 2009 meta-analysis. The backwards stepwise selection 
process led to a more parsimonious model that only included key variables, while still achieving 
comparable out-of-sample predictive performance. In turn, users of interruption cost estimation 
tools such as the Interruption Cost Estimate (ICE) Calculator will have less customer 
characteristics information to provide and the associated inputs page will be far less 
cumbersome. The upcoming new version of the ICE Calculator is anticipated to be released 
in 2015. 
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Executive Summary 

In 2009, Freeman, Sullivan & Co. (now Nexant) conducted a meta-analysis that provided 
estimates of the value of service reliability for electricity customers in the United States (U.S.). 
These estimates were obtained by analyzing the results from 28 customer value of service 
reliability studies conducted by 10 major U.S. electric utilities over the 16-year period from 1989 
to 2005. Because these studies used nearly identical interruption cost estimation or willingness-
to-pay/accept methods, it was possible to integrate their results into a single meta-dataset 
describing the value of electric service reliability observed in all of them. The meta-analysis and 
its associated econometric models were summarized in a report entitled “Estimated Value of 
Service Reliability for Electric Utility Customers in the United States,”1 which was prepared for 
Lawrence Berkeley National Laboratory (LBNL) and the Office of Electricity Delivery and 
Energy Reliability of the U.S. Department of Energy (DOE). The econometric models were 
subsequently integrated into the Interruption Cost Estimate (ICE) Calculator (available at 
icecalculator.com), which is an online tool designed for electric reliability planners at utilities, 
government organizations or other entities that are interested in estimating interruption costs 
and/or the benefits associated with reliability improvements (also funded by LBNL and DOE). 
 
Since the report was finalized in June 2009 and the ICE Calculator was released in July 2011, 
Nexant, LBNL, DOE, and ICE Calculator users have identified several ways to improve the 
interruption cost estimates and the ICE Calculator user experience. These improvements include: 

• Incorporating more recent utility interruption cost studies; 

• Enabling the ICE Calculator to provide estimates for power interruptions lasting 
longer than eight hours; 

• Reducing the amount of detailed customer characteristics information that ICE 
Calculator users must provide; 

• Subjecting the econometric model selection process to rigorous cross-validation 
techniques, using the most recent model validation methods;2 and 

• Providing a batch processing feature that allows the user to save results and 
modify inputs. 

These improvements will be addressed through this updated report and the upcoming new 
version of the ICE Calculator, which is anticipated to be released in 2015. This report provides 
updated value of service reliability estimates and details the revised econometric model, which is 
based on a meta-analysis that includes two new interruption cost studies. The upcoming new 
version of the ICE Calculator will incorporate the revised econometric model and include a batch 
processing feature that will allow the user to save results and modify inputs. 
 

1 Sullivan, M.J., M. Mercurio, and J. Schellenberg (2009). Estimated Value of Service Reliability for Electric Utility 
Customers in the United States. Lawrence Berkeley National Laboratory Report No. LBNL-2132E. 
2 For a discussion of these methods, see: Varian, Hal R. “Big Data: New Tricks for Econometrics.” Journal of 
Economic Perspectives. Volume 28, Number 2. Spring 2014. Pages 3–28. Available here: 
http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.28.2.3  
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Study Limitations 

As in the 2009 study, there are limitations to how the data from this meta-analysis should be 
used. It is important to fully understand these limitations, so they are further described in this 
section and in more detail in Section 6. These limitations are: 

• Certain very important variables in the data are confounded among the studies we 
examined. In particular, region of the country and year of the study are correlated in 
such a way that it is impossible to separate the effects of these two variables on customer 
interruption costs; 

• There is further correlation between regions and scenario characteristics. The sponsors of 
the interruption cost studies were generally interested in measuring interruption costs for 
conditions that were important for planning their specific systems. As a result, 
interruption conditions described in the surveys for a given region tended to focus 
on periods of time when interruptions were more problematic for that region; 

• A further limitation of our research is that the surveys that formed the basis of the studies 
we examined were limited to certain parts of the country. No data were available from 
the northeast/mid-Atlantic region, and limited data were available for cities along the 
Great Lakes; 

• Another caveat is that around half of the data from the meta-database is from surveys 
that are 15 or more years old. Although the intertemporal analysis in the 2009 study 
showed that interruption costs have not changed significantly over time, the outdated 
vintage of the data presents concerns that, in addition to the limitations above, 
underscore the need for a coordinated, nationwide effort that collects interruption cost 
estimates for many regions and utilities simultaneously, using a consistent survey design 
and data collection method; and 

• Finally, although the revised model is able to estimate costs for interruptions lasting 
longer than eight hours, it is important to note that the estimates in this report are not 
appropriate for resiliency planning. This meta-study focuses on the direct costs that 
customers experience as a result of relatively short power interruptions of up to 24 hours 
at most. For resiliency considerations that involve planning for long duration 
power interruptions of 24 hours or more, the nature of costs change and the indirect, 
spillover effects to the greater economy must be considered.4 These factors are not 
captured in this meta-analysis.

4 For a detailed study and literature review on estimating the costs associated with long duration power interruptions 
lasting 24 hours to 7 weeks, see: Sullivan, Michael and Schellenberg, Josh. Downtown San Francisco Long 
Duration Outage Cost Study. March 27, 2013. Prepared for Pacific Gas & Electric Company. 
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1. Introduction 

In 2009, Freeman, Sullivan & Co. (now Nexant) conducted a meta-analysis that provided 
estimates of the value of service reliability for electricity customers in the United States (U.S.). 
These estimates were obtained by analyzing the results from 28 customer value of service 
reliability studies conducted by 10 major U.S. electric utilities over the 16-year period from 1989 
to 2005. Because these studies used nearly identical interruption cost estimation or willingness-
to-pay/accept methods, it was possible to integrate their results into a single meta-dataset 
describing the value of electric service reliability observed in all of them. Once the datasets from 
the various studies were combined, a two-part regression model was used to estimate customer 
damage functions that can be generally applied to calculate customer interruption costs per event 
by season, time of day, day of week, and geographical regions within the U.S. for industrial, 
commercial, and residential customers. The meta-analysis and its associated econometric models 
were summarized in a report entitled “Estimated Value of Service Reliability for Electric Utility 
Customers in the United States,”5 which was prepared for Lawrence Berkeley National 
Laboratory (LBNL) and the Office of Electricity Delivery and Energy Reliability of the U.S. 
Department of Energy (DOE). The econometric models were subsequently integrated into the 
Interruption Cost Estimate (ICE) Calculator (available at icecalculator.com), which is an online 
tool designed for electric reliability planners at utilities, government organizations or other 
entities that are interested in estimating interruption costs and/or the benefits associated with 
reliability improvements (also funded by LBNL and DOE). 
 
Since the report was finalized in June 2009 and the ICE Calculator was released in July 2011, 
Nexant, LBNL, DOE, and ICE Calculator users have identified several ways to improve the 
interruption cost estimates and the ICE Calculator user experience. These improvements include: 

• Incorporating more recent utility interruption cost studies; 

• Enabling the ICE Calculator to provide estimates for power interruptions lasting 
longer than eight hours; 

• Reducing the amount of detailed customer characteristics information that ICE 
Calculator users must provide; 

• Subjecting the econometric model selection process to rigorous cross-validation 
techniques, using the most recent model validation methods;6 and 

• Providing a batch processing feature that allows the user to save results and 
modify inputs. 

These improvements will be addressed through this updated report and the upcoming new 
version of the ICE Calculator, which is anticipated to be released in 2015. This report provides 
updated value of service reliability estimates and details the revised econometric model, which is 
based on a meta-analysis that includes two new interruption cost studies. The upcoming new 

5 Sullivan, M.J., M. Mercurio, and J. Schellenberg (2009). Estimated Value of Service Reliability for Electric Utility 
Customers in the United States. Lawrence Berkeley National Laboratory Report No. LBNL-2132E. 
6 For a discussion of these methods, see: Varian, Hal R. “Big Data: New Tricks for Econometrics.” Journal of 
Economic Perspectives. Volume 28, Number 2. Spring 2014. Pages 3–28. Available here: 
http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.28.2.3  
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As discussed in Section 6, another caveat is that this meta-analysis may not accurately reflect 
current interruption costs, given that around half of the data in the meta-database is from surveys 
that are 15 or more years old. To address this issue, the 2009 study included an intertemporal 
analysis, which suggested that interruption costs did not change significantly throughout the 
1990s and early 2000s. However, during the past decade in particular, technology trends may 
have led to an increase in interruption costs. For example, home and business life has become 
increasingly reliant on data centers and “cloud” computing, which may have led to an increase 
in interruption costs for both producers and consumers of these services. Therefore, the outdated 
vintage of the data presents concerns that underscore the need for a coordinated, nationwide 
effort that collects interruption cost estimates for many regions and utilities simultaneously, 
using a consistent survey design and data collection method. 
 
1.2 Re-estimating Econometric Models 

Using the new meta-dataset, Nexant re-estimated the econometric models that relate interruption 
costs to duration, customer characteristics such as annual kWh, and other factors. Nexant then 
compared the results of the original model specification to those of several alternatives that 
included a reduced number of variables. This model selection process addressed another ICE 
Calculator improvement – reducing the amount of detailed customer characteristics information 
that ICE Calculator users must provide, which has been a significant barrier to the tool’s use. 
When the econometric models were originally estimated in 2009, statistical significance was the 
focus of the analysis and, due to the large number of observations in the meta-dataset, many of 
the customer characteristics variables were statistically significant in the model, even if the 
marginal effect of the variable was negligible and/or collinear with other variables. Basically, 
many of the variables in the original specification were statistically significant, but not 
practically significant. In re-estimating the models, Nexant focused on the practical significance 
of each variable by conducting sensitivity tests to determine which variables have a substantive 
impact on the interruption cost estimates. Nexant also employed more recent model selection 
methods that have been developed since 2009, which significantly improved the rigor with which 
variables were selected for the model. This process led to a more parsimonious model that only 
included key variables. In turn, ICE Calculator users will have less customer characteristics 
information to provide and the associated inputs page will be far less cumbersome. 
 
1.3 Overview of Model Selection Process 

Figure 1-1 provides an overview of the model selection process. The entire dataset of 
interruption cost estimates for each customer class is first randomly divided into a test dataset 
(10% of the entire dataset) and a training dataset (the remaining 90%). The training dataset is 
used to train the model, which refers to the process of selecting variables for the final 
specification. The test dataset is excluded from the model training process so that it can be used 
as a test of the final model performance on unseen data, which refers to data that is completely 
separate from the model training process. Next, the training dataset is randomly divided into 10 
equally sized parts. Then, each candidate model specification is estimated on nine of 10 parts of 
the training dataset. The estimated coefficients for each candidate model specification are 
subsequently used to predict interruption costs on the tenth part of the training dataset. This 
process, which is referred to as 10-fold cross-validation, is repeated nine times while withholding 
one of the remaining nine parts of the training dataset each time. Relevant accuracy metrics for 
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each model specification are computed for each of the 10 parts of the training dataset. Those 
accuracy metrics are ranked to determine the final model specification through a backwards 
stepwise selection process. Next, the final model specification is run on the entire training dataset 
and the estimated coefficients are used to predict interruption costs for the test dataset. Relevant 
accuracy metrics for the test dataset are also computed. If model performance on the test dataset 
is similar, the final specification is then estimated on the entire dataset and those estimated 
coefficients make up the final model. This process is conducted for each of the three customer 
classes separately. 
 

Figure 1-1: Overview of Model Selection Process 

 
 
1.4 Variable Definitions and Units 

There are many variables that are common among customer classes, so all variable definitions 
and units are provided in this section. Table 1-2 provides the units and definitions of variables 
that are used in the models for all customer classes. 
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2. Methodology 

This section summarizes the study methodology, including the regression model structure and 
selection process. 
 
2.1 Model Structure 

A two-part regression model was used to estimate the customer interruption cost functions (also 
referred to as customer damage functions). This is the same class of model used in the previous 
meta-study. The two-part model assumes that the zero values in the distribution of interruption 
costs are correctly observed zero values, rather than censored values. In the first step, a probit 
model is used to predict the probability that a particular customer will report any positive value 
versus a value of zero for a particular interruption scenario. This model is based on a set of 
independent variables that describe the nature of the interruption as well as customer 
characteristics. The predicted probabilities from this first stage are retained. In the second step, 
using a generalized linear model (GLM), interruption costs for only those customers who report 
positive costs are related to the same set of independent variables used in the first stage. 
Predictions are made from this model for all observations, including those with a reported 
interruption cost of zero. Finally, the predicted probabilities from the first part are multiplied by 
the estimated interruption costs from the second part to generate the final interruption cost 
predictions. 
 
The functional form for the second part of the two-part model must take into account that the 
interruption cost distribution is bounded at zero and extremely right skewed (i.e. it has a long 
tail in the upper end of the distribution). Ordinary least squares (OLS) is not an appropriate 
functional form given these conditions. A simple way to define the customer damage function 
given the above constraints is to estimate the mean interruption cost, which is linked to the 
predictor variables through a logarithmic link function using a GLM. 
 
The parameter values in the two-part model cannot be directly interpreted in terms of their 
influence on interruption costs because the relationships are among the variables in their 
logarithms. However, the estimated model produces a predicted interruption cost, given the 
values of variables in the models. To analyze the magnitude of the impact of variables in the 
model on interruption cost, it is necessary to compare the predictions made by the function under 
varying assumptions. For example, it is possible to observe the effect of duration on interruption 
cost by holding the other variables constant at their sample means. In this way one can predict 
average customer interruption costs of varying durations holding other factors constant 
statistically. 
 
For a more detailed discussion of the two-part model, its functional form and the reasons why it 
is most appropriate for this type of data, refer to the methodology section of the 2009 report. 
 
2.2 Summary of Model Selection Process 

Nexant aimed to estimate a more parsimonious model that only included key predictor variables. 
This facilitates interruption cost estimation by simplifying the ICE Calculator interface and 
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reducing the burden that ICE Calculator users face in providing numerous, accurate customer 
characteristics information. This section first outlines the steps involved in the model selection 
process that Nexant undertook, followed by a more detailed exposition of the problem at hand, 
and a justification for the method. 
 
To select a more parsimonious model, Nexant conducted the following steps for each of the three 
customer classes: 

1. Randomly sample 10% of the data and hold it out as the test dataset (assign other 90% as 
the training dataset); 

2. Split training dataset into 10 randomly assigned, equally sized parts; 

3. Start with the original specification (the global model) and identify model variables that 
are candidates for removal (all variables except ineligible lower power terms); 

4. Remove one of the eligible model variables to yield a new model; 

5. Estimate model on nine of 10 parts of the training dataset and retain estimates; 

6. Use retained estimates from step 5 to predict on the tenth part of the training dataset, 
computing relevant accuracy metrics; 

7. Repeat steps 5 and 6, cycling over each of the remaining 9 parts of the training dataset; 

8. Take the average and standard deviation of the accuracy metrics from the predictions for 
each of 10 parts of the training dataset; 

9. Repeat steps 4 through 8, for each possible candidate variable for removal; 

10. Use saved accuracy metrics to rank models; 

11. Exclude from the global model the variable, which when dropped, produced estimates 
that outperformed the rest; 

12. Repeat steps 2 through 11 until only a constant remains; 

13. Inspect results and select model that is parsimonious, yet sufficiently accurate according 
to the out-of-sample accuracy metrics described above; and 

14. Test final model against the original global model using the test dataset to estimate 
model’s performance on unseen data (ensures that the model predicts well for data that 
was not included in the model training process). 

 
As discussed in Section 1, this model selection process draws from the recent model selection 
methods that have been developed since 2009,9 which significantly improves the rigor with 
which variables are selected for the model. The remainder of this section describes this process 
in more detail. 
 

9 For a discussion of these methods, see: Varian, Hal R. “Big Data: New Tricks for Econometrics.” Journal of 
Economic Perspectives. Volume 28, Number 2. Spring 2014. Pages 3–28. Available here: 
http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.28.2.3  
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2.3 Details of Model Selection Process 

A model selection problem involves choosing a statistical model from a set of candidate models, 
given some data. In this case, the data were the pre-existing set of interruption cost surveys for 
each customer class. Nexant selected a candidate set of models that included the original model 
specification from the 2009 study, henceforth referred to as the global model, as well as all 
models that were nested in the global model, that is to say all models that occur when removing 
one of more predictor variables from the global model. This candidate set is appropriate for 
several reasons. First of all, nearly all of the variables that were available in the meta-dataset 
were already included in the global model. Secondly, all the variables in the global model are 
plausibly related to interruption costs, and are not simply spuriously correlated. For example, it 
is reasonable to conclude that a resident with medical equipment that requires a power supply 
would be willing to pay more to avoid a power interruption than a resident without such medical 
equipment. Similar conclusions can be made for the other predictor variables in the global 
model, across sectors, making all of them viable to include in candidate models. Furthermore, 
to introduce candidate models that feature predictors not already included in the global model, 
such as new characteristics or higher power terms, would make the task of selecting a more 
parsimonious model significantly more challenging. Adding new predictors to candidate models 
not only increases the complexity of those candidate models, but the number of candidate models 
increases exponentially, making selecting among them computationally challenging.10 It 
therefore makes practical sense to limit the predictors used in candidate models to those used in 
the global model. Also in the interest of simplifying the selection process, Nexant restricted the 
specifications of the probit and GLM models to be identical. This was the same form that the 
original regression model took. 
 
Nexant developed an iterative process to choose among the candidate set of models. This is a 
backwards stepwise selection method that parses down the global model one variable at a time. 
At each step of the process, a variable is removed from the prior model (the global model in the 
first step) and the resulting model is evaluated in out-of-sample tests using a variety of metrics. 
This is performed for all possible variables that can be excluded, and the model that performs 
best on average across the various metrics is retained, or rather its exclusion is retained, and 
becomes the prior model in the next step of the process. (Alternatively, one can consider the 
excluded variable as that which diminished the performance of the global model the least, 
relative to the other possible exclusions, although it was often the case that the performance 
improved.)  The outcome at each step is carefully examined to determine whether an acceptably 
parsimonious model has been selected, and whether excluding a particular variable will severely 
diminish the model’s predictive power, in which case that variable is retained in the final model. 
 
The selection process uses rigorous out-of-sample testing to evaluate the performance of various 
models and ensure that the final model is not over-fitted.11  Nexant divided the sample into a 
training dataset, used to fit models; a validation dataset, used to compare models; and a test 

10 It can be shown that a global model with n predictors has 2n – 1 possible nested models. Furthermore, when m 
new predictors are added to the global model, the number of possible nested models increases by (2m – 1)2n. 
11 Over-fitting occurs when a model describes random variation in the data. The problem manifests itself through 
good predictive performance on the fitted data, but poor predictive performance on unseen data that the model was 
not fitted to. 
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dataset, used as a final independent test to show how well the selected model will generalize to 
unseen data. The test dataset comprised 10% of the sample, and was “held out” throughout the 
model fitting and selection process. At each step of the selection process, the models were 
compared using 10-fold cross-validation. Ten-fold cross-validation divides the remaining sample 
data into ten equal size subsamples. Nine of those subsamples are used as the training dataset to 
fit the model, and the tenth is used to validate the performance of that fitted model and choose 
among models. This process is repeated ten times with each of the subsamples used once to 
validate the fitted model. This method reduces the likelihood of over-fitting the model by using 
unseen data in the validation step; models that generalize well to new data will be selected over 
those that do not. Furthermore, by “folding” the data and iterating over subsamples, each 
observation is used exactly once in the validation step, so all of the available data (other than 
the 10% in the test dataset) are used to select models. 
 
Rather than rely on a single metric to select a model, Nexant computed several metrics, ranked 
models by each of these metrics, then averaged the ranks to give an overall rank across metrics. 
Root-mean-square error (RMSE), mean absolute error (MAE), and the coefficient of 
determination (R-squared) are computed in out-of-sample tests. RMSE measures the average 
prediction error of a model. The differences between observed and predicted values are 
computed, squared, and then averaged before the square root is taken to correct the units. 
Because errors are squared before the average, RMSE penalizes larger errors more than smaller 
errors. MAE also measures the average prediction error of a model. The differences between 
observed and predicted values are computed, their absolute value is taken, and then the absolute 
errors are averaged. Errors of every magnitude are penalized equally. In the case of both RMSE 
and MAE, values range from zero to infinity, and smaller values are preferred. R-squared 
measures the fraction of variation of the dependent variable that is explained by a model. Its 
values range from 0 to 1, and a larger value is preferred. At each step, an information theoretic 
approach is also used to produce a fourth ranking of models that is incorporated into the average. 
This ranking uses Akaike’s Information Criterion (AIC), which is an estimate of the expected, 
relative distance between the fitted model and the unknown true mechanism that generated the 
observed data. It is a measure of the information that is lost when a model is used to approximate 
the true mechanism. A thorough exposition of the relative advantages and disadvantages of these 
different metrics is beyond the scope of this report. That said, by averaging the ranks obtained 
from each metric and choosing an overall winner, Nexant does not prioritize minimizing one 
kind of error over another, but rather adopts a holistic approach. 
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during the summer. A few of the 15 excluded variables show a minor improvement in predictive 
accuracy, but considering how difficult it can be for ICE Calculator users to find information for 
some of those inputs, this minor improvement in predictive accuracy was not sufficient to justify 
keeping those variables in the final model. 
 

Table 3-2: Excluded Variables and Relevant Metrics from Backwards Stepwise Selection 
Process – Medium and Large C&I 

 
 
The final model for medium/large C&I customers is shown below: 
 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐼𝐼𝐶𝐶𝐼𝐼

= 𝑓𝑓(ln(𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀) ,𝑑𝑑𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑑𝑑𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2,𝑑𝑑𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
× ln(𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀ℎ) ,𝑑𝑑𝐼𝐼𝐼𝐼𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2 × ln(𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀ℎ) , 𝐶𝐶𝐼𝐼𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼, 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝐶𝐶𝐼𝐼𝐼𝐼𝑤𝑤) 

 
Manufacturing is the only remaining industry category in the model. Note that as categories are 
removed, they are relegated to the reference category, so for example the manufacturing binary 
variable should now be interpreted as the average impact on interruption cost associated with 
being in the manufacturing industry, relative to all other industries. 
 
To confirm that the selection process did not produce an over-fitted model, and to estimate the 
predictive performance of the final model when evaluated on unseen data, Nexant evaluated the 
final model against the global model using the test dataset, which is the 10% of data that was 
held out from the backwards stepwise selection process. Both models were fitted to the 
remaining data, and then the test dataset was used to evaluate their predictive performance. 

Value 

(Thousa

nds)

Rank

Value 

(Thousa

nds)

Rank Value Rank

Probit 

Value 

(Thousa

nds)

GLM 

Value 

(Thousa

nds)

Rank

0 - 116 - 29.6 - 0.143 - - - - -

1 evening 116 1 29.5 1 0.148 1 44.1 589 4.5 1 9

2 weekday 116 1 29.5 2 0.150 1 44.1 589 7.0 2 8

3 morning 116 1 29.5 2 0.151 1 44.3 589 9.5 3.4

4 afternoon 116 1 29.4 1 0.153 1 44.5 589 10.0 3 3

5 wholesale & retail trade 116 2 29.4 2 0.153 2 44.5 589 4.0 2 5

6 backupgen and power conditioning 116 1 29.4 3 0.155 1 44.6 589 8.5 3.4

7 services 116 1 29.4 1 0.155 1 44.7 589 8.5 2 9

8 public administration 116 3 29.5 2 0.155 3 44.7 589 2.5 2.6

9 unknown 116 1 29.5 3 0.155 1 44.7 590 3.0 2 0

10 finance, insurance & real estate 116 1 29.5 1 0.154 1 44.7 590 4.0 1 8

11 transportation, communication & utilities 116 1 29.5 2 0.154 1 44.7 591 4.5 2.1

12 construction 116 1 29.5 1 0.154 1 44.8 591 4.5 1 9

13 mining 116 1 29.5 1 0.153 1 44.8 591 2.5 1.4

14 backupgen or power conditioning 116 1 29.5 1 0.152 1 44.8 591 1.0 1 0

15 warning 116 1 29.6 1 0.148 1 44.9 592 2.5 1.4

16 manufacturing 117 1 29.9 2 0.137 1 45.0 595 2.5 1.6

17 summer 117 1 30.0 1 0.128 1 45.4 595 1.5 1.1

18 duration 2  x ln(annual MWh) 119 1 30.5 1 0.106 1 45.5 595 1.0 1 0

19 duration x ln(annual MWh) 120 1 30.7 1 0.096 1 45.5 595 1.0 1 0

20 duration 2 129 2 32.8 1 -0.054 2 46.2 598 1.0 1 5

21 duration 118 1 31.3 1 0.118 1 47.8 604 1.5 1.1

22 ln(MWh annual) 126 1 37.4 1 0.000 1 48.7 640 1.0 1 0

Overall 

Rank
Iteration Excluded Variable

RMSE MAE R2 AIC
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Figure 3-2: Estimated Summer Customer Interruption Costs (U.S.2013$) by Duration and 
Industry – Medium and Large C&I 

 
 
Finally, Figure 3-3 shows the medium and large C&I interruption costs in the summer for 
various levels of average demand. As discussed above, medium and large C&I interruption 
costs increase at a decreasing rate as usage increases. This pattern is notable in the figure. Each 
increment in average demand represents a 5-fold increase in usage, but interruption costs only 
increase by a factor of 2.0 to 2.5 from one level of average demand to the next. 
 

Figure 3-3: Estimated Summer Customer Interruption Costs (U.S.2013$) by Duration and 
Average Demand (kW/hr) – Medium and Large C&I 
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4. Small C&I Results 

This section summarizes the results of the model selection process and provides the model 
coefficients for small C&I customers, which are C&I customers with annual usage of less 
than 50,000 kWh. 
 
4.1 Final Model Selection 

The global model for small C&I customers was identical to that for the medium and large 
C&I customers. Refer to Section 3.1 above for a discussion of the global model specification. 
The global model was successfully parsed down to only key variables. In selecting among 
variables, categorical variables were not treated as a set (either all or none removed), but rather 
each binary variable was removed one at a time. This allowed for a particularly important 
category to remain, while others that might have had a smaller effect were no longer represented. 
Table 4-1 shows the results of each step in the process. Each iteration represents the exclusion of 
a variable from the global model, and the variable listed is the one that, when excluded, produces 
the model with the best performance across various metrics in out-of-sample tests. The model’s 
value and rank (relative to the other possible exclusions) in the metrics is listed, along with its 
overall rank, which is an average of the individual ranks. Note that iteration zero represents the 
global model alone, so some metrics that are only meaningful when compared with other models, 
such as ranks and AICs, are not listed. The highlighted row shows the final exclusion that was 
made; the rows that follow show the variables that remain in the final model. Ultimately, 
interruption costs for small C&I customers can be estimated relatively accurately with variables 
representing customer usage and interruption duration, along with some binary variables for 
customer characteristics and interruption timing. Considering how difficult it can be for ICE 
Calculator users to find information for some of the 12 excluded variables (especially for small 
C&I customers), this final model will be much easier to use. 
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Figure 4-1: Estimated Customer Interruption Costs (U.S.2013$) by Duration and Model 
(Summer Weekday Afternoon) – Small C&I 

 
 
4.4 Interruption Cost Estimates and Key Drivers 

Table 4-7 shows how small C&I customer interruption costs vary by season and time of day. 
The cost of a summer power interruption is around 9% to 30% lower than a non-summer one, 
depending on duration, season, and time of day. Interestingly, this is opposite the pattern of 
medium and large C&I customers, which experience higher interruption costs during the 
summer. As for how interruption costs vary by time of day, costs are highest in the afternoon and 
are similarly high in the morning. In the evening and nighttime, small C&I interruption costs are 
substantially lower, which makes sense given that small businesses typically operate during 
daytime hours. Considering that the evening/night time period (5 PM to 6 AM) accounts for a 
majority of the hours of the day, the weighted-average interruption cost estimate is closer to the 
evening/night estimates. This weighted-average interruption cost estimate is most appropriate 
to use for planning purposes, unless the distribution of interruptions by season and time of day 
is known.  
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Figure 4-2: Estimated Summer Afternoon Customer Interruption Costs (U.S.2013$) by Duration 
and Industry – Small C&I 

 
 
Finally, Figure 4-3 shows the small C&I interruption costs in the summer afternoon for various 
levels of average demand. Small C&I interruption costs are not highly sensitive to the average 
demand of a customer. In the figure, each increment in average demand represents a 2-fold 
increase in usage, but interruption costs only increase by around 10% from one level of average 
demand to the next. 
 
Figure 4-3: Estimated Summer Afternoon Customer Interruption Costs (U.S.2013$) by Duration 

and Average Demand (kW/hr) – Small C&I 
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Table 5-2: Excluded Variables and Relevant Metrics from Backwards Stepwise Selection 
Process – Residential 

 
 
The final model for residential customers is shown below: 
Interruption Cost = f(ln(annual MWh), duration, duration2, household income, 
summer, time of day) 
 
To confirm that the selection process did not produce an over-fitted model, and to estimate the 
predictive performance of the final model when evaluated on unseen data, Nexant evaluated the 
final model against the global model using the test dataset, which is the 10% of data that was 
held out from the backwards stepwise selection process. Both models were fitted to the 
remaining data, and then the test dataset was used to evaluate their predictive performance. The 
results are shown in Table 5-3. Note that while the global model outperforms the final model in 
each metric, the differences between the values are very small. The final model offers a much 
simpler solution with comparable performance to the global model.  

Value Rank Value Rank Value Rank

Probit 

Value 

(Thous

ands)

GLM 

Value 

(Thousa

nds)

Rank

0 - 16.6 - 8.50 - 0.145 - - - - -

1 late evening/early morning 16.5 1 8.49 1 0.147 1 37.3 126 9.5 3.1

2 mobile housing 16.5 3 8.48 2 0.148 3 37.3 126 3.5 2.9

3 outage in last 12 months 16.5 1 8.48 1 0.149 1 37.3 126 9.5 3.1

4 # residents 7-18 years old 16.5 1 8.48 5 0.149 1 37.3 126 6.0 3.3

5 # residents 25-49 years old 16.5 2 8.48 3 0.149 2 37.3 126 6.5 3.4

6 # residents 50-64 years old 16.5 2 8.48 2 0.149 2 37.3 126 1.0 1.8

7 manufactured housing 16.5 2 8.48 2 0.149 2 37.3 126 4.0 2.5

8 weekday 16.5 1 8.48 2 0.149 1 37.3 126 5.5 2.4

9 attached housing 16.5 1 8.48 1 0.149 1 37.4 126 5.5 2.1

10 apartment/condo 16.5 3 8.48 2 0.149 3 37.4 126 1.0 2.3

11 # residents 19-24 years old 16.5 1 8.48 2 0.149 1 37.4 126 3.5 1.9

12 backup generation 16.5 1 8.48 1 0.149 1 37.4 126 4.0 1.8

13 # residents 0-6 years old 16.5 2 8.48 2 0.149 2 37.4 126 1.5 1.9

14 unknown housing 16.5 2 8.49 1 0.148 2 37.4 126 1.5 1.6

15 medical equipment 16.5 1 8.49 2 0.148 1 37.5 126 2.5 1.6

16 # residents 65 and over 16.6 1 8.49 1 0.146 1 37.5 126 2.5 1.4

17 household income 16.6 1 8.53 1 0.140 1 37.5 127 2.5 1.4

18 evening, 5 pm to 8 pm 16.7 1 8.61 2 0.133 1 38.7 127 3.0 1.8

19 afternoon, 12 noon to 4 pm 16.7 1 8.63 1 0.127 1 38.9 127 2.0 1.3

20 summer 16.8 1 8.71 1 0.119 1 39.7 127 2.0 1.3

21 ln(annual MWh) 17.0 1 8.82 1 0.098 1 39.7 128 1.5 1.1

22 duration 2 17.3 1 8.95 1 0.072 1 39.9 128 1.0 1.0

23 duration 17.9 1 9.44 1 0.000 1 41.6 130 1.0 1.0

Iteration Excluded Variable
Overall 

Rank

RMSE MAE R2 AIC
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5.3 Comparison of 2009 and 2014 Model Estimates 

Figure 5-1 provides a comparison of the 2009 model estimates and the 2014 model estimates by 
interruption duration, in 2013 dollars. The 2014 model estimates have been extended to 16 hours 
because the addition of data on 24-hour power interruption scenarios has allowed to model to 
more reliably predict costs up to 16 hours. As with C&I customers, the magnitude of the 
interruption cost estimates is similar between the two small C&I models, but there is a noticeable 
change in the functional form. This change is attributable to the addition of the longer duration 
scenarios and to the significant change in the model specification. The functional form is more 
linear and no longer levels off at 8 hours, which seems more plausible. 
 

Figure 5-1: Estimated Customer Interruption Costs (U.S.2013$) by Duration and Model 
(Summer Weekday Afternoon) – Residential 

 
 
5.4 Interruption Cost Estimates and Key Drivers 

Table 5-7 shows how residential customer interruption costs vary by season and time of day. 
The cost of a summer power interruption is substantially higher than a non-summer one, for all 
durations, seasons, and times of day. As for how interruption costs vary by time of day, costs are 
highest in the morning and night (10 PM to 12 noon). The weighted-average interruption cost 
estimate is most appropriate to use for planning purposes, unless the distribution of interruptions 
by season and time of day is known. 
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Figure 5-2: Estimated Summer Afternoon Customer Interruption Costs (U.S.2013$) by Duration 
and Household Income – Residential 

 
 
Finally, Figure 5-3 shows the residential interruption costs in the summer afternoon for various 
levels of average demand. Residential interruption costs are not highly sensitive to the average 
demand of a customer. In the figure, each increment in average demand represents a 2-fold 
increase in usage, but interruption costs only increase by around 20% from one level of average 
demand to the next. 
 
Figure 5-3: Estimated Summer Afternoon Customer Interruption Costs (U.S.2013$) by Duration 

and Average Demand (kW/hr) – Residential 
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6. Study Limitations 

As in the 2009 study, there are limitations to how the data from this meta-analysis should be 
used. It is important to fully understand these limitations, so they are further described in this 
section. First, certain very important variables in the data are confounded among the studies we 
examined. In particular, region of the country and year of the study are correlated in such a way 
that it is impossible to separate the effects of these two variables on customer interruption costs. 
Thus, for example, it is unclear whether the higher interruption cost values for the southwest are 
purely the result of the hot summer climate in that region or whether those costs are higher in 
part because of the particular economic and market conditions that prevailed during the year 
when the study for that region was done. The same logic applies to the 2012 west study, which 
was the only survey to include power interruption scenarios of more than 12 hours, which makes 
it difficult to separate the effect of region and year from the effect of the relatively long 
interruption duration. 
 
There is further correlation between regions and scenario characteristics. The sponsors of the 
interruption cost studies were generally interested in measuring interruption costs for conditions 
that were important for planning for their specific systems. As a result, interruption conditions 
described in the surveys for a given region tended to focus on periods of time when interruptions 
were more problematic for that region. Unfortunately, the time periods when the chance of 
interruptions is greatest are not identical for all sponsors of the studies we relied upon, so 
interruption scenario characteristics tended to be different in different regions. Fortunately, most 
of the studies we examined included a summer afternoon interruption, so we could compare that 
condition among studies. 
 
A further limitation of our research is that the surveys that formed the basis of the studies we 
examined were limited to certain parts of the country. No data were available from the 
northeast/mid-Atlantic region, and limited data were available for cities along the Great Lakes. 
The absence of interruption cost information for the northeast/mid-Atlantic region is particularly 
troublesome because of the unique population density and economic intensity of that region. It is 
unknown whether, when weather and customer compositions are controlled, the average 
interruption costs from this region are different than those in other parts of the country. 
 
Another caveat is that around half of the data from the meta-database is from surveys that 
are 15 or more years old. Although the intertemporal analysis in the 2009 study showed that 
interruption costs have not changed significantly over time, the outdated vintage of the data 
presents concerns that, in addition to the limitations above, underscore the need for a 
coordinated, nationwide effort that collects interruption cost estimates for many regions 
and utilities simultaneously, using a consistent survey design and data collection method. 
 
Finally, as described in Section 1, although the revised model is able to estimate costs for 
interruptions lasting longer than 8 hours, it is important to note that the estimates in this report 
are not appropriate for resiliency planning. This meta-study focuses on the direct costs that 
customers experience as a result of relatively short power interruptions of up to 24 hours at 
most. In fact, the final models and results that are presented in Sections 3 through 5 truncate 
the estimates at 16 hours, due to the relatively few number of observations beyond 12 hours 
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(scenarios of more than 12 hours account for around 2% to 3% of observations for all 
customer classes). For resiliency considerations that involve planning for long duration 
power interruptions of 24 hours or more, the nature of costs change and the indirect, spillover 
effects to the greater economy must be considered.12  These factors are not captured in this 
meta-analysis. 
 

12 For a detailed study and literature review on estimating the costs associated with long duration power 
interruptions lasting 24 hours to 7 weeks, see: Sullivan, Michael and Schellenberg, Josh. Downtown San Francisco 
Long Duration Outage Cost Study. March 27, 2013. Prepared for Pacific Gas & Electric Company. 
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Request: 

The following questions are related to the DEC Transformer Retrofit cost benefit analysis 
(titled Oliver_EXH_7_HR_Transformer Retro_DEC-DEP_NC_19-22_vF.xlsx) that was 
provided in Oliver Exhibit 7. 
7. The ‘Selection Metric’ tab, column C, calculates reliability reductions in rows 74 - 
100, generally, by the formula below, where i=year and m=metric.   

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑚𝑚

=
𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝑇𝑇𝑅𝑅𝑜𝑜𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑜𝑜𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑜𝑜𝐴𝐴𝑅𝑅𝑖𝑖,𝑚𝑚
𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴ℎ𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑅𝑅𝐴𝐴𝑒𝑒𝑅𝑅𝐴𝐴𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒2017

∗ 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑅𝑅𝐴𝐴𝑒𝑒𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑜𝑜𝑅𝑅𝑅𝑅𝑇𝑇𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑒𝑒𝑇𝑇𝑅𝑅𝑅𝑅𝑇𝑇𝑅𝑅𝑜𝑜𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖  

  Metrics include number of incidents (non-MED), CI (non-MED), CMI (non-MED), 
number of incidents (MED), CI (MED), and CMI (MED). 

  

 Please provide supporting documentation for the Average Outages Due to Unretrofitted 
Transformers numbers (rows 31-36). In addition to quantitative support for these figures, 
this response should discuss how these numbers were calculated, the source of the data 
used, how each outage incident was classified as MED and non-MED, and how each 
outage was determined to be due to an unretrofitted transformer. 
 Please confirm that this CBA assumes that retrofitted transformers only protect upstream 
customers from potential outages.  
 Duke personnel indicated that they have been retrofitting transformers in this way for 
“maybe 15 years”. Does Duke have any data that indicates if these retrofitted 
transformers actually experience fewer failures due to external factors (i.e., lightning 
strikes and animal interference)? If so, please provide a summary of the available data 
and quantify the reduction in failure rate. 

 
Response: 
a) The attached Excel spreadsheet titled “PS DR 133-7(a) DEC & DEP Outages Due To 
Unretrofitted Transformers” shows the number of events, CI, & CMI by year and MED 
Type associated with outages due to unretrofitted transformers from 2013 - 2017. 

PS DR 133-7 (a) DEC 
& DEP Outages Due T    
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i. The Average Outages Due to Unretrofitted Transformers number used in the CBA is 
the average of each year’s total events/CI/CMI for NC from 2013 – 2017. 
ii. The source of this data is our common outage history database. 
iii. MEDs are specific dates where the Daily SAIDI exceeds the MED threshold  
 
calculated per IEEE 1366 – 2012. 
iv. A complex Microsoft Access query was used to extract outages from the common 
outage history database using a combination of codes & contextual searches of comments 
that determines the outage was an outage due to an unretrofitted transformer. 
b) Transformer retrofit benefits both customers served by the transformer and customers 
upstream from the transformer. 
c) The attached Excel spreadsheet titled “PS DR 133-7 (c) DEC Decrease in SAIFI Due 
To Unretrofitted Transformers 2005 – 2017” show the decrease in SAIFI associated with 
unretrofitted transformers over time. 
 

PS DR 133-7 (c) DEC 
Decrease in SAIFI Due       
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Request: 
 
 13. In a follow up email following the December 17, 2019 meeting, Duke sent a 
spreadsheet entitled ‘DEC NC_SOG Circuits_CI CMI Savings_5 Year Load Projections’. 
For the following six circuits, please provide a more detailed explanation as to how 
specifically the Incremental CI Savings and the Incremental CMI Savings were estimated 
for 2019, 2020, and 2021. 
a) This response should address what outage causes were included in historical circuit 
reliability and what outages were assumed to be mitigated by SOG. 
b) If other reliability programs, such as vegetation management, were considered, please 
describe how they were taken into account. 
  

Circuit ID # Substation Name Circuit Name SOG Year 
Incremental 
CI Savings 

Incremental 
CMI Savings 

14142410 FAIRNTOSH RET Fairntosh Ret 2410 2021 4,317 646,035 
14202413 GARRETT RD RET Garrett Rd Ret 2413 2021 4,467 687,576 
09122406 GROOMTOWN RET Groomtown Ret 2406 2020 4,058 608,308 
01012408 HILL ST RET Hill St Ret 2408 2020 7,953 862,192 
01342406 NEWELL RET Newell Ret 2406 2021 4,771 703,943 
11202409 WHITSETT RET Whitsett Ret 2409 2019 4,483 671,540 

 
  
Response: 
 
See attachment ‘PS DR 133-13_DEC NC_SOG_CI & CMI Savings_Sample Circuits’ 
The assumptions used to calculate the CI and CMI Savings are shown on the tab entitled 
‘SOG CI & CMI Assumptions.’  This worksheet (tab) steps through a series of different 
base case scenarios that are typical for Duke Energy distribution circuit profiles.  The 
detailed CI and CMI calculations are shown under each scenario.  A key factor in the 
equations is the ‘Faults per Mile’ (also called Failure Rate).  The Duke Energy enterprise 
system average faults per mile is based on historical outage events (greater than 5 
minutes), excluding Major Event Days (MED’s), on substation devices, substation circuit 
(feeder) breakers, and reclosers, divided by the feeder backbone miles.  Any outage 
greater than 5 minutes, regardless of cause, that impacted the feeder backbone was 
included.  The feeder backbone is defined and illustrated on the worksheet (tab) entitled 
‘Definition – Feeder Backbone.’  The distribution system average Faults per Mile across 
the Duke Energy enterprise is approximately 0.2.  The table at the bottom of the ‘SOG CI 
& CMI Assumptions’ tab summarizes the % CI Improvements that are used system-wide 
based on the current state of a circuit to get to the final SOG state.   
Using the logic shown on the ‘SOG CI & CMI Assumptions’ tab, the Customer  
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Interruption (CI) Savings due to SOG are calculated on a circuit-by-circuit basis, as 
shown on the ‘DEC NC SOG Calc.’ worksheet (tab) in columns ‘V’ through ‘AB.’  The 
failure rate (Faults per Mile) for DEC is approximately 0.24.  The current CI is calculated 
from the existing state of the circuit (base case).  Then the projected CI is calculated 
based on each circuit becoming 100% SOG compliant.  The difference is taken between 
the 2 cases to determine the resulting CI Savings.  The CI Savings (CI Improvement) for 
each SOG circuit is aggregated to determine the total CI Savings for the jurisdiction.  The 
projected CMI is then calculated on a circuit-by-circuit basis assuming a repair time of 
180 minutes and switching time of 90 minutes (see ‘DEC NC SOG Calc.’ tab row 
‘AD’).  The potential CMI Savings (Improvement) is calculated based on the existing 
state of a circuit and applying the logic from the ‘SOG CI & CMI Assumptions’ tab.  If a 
circuit is on an existing Self-Healing Network, then the potential CMI Improvement is 
assumed to be approximately a 30% improvement.  If a circuit is not on an existing Self-
Healing Network, then the potential CMI Improvement is assumed to be approximately 
70% (see ‘DEC NC SOG Calc.’ tab row ‘AD’).   
a. As stated above, any outage greater than 5 minutes, regardless of cause, that impacted 
the feeder backbone was included in the SOG assumptions. 
b. The current state of a circuit due to other reliability programs was considered in the 
calculations.  If a circuit had some form of existing segmentation (or sectionalization) on 
the feeder backbone, or was part of an existing Self Healing Network (SHN), then these 
were taken into account to calculate the % CI and % CMI improvement to get to the final 
SOG state. See the ‘SOG CI & CMI Assumptions’ worksheet (tab). 
  

PS DR 133-13_DEC 
NC_SOG_CI & CMI S   
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Request: 
 
4. In its response to PS DR 133-13, DEC provided a spreadsheet showing CI and CMI 
calculations for SOG circuits. This question refers to the ‘SOG CI & CMI Assumptions’ 
tab. When a fault occurs on a fully deployed SOG circuit segment (say, zone 2 from the 
image below), do customers on other segments (zone 1, 3, and 4) experience a 
momentary outage?  

 
 
a) Assuming a fault resulting in a momentary outage in zone 2, please describe the 
experience of customers in zones 1, 2, 3, and 4 (do they experience a flicker, outage, how 
many cycles, etc?). 
b) Assuming a fault resulting in a sustained outage in zone 2, please describe the 
experience of customers in zones 1, 2, 3, and 4. (do they experience a flicker, outage, 
how many cycles, etc?). 
 
Response: 
 
4. Assuming a fault in Zone 2 produces a fault current magnitude & duration greater than 
the substation breaker relay trip curve then the substation breaker would trip and reclose 
and as such all customers in zones 1, 2, 3, & 4 would experience a momentary 
interruption. 
a. Assuming a fault in zone 2 produces a fault current magnitude & duration greater than 
the substation breaker relay trip curve then the substation breaker would trip and reclose 
(the device between zone 1 & zone 2 is an automated switch so it does not normally 
operate in a protection mode) and as such all customers in zones 1, 2, 3, & 4 would 
experience a momentary interruption. The duration of the momentary outage could range 
from a few cycles to a few of seconds depending on the breaker relay setting, the 
magnitude of the fault current, and the duration of the fault current. 
b. Assuming a fault in zone 2 produces a fault current magnitude & duration greater than 
the substation breaker relay trip curve then the substation breaker would trip and reclose 
(the device between zone 1 & zone 2 is an automated switch so it does not normally 
operate in a protection mode) a number of times based on the relay settings and 
ultimately lock out. If all YFA criteria are met the following sequence of events would 
occur in 2 mins or less: 
i. The automate switch between zones 1 & 2 would open 
ii. The recloser between zones 2 & 3 would open 
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iii. The recloser between zone 4 and the alternate circuit would close 
iv. The substation breaker would close 
As stated above, all customers in zones 1, 2, 3, & 4 would experience multiple 
momentary interruptions as a result of the sustained fault in zone 2 (based on the 
substation breaker relay settings). After the switching the customers in zones 1, 3, & 4 
would be restored in 2 minutes or less. The customers in zone 2 would experience a 
sustained outage until the outage was restored. 
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ICE Calculator for FLISR Larry Conrad Page 1 

Using the ICE Calculator for FLISR Reliability Improvement Value 

Automatic reconfiguration of distribution circuits is a popular way to improve service reliability to 

electric customers on distribution circuits. This technique is often called self-healing or Fault Location 

Isolation and Service Restoration (FLISR). It is important to know the reliability improvement value to 

customers when designing these systems. The ICE Calculator is a widely accepted tool for calculating 

outage costs and to calculate the value of reliability improvements. It is very important to use the tool 

properly to avoid over-estimating the value. 

This document provides a very basic example of how to use the ICE tool to accurately calculate the 

reliability benefits when sustained outages are changed to momentary outages. It normally requires 

building at least two models and combining the results. Consider this simple example with two feeders, 

F1 and F2. F1 serves 900 residential customers while F2 serves 1,000 residential customers in the state 

of Indiana. (We picked Indiana because the ICE calculator needs a state for input.) Each feeder 

experiences two sustained outages per year. Each of the outages last 90 minutes. They do not 

experience any momentary outages to simplify the example.  

The reliability metrics are shown below 

Sections Customers SAIFI SAIDI CAIDI MAIFI 

F1 900 2.0 180 90 0 

F2 1,000 2.0 180 90 0 

Total System 1,900 2.0 180 90 0 

F1 F2

N.O

900 customers
2 outages/year
90 minutes each

1,000 customers
2 outages/year
90 minutes each
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ICE Calculator for FLISR Larry Conrad Page 3 

 

The 1050 customers in Sections 1-1 and 2-1 see different reliability improvement compared to the 850 

customers in Sections 1-2 and 2-2.   

All customers in 1-1 and 2-1 see the same amount of SAIFI and SAIDI improvement so the first step in 

the calculation can be a simple improvement in sustained interruptions. The ten year benefit per 

customer turns out to be $57.62 for the default financial inputs. 

All customers in 1-2 and 2-2 have the same sustained SAIFI and SAIDI statistics, but they also see a 

momentary for a total of two outages per year. The true benefit to these customers is not a reduction of 

outages. The benefit is only a reduction in duration of one outage per year from 90 minutes to 2 

minutes. We model this in the ICE Calculator as a duration change only for the sustained 90 minute 

outage that changed to a 2 minute momentary. So we input SAIFI = 1 before and SAIFI = 1 after. SAIDI 

changes from 90 minutes to 2 minutes. This benefit is a much lower $14.64 compared to $57.62 if the 

outage is eliminated. 

Here is the more accurate summary of benefits with the total benefit rounded to the nearest hundred 

dollars. 

Sections Customers Benefit / Customer Total Benefit 

1-1 and 2-1 1,050 $57.62 $60,500 

1-2 and 2-2 850 $14.64 $12,500 

Total System 1,900 $38.39 $73,000 

 

Had this not accounted for the momentary outages, a single pass through the ICE Calculator estimates 

$109,500 benefits for the SAIFI, SAIDI, and CAIDI improvement. This overstates the more accurate 

amount by $36,500. This is about 50% more benefit than will actually be realized. 

 

Larry Conrad 

Conrad Technical Services LLC 

 
7609 Williamsburg Dr 

Plainfield, IN 46168 

August 2018 
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Disclaimer 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither 
the United States Government nor any agency thereof, nor The Regents of the 
University of California, nor any of their employees, makes any warranty, express or 
implied, or assumes any legal responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by its trade name, trademark, manufacturer, or 
otherwise, does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government or any agency thereof, or The Regents of 
the University of California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government or any agency 
thereof, or The Regents of the University of California. 

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity 
employer. 
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Abstract 

Information on the value of reliable electricity service can be used to assess the economic 
efficiency of investments in generation, transmission and distribution systems, to strategically 
target investments to customer segments that receive the most benefit from system 
improvements, and to numerically quantify the risk associated with different operating, planning 
and investment strategies. This paper summarizes research designed to provide estimates of the 
value of service reliability for electricity customers in the US.  These estimates were obtained by 
analyzing the results from 28 customer value of service reliability studies conducted by 10 major 
US electric utilities over the 16 year period from 1989 to 2005.  Because these studies used 
nearly identical interruption cost estimation or willingness-to-pay/accept methods it was possible 
to integrate their results into a single meta-database describing the value of electric service 
reliability observed in all of them.  Once the datasets from the various studies were combined, a 
two-part regression model was used to estimate customer damage functions that can be generally 
applied to calculate customer interruption costs per event by season, time of day, day of week, 
and geographical regions within the US for industrial, commercial, and residential customers.  
Estimated interruption costs for different types of customers and of different duration are 
provided.  Finally, additional research and development designed to expand the usefulness of this 
powerful database and analysis are suggested. 
 
Keywords: electric power reliability; customer value of service reliability; interruption cost; 
customer damage function. 
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Executive Summary 

One of the guiding principles in evaluating investments designed to improve the reliability of 
electricity systems is that these investments should be economically efficient. That is, the cost of 
improving the reliability and power quality supplied by an electric system should not exceed the 
value of the economic loss to customers that the system improvement is intended to prevent. This 
approach to utility investment planning is generally referred to as value-based reliability 
planning. 
 
Value-based planning explicitly balances the incremental costs of improved reliability in 
generation, transmission, and/or distribution against the incremental benefits of enhanced (or 
maintained) system reliability with both costs and benefits defined as societal costs and societal 
benefits.  The incremental societal benefits include the customers’ added value of service 
reliability.  The customers’ added value of service reliability can be quantified by the willingness 
of customers to pay for service reliability, taking into account the resources (e.g., income) of the 
residential customer or by a firm’s expected net revenues associated with the added reliability.  
Measures of the added value of service reliability include reported economic losses (net of 
benefits) and measurements of customer’s willingness-to-pay to avoid service unreliability or 
their willingness-to-accept compensation for it.  These measures of the added value of service 
reliability do not measure all the societal benefits that result from reliability improvements.  
They do not, for example, account for such benefits as improved public safety or public health 
that result from avoided widespread electric service interruptions.  Such societal benefits must be 
incorporated separately. A system improvement is considered economically efficient if its 
marginal societal benefits (the economic value of the improvement in reliability) exceed the 
marginal societal costs (the cost of the investment, including direct as well as indirect (e.g., 
environmental) costs). 
 
The cost of system improvements is usually estimated using engineering cost analysis.  The 
economic value of the benefit to customers is estimated as the avoided economic loss that would 
have occurred if the investment had not occurred. Two components comprise this estimate – the 
expected improvement in service reliability (in minutes, frequency, un-served load or un-served 
kWh) and the expected economic losses that customers experience when service is interrupted – 
usually obtained by surveying representative samples of customers about the economic losses 
they experience as a result of electric service interruptions or power-quality problems or, 
alternatively, customers’ willingness-to-pay to avoid/willingness-to-accept compensation for 
such problems.1   
 
Value-based reliability planning concepts have been in use for more than 20 years. They have 
been used in a variety of utility planning and ratemaking applications including: 

1. Estimating the cost of electric reliability to the US economy; 
2. Establishing the marginal cost of generating capacity for purposes of setting electric 

rates and establishing economically efficient planning reserve margins; 

                                                 
1 In this report, we use the term “customer interruption costs” to refer to value of electricity service reliability 
estimates developed through either surveys of the economic losses customers experience as a result of electric 
service interruptions or those developed through surveys of customers’ willingness-to-pay to avoid/willingness-to-
accept compensation for such problems. 
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3. Assessing the economic costs of additional load on transmission systems associated 
with wholesale and retail wheeling; 

4. Assessing the economic benefits of transmission system reliability reinforcements; 
5. Assessing the economic benefits of distribution system reinforcements; 
6. Prioritizing distribution system reinforcement alternatives to obtain the optimal set of 

projects to carry out given limited capital; 
7. Evaluating the costs and benefits of alternative substation design standards; and most 

recently, 
8. Establishing the economic worth and cost-effectiveness of investments in Smart Grid. 
9. Improving the design of demand response programs that aim to assign limited 

capacity to those with the highest willingness to pay during supply shortages. 
 
A comprehensive review of publicly available interruption cost estimates was published in 2001 
by Eto et. al. In this review they found that analysts had estimated customer interruption costs in 
a variety of ways.  The analysts had studied interruption costs in a number of geographical 
locations at different points in time; and they had reported results in slightly different metrics.  
Consequently, it was impossible to use the results of publicly available studies to derive 
meaningful estimates of customer interruption costs generally.  
 
The published information on customer interruption costs in the US was quite limited.  Starting 
in the mid-1980s, however, a number of utilities in the US conducted a number of customer 
value of service reliability studies. Because most US utility companies believed these studies 
could be used by competitors and opponents in the regulatory arena to gain advantage, only 
summary reports from such surveys were made available to state regulatory bodies and others.  
Detailed results of most of these studies (i.e., including individual data) were not released to the 
public domain until about 2003 – and then only under strict confidentiality guidelines.  
 
This paper describes work to assemble a meta-database on electricity customer interruption costs 
for the US and analyze the resulting data to develop customer damage functions useful for 
evaluating the economic benefits of electric system reliability reinforcements.  This work is an 
extension of work originally published by Lawton et. al. in 2004.  Several important changes 
have been made to the data and analysis methodology in the original work and the results from 
this study supersede the prior estimates in both scope and quality. The improvements to the study 
are as follows: 

1. The meta-database has been updated to include results from utilities that previously 
declined to participate – extending the geographical coverage of the data to the north-
central Midwest region and the time period covered by the database to 2005. 

2. The interruption costs have been estimated in 2008 dollars by adjusting original 
estimates using the US Bureau of Economic Analysis GDP deflator.  

3. The customer damage functions have been estimated using a two part model which we 
believe is more appropriate for estimating interruption costs than the Tobit model used 
by Lawton et. al. (2004) 

4. The results have been summarized by customer type and size instead of by customer 
type only. 
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The 28 studies comprising the current meta-database were selected for study because they 
employed a common estimation methodology including:  sample designs, measurement 
protocols, survey instruments, and operating procedures. This common survey methodology is 
described in detail in the Electric Power Research Institute Outage Cost Estimation Guidebook 
(Sullivan and Keane, 1995). The studies were carried out by major utilities in Southeast, 
Northwest, West and Midwest. 
 
With the exception of aggregate interruption costs for Duke Energy and Mid-America (see 
Sullivan, Vardell, and Johnson (1997) and Chowdhury et al (2005)), none of the interruption cost 
information reported in the previous study and this one were widely available in the public 
domain before this research began.2 So, one major benefit from this research is that the results of 
these important studies are now available in the public domain. Other benefits that arise from 
combining the data from these studies are:  

1. Individual utilities typically represent only one region of the country whereas a 
combined data set allows interruption cost estimation across regions, observing 
differences in interruption costs associated with climate, energy prices, and economic 
conditions.  

2. Utility customer populations are heterogeneous, particularly in the commercial and 
industrial (C&I) sectors; and combining data from a number of studies enlarges the 
number of cases considered from all businesses, allowing for the analysis of 
differences in interruption costs for different business segments.  

3. All of the studies examined used a survey method in which customers were asked to 
state their costs for interruptions that could occur under varying conditions (e.g., time 
of day, duration, season extent of notice, etc). Several of these “scenarios” were 
common to all surveys, while others were unique to specific studies. So, the 
combined data from the studies allows both the comparison of customer interruption 
costs across the country for similar circumstances and estimation of the effects of 
specific circumstances that may have been studied on only one occasion.  

4. Because several of the contributing utilities repeated their VOS surveys using exactly 
the same methodology at two points in time, it is possible to carefully analyze the 
change in interruption cost that occurred over a time. 

5. The resulting regression models can be used to predict interruption costs for regions 
or utilities that do not have or plan to conduct VOS surveys. 

 
 

The Methodology for Estimating Customer Damage Functions 
The meta-analysis consists of two steps. The first step is to combine the results from the various 
studies into a single data base with common variable definitions. In this way the results from all 
of the studies are combined into one large data base consisting of responses of 11,970 firms and 
7,693 households. Once this has been done, the second step in the meta-analysis is to analyze the 
data using statistical regression techniques to identify the best fitting customer damage functions 
for the data. Our procedures in carrying out these steps are discussed below.  
 

                                                 
2 Many utilities routinely submit the full report from their value of service reliability studies to their state utility 
commissions and, in some but not all cases, these studies are accessible publicly from these commissions. 
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Combining Data Sets 
Digital files and documentation describing the results of the 28 interruption-cost surveys were 
obtained from all of the participating utilities, in return for assurances that detailed data 
describing their customers would not be disclosed. Utilities that provided data included: 
Bonneville Power Administration, Cinergy (Now Duke Energy), Duke Energy, Mid America 
Power, Pacific Gas and Electric Company, Puget Sound Energy, Salt River Project, Southern 
California Edison, and Southern Company.  
 
While the survey instruments and procedures were very similar in all of the above cases, the data 
was provided in varying digital formats with differing variable names. The first step in the 
process of consolidating the data was to convert the information in these 28 files into a common 
format with common variable definitions and names. 
 
Meta-data sets were created for three customer groups: Small Commercial and Industrial 
customers (those operating facilities with less than 50 thousand annual kWh usage); Medium and 
Large Commercial and Industrial customers (i.e., those operating facilities with more than 50 
thousand annual kWh usage); and, residential customers. The studies collected interruption cost 
data by describing hypothetical interruptions and asking customers to estimate the costs that 
would occur if they experienced interruptions of varying duration, at different times of the day 
and during different seasons. Residential customers were asked to indicate the amount they 
would be willing to pay to avoid interruptions occurring under the same conditions. Respondents 
were typically asked to estimate their costs for between four and eight hypothetical interruptions 
-- varying the onset times, durations, seasons, etc as described above. 3 
 
To adjust for the fact that these studies were conducted over a 16-year period, the interruption-
cost estimates were adjusted for inflation to 2008 dollars using the US Bureau of Economic 
Analysis GDP Deflator. 
 
Finally, we dealt with the significant outliers in the interruption cost data. Statistics derived from 
data sets that include outliers can be extremely misleading. Outliers can occur by chance in any 
distribution, but they are often indicative either of measurement error or that the population has a 
long-tailed distribution. In the former case outliers should be discarded or statistics should be 
used that are robust to outliers.  In the latter case outliers indicate that the distribution has high 
kurtosis and that one should be very cautious in making the assumption of normality.  A 

                                                 
3 There has been a long simmering debate about the validity and reliability of customer reported interruption costs 
measured using survey techniques. There are two central criticisms of the use of survey methods to estimate 
customer interruption costs. The first applies generally to interruption cost surveys that use hypothetical 
interruptions as a framework within which to ask questions about interruption costs. In particular, there is concern 
that cost estimates based on hypothetical circumstances may over or under estimate the costs that occur under real 
conditions. There is no empirical evidence one way or another as to whether this concern is justified. A second 
concern applies principally to the measurements of interruption costs for residential customers that rest on what are 
called contingent valuation methods or stated preference methods. Contingent valuation studies have been the 
subject of considerable controversy – particularly as applied to the measurement of damage arising from 
environmental problems. The validity and reliability of various approaches to damage cost measurement using 
contingent valuation have been discussed at length in the literature. We cannot do it justice in the space available in 
this format. Those interested in this debate should see Mitchell and Carson (1989) or Horowitz and McConnell 
(2002). 
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common cause of the outlier problem is that that the so-called outliers belong to a different 
population than the rest of the sample set.  For example, for medium and large C&I customers 
the top five values for a 1 hour interruption are greater than 100 million dollars, and the highest 
interruption cost reported in the distribution is 112,000 times the mean interruption cost. 
Whether these observations are due to measurement error or are a totally distinct population of 
customers is unknown in this case.  Careful inspection of the data for the above described 
statistical outliers suggests that the costs they are reporting are plausible.  They are reported by 
customers operating extremely large and complicated industrial facilities with very high energy 
use.  Nevertheless, meaningful statistical modeling cannot be developed to take account of the 
interruption costs experienced by this numerically small but potentially important class of 
customers.  Extreme outliers were therefore excluded.4 Outliers were eliminated after first 
transforming the data to a lognormal scale (see the detailed discussion in Section 3.4 below).  
The total number of observations eliminated is approximately 2.8%. 
 
 

Estimating Customer Damage Functions 
Customers’ economic losses as a result of reliability and power-quality problems can be 
summarized by what is called a customer damage function (CDF). This idea was first suggested 
in 1994 by Goel and Billinton (1994). They described the customer damage function as a simple 
linear equation relating average interruption cost to the duration of an interruption. They used 
data collected from customers to describe this function. In 1995, Keane and Sullivan suggested a 
more general form of the CDF – that could be used to predict interruption cost values from a 
number of variables that have been shown in interruption cost surveys to influence customer 
interruption costs. Their form of the CDF appears below:  
 
Loss = f {interruption attributes, customer characteristics, environmental attributes}. (1) 
 
The interruption cost (Loss) in Eq. 1 is expressed in dollars per event, per customer. The factors 
(f) on which interruption costs depends are defined as follows: 

 Interruption attributes are factors such as interruption duration, season, time of day, and 
day of the week during which the interruption occurs.  

 Customer characteristics include factors such as: customer type, customer size, business 
hours, household family structure, presence of interruption-sensitive equipment, and 
presence of back-up equipment.  

 Environmental attributes include: temperature, humidity, storm frequency, and other 
external/climate conditions. 

 
In the work described in this report, regression analysis techniques are used to study alternative 
specifications of the customer damage functions for commercial and residential customers and 
ultimately to summarize the impacts of interruption attributes, customer attributes, and 
environmental conditions on the economic losses that customers said would occur as a result of 
electric interruptions in numerous studies.  
 

                                                 
4 It is also possible that such observations represent strategic responses designed to bias the results. 
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The ideal statistical framework for analyzing the above-described data is multiple regression. 
However, the use of an ordinary-least squares (OLS) approach to parameter estimation in 
regression is inappropriate because large percentages of respondents to interruption cost surveys 
report “0” (zero) interruption costs for short-duration interruptions.  
To solve the above problem a two-part regression model was used to estimate the customer 
damage functions in this study.  The two-part model assumes that the zero values in the 
distribution of interruption costs are correctly observed zero values. That is they are not errors.  
In the first step, a limited dependent model is used to predict the probability that a particular 
customer will report a value of zero versus any positive value for a particular interruption 
scenario, based on a set of independent variables which describe the nature of the interruption as 
well as customer characteristics. The predicted probabilities from this first stage are retained. In 
the second step, interruption costs for only those customers who report positive costs are related 
to a set of independent variables (which may or may not be the same as the independent 
variables used in the first stage). Predictions are made from this model for all customers, 
including those who reported zero interruption costs. Finally, the predicted probabilities from the 
“first part” are multiplied by the estimated interruption costs from the “second part” to generate 
the final interruption cost predictions. 
 
The functional form for the second part of the two-part model, must take account of the fact that 
the interruption cost distribution is bounded at zero and extremely right skewed (i.e. has a long 
tail in the upper end of the distribution). OLS is not an appropriate functional form given these 
conditions.  A simple way to define the customer damage function given the above constraints is 
to estimate the mean interruption cost, which is linked to the predictor variables through a 
logarithmic link function.  
 
The values of the parameters in the two-part model cannot be directly interpreted in terms of 
their influence on interruption costs because the relationships are among the variables in their 
logs. However, the estimated model produces a predicted interruption cost, given the values of 
variables in the models. To analyze the magnitude of the impact of variables in the CDF on 
interruption cost, it is necessary to compare the predictions made by the function under varying 
assumptions. For example, it is possible to observe the effects of duration on interruption cost by 
holding the other variables constant at their sample means. In this way, one can predict average 
customer interruption costs of varying durations holding other factors constant statistically. 
 
 

Results 
Table ES- 1 displays estimated average electricity customer interruption costs for 2008 expressed 
in costs per event, costs per average kW demand and costs per annual kWh sales. Cost estimates 
are provided for three customer segments and for durations ranging from < 5 minutes 
(momentary) to 8 hours. They are reported for three customer classes defined as follows: 
Medium and Large Commercial and Industrial (all non-residential customers with sales > 50,000 
kWh per year); Small Commercial and Industrial Customers (all non-residential accounts with 
sales <= 50,000 kWh per year); and residential customers. 
 
The values in the table have been calculated using the general customer damage functions 
described in Sections 4-6 of this report. These chapters describe the development of three 
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customer interruption costs than interruptions on circuits with significant business customer 
loads. If the interruptions are concentrated in the afternoon (because of temperature or thunder 
storms) the costs of interruptions will be different than if they are concentrated in the early 
morning (because of animal contacts with equipment).  
 
It is possible to build interruption cost estimation models that take account of these variations 
using the customer damage functions outlined in this paper in combination with detailed 
historical information about the temporal distribution of unreliability and the distribution of sales 
to customers of different types on the circuit(s) of interest.  In essence, this involves estimating 
the economic cost that customers on the circuit(s) must have experienced (or will experience) 
based on the number of customers interrupted by type, for how long, during what season, time of 
day and day of week. While computationally intensive, this calculation is not particularly 
difficult to accomplish. 
 
 

Concluding Remarks 
This paper describes research designed to merge the results from 28 previously confidential or 
not widely available interruption cost surveys into several large, integrated data sets (for different 
customer types) that can be used to estimate electricity customer interruption costs for the US. 
The principal benefit of this work is the development of reliable estimates of customer 
interruption costs for populations of industrial, commercial, and residential customers in the US 
derived from a rich database of responses to customer interruption cost surveys. The interruption 
costs reported in this paper illustrate the usefulness of the customer damage functions that have 
been estimated using the meta-database assembled for this research.  
 
Although customer damage functions reported in this paper represent a significant improvement 
over past information about customer interruption costs, there are limitations to how the data 
from this meta-analysis should be used. First, certain very important variables in the data are 
confounded among the studies we examined. In particular, region of the country and year of the 
study are correlated in such a way that it is impossible to separate the effects of these two 
variables on customer interruption costs. Thus, for example, it is unclear whether the higher 
interruption cost values for the southwest are purely the result of the hot summer climate in that 
region or whether those costs are higher in part because of the particular economic and market 
conditions that prevailed during the year when the study for that region was done.  
 
There is also some correlation between regions and scenario characteristics. The sponsors of the 
interruption-cost studies were generally interested in measuring interruption costs for conditions 
that were important for planning for their specific systems. As a result, interruption conditions 
described in the surveys for a given region tended to focus on periods of time when interruptions 
were more “problematic” for that region (e.g., summer peak or months when thunderstorms are 
common). Unfortunately, the time periods when the chance of interruptions is greatest are not 
identical for all sponsors of the studies we relied upon, so interruption scenario characteristics 
tended to be different in different regions. Fortunately, most of the studies we examined included 
a summer afternoon interruption, so we could compare that condition among studies. 
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A further limitation of our research is that the surveys that formed the basis of the studies we 
examined were limited to certain parts of the country. No data were available from the 
northeast/mid-Atlantic region, and limited data were available for cities along the Great Lakes. 
The absence of interruption cost information for the northeast/mid-Atlantic region is particularly 
troublesome because of the unique population density and economic intensity of that region. It is 
unknown whether, when weather and customer compositions are controlled, the average 
interruption costs from this region are different than those in other parts of the country.  
 
This paper has removed an important barrier to the widespread use of value based reliability 
planning in regulation and utility system planning – the availability of reasonable estimates of 
customer interruption costs.  There are others.  Additional work that needs to be done includes: 

1. Additional interruption cost surveying should be carried out in regions where 
information on customer interruption costs is currently unavailable (i.e., the Northeast 
Corridor and the Northern Tier of the Mid-West) 

2. An easy to use interruption cost calculator should be developed driven by the customer 
damage functions described in this paper. 

3. Additional work should be carried out to develop the ability to model uncertainty in 
interruption cost estimates 

4. Robust examples of the use of customer interruption costs to assess the benefits arising 
from different kinds of reliability reinforcements and regulatory decisions should be 
developed and published 

5. Additional basic research is needed to develop reasonable ways of using customer 
interruption cost information with currently used indicators of reliability performance 
(e.g., SAIFI and SAIDI); estimate partial interruption cost; and develop modern and less 
expensive techniques for estimating customer interruption costs. 
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1. Summary of Data and Overview of Analysis 

The discussion of the background for this research and the basic approach to database assembly 
was presented in the report provided by Lawton et. al. in 2004.  It is repeated and updated here 
for the convenience of the reader. 
 
Ensuring reliability has and will continue to be a priority for electricity industry expansion and 
restructuring.  Reliable electric power delivered on demand is a cornerstone of electricity’s 
ubiquitous adoption and use.  A central feature in electricity’s value to consumers, whether they 
are individual households or large industrial complexes, is the infrequent occurrence of 
interruptions or other power disturbances that interrupt the use of appliances, motors, electronics, 
or any of the other myriad of end uses for which electricity is the primary energy source. 
 
While no one disagrees that customers seek reliable power, ensuring reliability is a complex and 
multi-faceted problem.  The strategies available to meet that goal are numerous and the price tags 
associated with them vary greatly.  Most important of all, reliability has always been a shared 
responsibility because it is a public good.  Therefore, who pays and who benefits from increased 
reliability has always been an important question for both private and public decision makers.   
 
Underlying any strategy is assumptions about the value end-use customers place on reliability. 
During times of crisis caused by either short-term events, a common (yet, we believe 
inappropriate) assumption is that customers will pay almost any price for reliable power.  In 
contrast, during periods of reliable power delivery but accompanied by rising rates or rising 
taxes, there are frequent charges that the system is being overbuilt and designed to a higher 
standard of reliability than customers are willing to pay.   
 
A general framework for addressing this planning problem has been the application of value-
based planning.   For example see: (Munasinghe, 1979), (Burns and Gross, 1990), (Sanghvi et 
al., 1991), (Allan and Billinton, 1992), (Sullivan et al., 1996), (Sullivan and Keane, 1995), 
(Vojdani et al., 1996), (Wacker et al., 1983), (Wojczynski et al., 1983), (Woo and Train, 1988), 
(Matsukawa and Fujii, 1994), (Dalton et al., 1996), (de Nooij et al, 2006) and 2008), (Ghajar and 
Billinton, 2005), (Billinton et al., 1983), (Wangdee and Billinton, 2004),  (Reitz and Sen, 2006) 
and (Rose et al, 2007) (LaCommare and Eto, 2006) 
 
Value-based planning is designed to match the level of investment in reliability with the societal 
benefit of the improvement in reliability.  The use of value-based planning requires a method for 
estimating customers’ economic value of service reliability.  Historically, generation, 
transmission, and distribution systems investments have been planned using engineering criteria 
that do not consider the economics of the decision.  With value-based planning, it is assumed that 
customer preferences for service reliability can be measured and that these preferences can be 
used to establish economically justified reliability targets for generation, transmission, and 
distribution investments.   
 
In the application of value-based planning, the value of service reliability to customers has been 
conceptualized as equal to the economic losses that customers would experience if a given 
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interruption occurred.7  The economic losses experienced by customers as a result of reliability 
or power quality problems can be described by a Customer Damage Function (CDF)8.  The 
general form of a CDF is: 
 
Loss  = f{interruption attributes, customer characteristics, geographical attributes}. 
 
The dependent variable of economic loss is expressed as a loss in dollars per event, per kWh of 
un-served energy, per kWh of annual energy consumption or per kW of annual peak demand.  
The equation predicts the economic loss from factors that influence interruption costs.9  The 
interruption attributes might include duration, season, time of day, advance notice and day of the 
week.  The customer characteristics could include annual kWh usage, kW demand, type of 
business, type of household, presence of various interruption sensitive equipment, presence of 
backup equipment, and other firmographic or demographic characteristics.  Finally geographical 
attributes might include temperature, humidity, frequency of storms and other geographical 
conditions affecting economic losses from interruptions. 
 
Customer damage functions are useful for reliability planning in several ways.  First, the 
customer damage function provides a framework for conceptualizing and estimating the factors 
that influence customers’ interruption costs for particular types of interruptions.  Second, the use 
of a customer damage function allows for analysis of the isolated effects of different attributes of 
interruptions such as duration or time of day.  Third, it can be used to quantify the economic 
losses from different electricity system reliability investments by multiplying appropriately 
defined customer damage functions by the un-served energy expected under different system 
investment options.  These calculations then become the basis for comparing different reliability 
solutions and evaluating whether the economic benefits to customers are justified by the costs of 
the investment options. 
 
The use of customer damage functions and value of service reliability estimates applies to many 
investment decisions facing utility planners, regulators, and policy makers.  To compare 
alternatives in a planning framework, the calculations may focus on the economic costs or 
benefits of changes in un-served energy, the frequency of key events like momentary 
interruptions or voltage sags), or other aspects of the economic value of reliability.  A few 
examples serve to illustrate:10 

                                                 
7 In practice, for residential customers the surveys in this study rely on willingness-to-pay and/or willingness-to-
avoid questions.  These are taken to be alternatives to direct measurements of measuring residential customers’ 
value of service reliability.  Some additional analysis of the relationship between the WTP/WTA responses and the 
direct interruption cost measures would be of interest in assessing the difference between the two measurement 
approaches, however budget limitations precluded us from pursuing it at this time. 
8 For a discussion of the application of such functions to electric power supply reliability planning see “Prediction of 
Customer Load Point Service Reliability Worth Estimates in an Electric Power System,” L. Goel and R. Billinton, 
1994, IEEE Proc.-Gener, Tans, Dist, Vol.141, No. 4, July 1994.   
9 In this report, we use the term “customer interruption costs” to refer to value of electricity service reliability 
estimates developed through either surveys of the economic losses customers experience as a result of electric 
service interruptions or those developed through surveys of customers’ willingness-to-pay to avoid/willingness-to-
accept compensation for such problems. 
10 Detailed examples of the use of interruption costs in various generation, transmission, and distribution planning 
situations are provided in “Outage Cost Estimation Guidebook”, M. Sullivan and D. Keane, TR-106082, Electric 
Power Research Institute, Palo Alto, CA:  December , 1995. 
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 Generation planning:  As utilities add capacity, the probability of a generation capacity 
shortfall declines and the cost of un-served energy at the time of peak demand declines.  
Reducing the amount and hence cost of un-served energy is valuable to customers, the 
question is whether these benefits outweigh the costs of obtaining them.  By analyzing 
how the benefits from reducing un-served energy are distributed across customer classes 
and by knowing the economic value of that un-served energy has for different customers, 
planners can determine whether costs to improve system generation reliability are 
balanced with the value of the improvement to customers.  

 Transmission planning:  Transmission planners analyze the reliability of transmission 
lines to assure sufficient capacity exists to serve customers under different failure 
contingencies.  With value-based planning, the failure scenarios can be examined based 
on the number and frequency of voltage sags or power quality events they create and the 
costs to reinforce the system to reduce these power quality problems.  By comparing 
these costs to the economic value to customers of the reduction in power quality 
problems, decisions can be made as to whether system reinforcement creates sufficient 
net benefits to justify these added costs.  The customer damage functions, combined with 
the estimates of the frequency with which certain events might occur, serve as the basis 
for calculating the economic value of various options. 

 Distribution planning:  Customers on a distribution circuit can be served with different 
circuit design configurations (e.g., radial, loop, networked, with or without different 
Smart Grid).  Each configuration varies in its cost to implement and each has different 
implications for the expected frequency and duration of interruptions to customers served 
by these circuits.  Planners can compare options by calculating the expected un-served 
energy from various circuit designs and by examining the types of customers currently on 
the circuit and forecasted to locate near the circuit through time.  They can also compare 
designs on the likelihood of various power quality problems.  Using a customer damage 
function, the economic value of the reliability improvements can be calculated for 
specific groupings of customer types and for the specific reliability 
problems/improvements anticipated for a given circuit.  This economic value can be 
compared to the cost of various options to balance the costs with the anticipated benefits. 

 
Value-based planning concepts have been around for 20 or more years.  Over this period, there 
have been numerous studies to quantify the value of reliability as a basis for both public policy 
and private investment, and for operating decisions regarding generation, transmission, 
distribution, and retail offerings.  Efforts have been made to measure interruption costs or value 
of service using a range of methods and techniques.  See for example: (Lawton et. al. 2004), 
(Keane and Woo, 1992), (Sullivan et. al. 1996), (Woo and Train, 1988), Matsuaka and Fujii, 
1994), Wacker, Wojczynski and Billinton (1983), (Billinton, Tollefson and Wacker, 1992), 
(Caves et. al. 1992), (Beenstock et. al. (1997), (Doane, Hartman and Woo, 1988), (Hartman, 
Doane and Woo, 1991), (Woo and Pupp, 1992), (Balducci et. al, 2002), (Gilmer and Mack, 
1983).  
 
Despite these efforts, Eto, et al. (2001) noted that there were few estimates of the aggregate cost 
of unreliable power to the U.S. economy, and the estimates that were available were poorly 
documented or based on questionable assumptions.  Costs of large-scale interruption events (e.g., 
State- or region-wide power interruptions) were not well documented and were mostly based on 
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natural disasters for which it is difficult to separate costs of electric interruptions from damages 
caused by other disaster features (e.g., property damage from wind or water).  Studies of 
hypothetical interruptions obtained from interruption cost surveys could be used to prepare 
aggregate estimates of interruption costs.  However, there are important differences in the survey 
and statistical methodologies used in the studies that must be addressed in any meta-analysis 
relying upon them.  Finally, very little information was available in the public domain regarding 
the costs of power quality problems – an increasingly important aspect of service reliability. 
 
In 2002 LBNL sponsored an effort to assemble the data from a large number of studies for which 
results had never been reported in the public domain and prepare a statistical meta-analysis 
designed to estimate customer damage functions for utility customers in the US.  See Lawton et. 
al. (2004).  
 
The research effort assembled respondent level data from 24 studies carried out by 8 major US 
utilities over the course of 13 years.  These studies were based on carefully executed customer 
interruption cost surveys of residential, commercial and industrial customers.  This report 
describes the expansion and continuation of that research effort and incorporates a number of 
improvements in the data processing and econometric techniques designed to estimate general 
customer damage functions.    
 
The credibility of the estimates rests to a large extent on an understanding of how interruption 
costs were estimated in the various studies and how they have been combined.   The studies 
chosen for this research were selected because they employed a common survey methodology 
including sample designs, measurement protocols, and survey instruments and operating 
procedures.  This methodology is described in detail in EPRI’s Outage Cost Estimation 
Guidebook (Sullivan and Keane, 1995).  A brief discussion of this methodology can be found in 
Appendix B. 
 
The 28 studies used in this research include observations from virtually all the Southeast, most of 
the western U.S. (including almost all of California, rural Washington and Oregon, and the 
largest metropolitan areas in Arizona and Washington), and the Midwest south of Chicago.  The 
time frame covered by the studies ranges from 1989 to 2005 – a period of 16 years.  Several 
studies examined interruption costs for similar customer populations (e.g., residential customers) 
at roughly the same time using nearly identical measurement protocols, but were conducted by 
utilities located in different parts of the country.  Moreover, more than one of participating 
utilities had measured customer interruption costs using the same instruments and procedures at 
different points in time – one after five years and another after 12 years.  In almost all of the 
studies, detailed demographic and firmographic information was collected from study 
respondents and incorporated into the database of results.   
 
While each individual study was extensively analyzed by the utility that conducted the study for 
their own use, until this research was undertaken in 2002 there had been no efforts to combine 
the data from the studies into a single database.  The value of combining the data and developing 
a set of meta-models is the prospect of extending the results of the individual studies in several 
ways: 
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 Individual utilities typically represent only one region of the country, whereas a 
combined dataset provides an opportunity to evaluate value of service across regions that 
will include differences in temperature, humidity, energy rates, and regional economic 
conditions. 

 Utility customers are heterogeneous, particularly in the commercial and industrial sectors.  
Combining the data provides additional cases to examine value of service for important 
sub-segments (i.e., business types). 

 Most of the studies examined here use a survey method in which customers responded to 
various interruption scenarios.  By combining the data across studies, a broader range of 
scenarios can be used to estimate the impacts of time of day, duration, season, and certain 
special conditions, such as receipt of advance notice. 

 Because some of the studies were carried out at different times for the same geographical 
area, it is possible to assess how customer interruption costs are changing for different 
customer types as time passes. 

 
Combining the data has several positive features, but there are also limitations with which to 
contend.  First, because the studies were conducted for specific utilities at specific points in time 
some variables of interest are “collinear” with each other.  Consequently, it is impossible to 
develop a model that separates the impacts of time and geography.  Second, the studies chosen 
for this combined dataset used similar methods for collecting the data but they did not 
necessarily use identical methods.  As a result, it is important to consider that some effects 
identified in the data may be the result of “methods” effects rather than substantive effects of 
different variables. 
 
1.1 Data Update 

The major objective of this project was to identify, gather, and combine the data from prior 
utility value of service or interruption cost studies into separate databases containing the findings 
for three distinct customer groups: residential, small commercial and industrial (C&I), and 
medium and large C&I.  As part of the initial review of past studies, 12 utilities were identified 
that had measured customer interruption costs using survey-based methods for one or more of 
these three customers groups.  Altogether, 28 datasets from 10 companies were ultimately 
acquired, standardized, and then merged. While each dataset presented certain issues (see 
Appendix A), it was possible in most cases to develop rules for combining the data from the 
separate studies into meaningful meta-datasets based on common questions and metrics.   
 
The following steps were taken in creating the databases: 

1. Contact the utilities that had conducted customer interruption cost (or Value of Service 
or interruption cost) studies; 

2. Negotiate agreement(s) to participate in the study, including agreements not to disclose 
customer-specific information or present information that could be attributed to an 
individual firm; 

3. Obtain the datasets, codebooks, and original survey questionnaires; 
4. Standardize each dataset in terms of variable selection and construct; 
5. Merge the datasets; 
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6. Normalize interruption costs to a common base year (2008), using the GDP deflator; 
and, 

7. Review the data and exclude outliers and other data anomalies. 
 
The core elements of this process are described in this chapter.  Additional details are provided 
in Appendix A. 
 
First, all variables were standardized using common metrics.  For example, some studies may 
have described the interruption duration in hours (e.g., a 1 hour interruption) while others may 
have used minutes (e.g., a 30 or 60 minute interruption).  In this instance, the results for both 
studies were converted to minutes.  Although the survey instruments for the various studies may 
have used slightly different wordings, each study measured the same basic underlying concepts.  
These included: 

 Attributes of the Interruption (e.g., duration, frequency, season, time of day) 
 Summary of Costs (e.g., labor costs, material costs, damage costs) 
 Customer Characteristics (e.g., company size, household income) 

 
Second, all of the scenarios were hypothetical.  This is both a strength and weakness of this body 
of studies.  The goal in presenting customers with hypothetical interruption scenarios is that they 
can respond to the same stimulus (a carefully controlled description of a series of interruptions).  
This simplifies associating costs and customer characteristics with attributes of interruptions like 
duration and time of day.  However, because these are hypothetical, customers do not provide 
actual costs for actual events.  Instead, they are asked to carefully estimate their costs for the 
hypothetical situations, regardless of previous interruption experiences.  We cannot determine, 
prime facie, the biases inherent in such self-reports of cost estimates associated with hypothetical 
interruption scenarios. 
 
Third, the interruption scenarios varied in several ways, including 

 duration, 
 onset time of day 
 onset day type (weekday or weekend) 
 season (summer or winter) 
 Extent of advance notice of upcoming interruption 

 
Because planners are typically interested in interruptions occurring under specific system 
conditions, many interruption scenarios described interruptions associated with system peak 
conditions.  For example, studies conducted in northern climates were focused primarily on 
winter interruptions, while those in southern climates were focused primarily on summer 
interruptions.  Some studies measured interruption costs for momentary interruptions, while 
others did not.  Some studies measured costs for long interruptions (i.e., 8-12 hours), while the 
maximum interruption duration was limited to 4 hours in others.  The most commonly used 
interruption scenarios involved interruptions of one- and four-hour durations occurring on 
summer afternoons.  Most of the studies included a common 1-hour interruption occurring at 
time of system peak for all observations. 
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Fourth, the studies were conducted over a 16-year period.  The results from each study are 
appropriate for the time period during which the data were originally collected. To compare the 
results across time it was necessary to take account of inflation and changes in the cost of living.  
Accordingly, all of the cost data have been adjusted to 2008 dollars using the US Bureau of 
Economic Analysis GDP Deflator.   
 
The strategy used to collect interruption cost data in most of these studies involved presenting 
customers with a series of hypothetical interruptions and asking them to describe their costs (or 
to respond to a willingness to pay to avoid their costs) to each one.  Each respondent provided 
cost estimates for more than one scenario (in some cases, up to 8 scenarios).  Statistical power of 
the results was enhanced by organizing the data so that the responses for each scenario in a 
survey were treated as independent observations or records.  For example, if one respondent 
provided separate cost estimates for each of 3 scenarios, then these results were converted into 
three separate records in the meta-database.  The common variables, e.g., firmographic 
information such as SIC code, were appended to each record.   
 
As explained above, meta-datasets were created for three customer groups:  residential, small 
C&I (50 thousand annual kWh or less) and medium and large C&I (more than 50 thousand 
annual kWh).  The commercial and industrial datasets include the following information on each 
observation: 

1. Season 
2. Onset time of day 
3. Onset day of week 
4. Interruption duration 
5. Whether advanced warning was received 
6. Year interruption cost study was completed 
7. Estimated interruption cost; 
8. Customer’s SIC code 
9. Customer’s business type 
10. Number of employees 
11. Whether company has back-up generation  
12. Customer’s annual kWh consumption 

 
The residential customers’ survey included similar interruption scenario information (items #1-7, 
above) but also included: 

1. Willingness to pay measure (WTP) 
2. Willingness to accept credit (WTA) 
3. Type of housing 
4. Home ownership 
5. Household income 
6. Whether household has sickbed resident 
7. Whether household uses medical equipment in the home 
8. Whether household has a home business 

 
The commercial and industrial, and the residential datasets are also differed from one another in 
other important respects, as described below. 
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1.2 Commercial and Industrial Datasets 

Development of commercial and industrial sector databases involved creating separate databases 
for the medium and large C&I and small C&I data.   Each includes enterprises involved in all 
aspects of commercial and industrial activity as well as government services.  Although utilities 
use slightly different criteria for defining small, medium and large customer classes, we used 
common criteria to assign customers to either small versus medium and large C&I.  The small 
commercial and industrial customer was defined as a one using 50 thousand kWh annually or 
less.  The medium and large C&I customer was defined as a customer using more than 50 
thousand kWh annually.   
 
For both commercial and industrial customers, all of the studies employed the same interruption 
cost estimation methodology – direct worth or direct cost estimation (see Appendix C).  In the 
direct worth estimation methodology, customers were asked to estimate the losses they would 
experience under varying assumptions about the timing, duration and extent of electric 
interruptions.  In most cases, the estimation involved customers completing a worksheet for each 
scenario in which they reported various types of costs and various types of savings.  These costs 
and savings were then summed to calculate a net cost of the interruption.  Customers were 
generally asked to provide estimates for four to ten scenarios (i.e., combinations of onset time, 
duration, extent of advance warning, season and day of the week).  Thus, these studies produced 
a range of estimated interruption costs for each customer – one for each combination of 
interruption conditions on which they were asked to report.  It is not uncommon for some of the 
customers within a given study to receive one randomly chosen set of interruption conditions, 
while others receive a somewhat different randomly chosen set.   
 
For the two commercial and industrial datasets, the primary dependent variable is total cost of 
the interruption on a per event basis.  In most cases, demand and usage information for each 
customer was also available and, for reporting purposes, was used to express interruption cost on 
a per average kW11 and per annual kWh basis.   
 
1.3 The Residential Dataset 

Unlike the commercial and industrial customers where costs associated with an interruption can 
be converted into an economic loss based on lost profits or costs over savings, the costs of 
interruptions to residential customers are often more intangible.  Residential customers tend to 
describe their costs in terms of the “hassle” or “inconvenience” of an interruption rather than in 
terms of specific labor or material costs.  For this reason, most of the residential interruption cost 
studies in this meta-analysis use some form of ‘willingness to pay’ (the amount the household 
respondent would be willing to pay in order to avoid an interruption of a certain scenario) as the 

                                                 
11 The use of average kW in this report is different from many previous studies where maximum kW demand is 
used.  Maximum kW is not used in this report because it is not included in many of the datasets.  Instead, average 
kW is calculated by dividing annual kWh by 8760 hours/year.  If necessary, maximum kW can be estimated by 
dividing average kW by an assumed load factor. 
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dependent variable (rather than rely on estimation of direct costs)12.  The meta-analysis described 
here focuses on these ‘willingness to pay’ measures.   
 
Unlike the commercial and industrial customers where costs associated with an interruption can 
be converted into an economic loss based on lost profits or costs over savings, the costs of 
interruptions to residential customers are often more intangible.  Residential customers tend to 
describe their costs in terms of the “hassle” or “inconvenience” of an interruption rather than in 
terms of specific labor or material costs.  For this reason, most of the residential interruption cost 
studies in this meta-analysis use some form of ‘willingness to pay’ (the amount the household 
respondent would be willing to pay in order to avoid an interruption of a certain scenario) as the 
dependent variable (rather than rely on estimation of direct costs)13.  The meta-analysis described 
here focuses on these ‘willingness to pay’ measures.14 

                                                 
12 Some of the studies measured willingness to pay, willingness to accept and direct worth interruption cost 
estimates.  Willingness to accept and direct worth measurements were not analyzed in developing the customer 
damage functions reported in later sections. 
13 Some of the studies measured willingness to pay, willingness to accept and direct worth interruption cost 
estimates.  Willingness to accept and direct worth measurements were not analyzed in developing the customer 
damage functions reported in later sections. 
14 The validity and reliability of various approaches to damage cost measurement using contingent valuation have 
been discussed at length in the literature. We cannot do it justice in the space available in this format. Those 
interested in this debate should see Mitchell and Carson (1989) or Horowitz and McConnell (2002). 
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2. Methodology 

2.1 The Nature of Interruption Cost Data 

The distribution of reported interruption costs has at least three characteristics which present 
significant challenges to the modeling exercise contemplated here. First, a significant portion of 
the observations have a value of zero. For example, 33.3% of reported interruption costs for 
medium and large C&I customers are zero. Second, the nonzero interruption costs are 
significantly right-skewed (for most of this range, interruption costs are approximately 
lognormal). Third, the right tail of the distribution deviates substantially from log normality due 
to excess kurtosis.15 For example, for medium and large C&I customers, the value of the 
distribution of interruption costs at the 95th percentile is more than 1,000 times larger than the 
figure at the 5th percentile. In addition, there are a small number of large customers whose 
interruption costs are several orders of magnitude higher than other respondents. Given these 
characteristics, it is likely that standard regression techniques (e.g. OLS) will produce extremely 
unreliable results, subject to serious bias and inflated error variances. 
 
There is a significant literature dealing with analysis of data on healthcare expenditures which 
has similar properties (See Jones (2000) for an overview). For example, annual data on 
healthcare expenditures is characterized by a large cluster of data at 0 and a right skewed 
distribution of the remaining outcomes. For instance, people who do not get sick generally use 
$0 of medical care in a given year. Of those who do get sick, most are not seriously ill, but there 
will be a subset of the population who will incur significant medical expenses.  In addition, there 
will be a small number of outliers with extremely expensive medical care.  From an applied 
statistical perspective, how should one take these characteristics into account?  These issues are 
addressed below. 
 
2.2 Outliers 

The distribution of interruption costs contains significant outliers. For example, as indicated 
above for medium and large C&I customers the top five values for a 1 hour interruption are 
greater than 100 million dollars, and the highest interruption cost reported is 112,000 times that 
of the mean interruption cost. Outliers are generally classified as mild outliers or extreme 
outliers. In statistical terms a value X is an extreme outlier if: 
 
X<Q1-3*IQR  (1) 
 
X>Q3+3*IQR  (2) 
 
Mild outliers are any data values which lie between 1.5 times and 3.0 times the interquartile 
range below the first quartile or above the third quartile. We computed the implied cutoff values 
based on the medium and large C&I survey responses for a 1-hour interruption. The results are 
described below: 
 

                                                 
15 For example, for the data on medium and large C&I customers, the test for normality fails to reject the null 
hypothesis of normality for the skew of the distribution, but easily rejects the null based on excess kurtosis. 
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  Low High 

Mild Outlier cutoff points -6,448.3 11,451.9
# mild outliers 0 578
% mild outliers 0.00% 4.05%
      
Severe Outlier cutoff points -13,160.8 18,164.4
# severe outliers 0 1618
% severe outliers 0.00% 11.34%
 
Unfortunately, the extreme kurtosis of the data leads the standard method to reject a substantial 
fraction of the dataset (15%) as outliers.  However, because the data are approximately 
lognormal over a most of the distribution, and the form of the primary interruption cost 
regression is logarithmic, it appropriate to examine the data in log form. In natural logarithms, 
the outlier diagnostics provide much more reasonable results: 
 
  Low High 

Mild Outlier cutoff points 1.794 13.440
# mild outliers 4 51
% mild outliers 0.04% 0.55%
      
Severe Outlier cutoff points -2.573 17.810
# severe outliers 0 0
% severe outliers 0.00% 0.00%
 
For the regression analyses presented in this report, both the mild and severe outliers were 
eliminated using the above procedure, except that these criteria were applied within industry and 
duration for log interruption costs and within industry for log annual kWh usage. For all C&I 
data combined, approximately 2.8% of cases are excluded owing to outliers and missing data, 
leaving 51,741 cases available for calculating total cost. For the residential dataset, 
approximately 2.7% of cases are excluded owing to outliers and missing data, leaving 26,026 
cases available for calculating total cost. 
 
2.3 Functional Form and Transformation 

Excluding the zeros and outliers, the distribution of interruption costs is approximately 
lognormal. For such distributions, estimation using logged estimates will often yield more 
precise and robust results than direct analysis of unlogged dependent variable. As such, one 
might propose the following simple loglinear specification for interruption costs, where Ci 
represents reported interruption costs for each scenario and Xi represents a vector of scenario-
related and firmographic variables: 
 

)ln( ii Cc    (3) 
 

)ln( ii Xx    (4) 
 

iii uxc     (5) 
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Of course, we are not interested in log scale results per se. The question then arises how to derive 
the desired predictions of raw interruption costs Ĉi from the estimated equation above. Note that 
taking the antilogarithm of the predicted values from the loglinear equation above will not yield 
the desired predictions, i.e., exp(Ĉi) ≠ Ĉi. Indeed, given the nature of the data on interruption 
costs, the results of that procedure are likely to be far from the correct values. 
 
Many economic models specify loglinear relations between variables, which means that after a 
log-transformation of the dependent variable, and possibly independent variables, the model is a 
standard linear regression model in the transformed variables. The transformed model can 
therefore be estimated by OLS and optimal predictors for the transformed dependent variables 
are easily obtained. However, one is generally interested in predicting the original variables, not 
the variables in logs. One solution is just to take the inverse transform of the optimal predictor in 
the transformed model, i.e. take the exponential of the optimal predictor from the loglinear 
model. This solution is not optimal for the original variable because the nonlinear (inverse) 
transformation results in a biased predictor, due to both the distribution of the estimator and the 
random nature of the disturbance term. The problem is one of relating (conditional) expectations 
before and after a nonlinear transformation. This relation is trivial in linear models but for 
nonlinear models the problem cannot usually be solved analytically. 
 
If the error term ui is both normal and homoskedastic, then the predicted values can be recovered 
via the following relation: 
 

  2

2

|
 

 ix

ii eXCE   (6) 
 
Where σ2 is the variance of the error u. Of course, the assumption of normality and 
homoskedasticity is unlikely to hold in general and in particular is extremely unlikely to hold for 
the interruption cost data at issue here. If the data are nonnormal, another option is the 
“smearing” estimator of Duan (1983), where the σ2/2 factor is replaced by the mean of the 
antilog of the residuals, however this estimator also assumes homoskedasticity.16 
 
The fundamental issue here is not one of simply transformation but a broader question of 
functional form. Of course, one simple approach would be (despite the characteristics of the data 
described above) to use OLS on the raw interruption cost data. The advantage of this approach is 
simplicity – there is no retransformation issue with a purely linear model and the effects of 
various factors on interruption costs can be clearly observed. The disadvantages, however, are 
numerous and fatal. First, the high skew of the underlying data means that the results are not 
robust to smaller data sets, i.e., the results from one dataset may provide poor predictions for 
another dataset. OLS can also produce negative interruption costs. OLS will be extremely 
inefficient in the statistical sense due to the enormous residual variance 
 
A simpler way to address the issue is to abandon the goal of estimating E[log(Y)|X], in favor of 
estimating log(E[Y|X]). In other words, we estimate the mean interruption cost, which is linked 
to the predictor variables through a log function, while the loglinear approach models the mean 
log(Ci). Another way of thinking about the difference between these two models is that the GLM 
                                                 
16 See Ai and Norton (2000). 
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approach models the arithmetic mean of interruption costs, while the standard loglinear approach 
models the geometric mean of the interruption cost. Of course, the estimated parameters will 
then be arithmetic means instead of geometric means, but in our case the primary goal is the 
generation of accurate interruption cost predictions under various scenarios, rather than the 
interpretations of individual parameters per se. Another advantage of the GLM approach is that 
arithmetic means are still even when the outcome is zero, and thus such an approach could be 
used to model interruption costs including the zero values (although the use of the two-part 
model obviates the need to do so). 
 
Following the approach laid out by Manning and Mullaly (1999), the GLM framework is 
specified by two relationships. The first specifies the mean function for the observed raw-scale 
variable Ci (interruption costs in our case) conditional on a set of independent variables Xi: 
 

ii XCE  ])[ln(   (7) 
 
or 
 

iX
ii eXCE   )(][  (8) 

 
The second relationship relates the variance function for Y to X: 
 

)()( 2
ii XvCVar     (9) 

 
It is useful to consider a general class of variance functions of the form: 
 

 ))(()( ii XCV    (10) 
 
where γ must be finite and non-negative. In the case γ=0, we obtain the usual nonlinear least 
squares estimator. In the case γ=1, we obtain the Poisson like class, where the variance is 
proportional to the mean, which is itself a function of X. In the case of γ=2 we get the gamma 
family of distributions, from which the lognormal, Weibull, and Chi-squared are variants 
depending on the shape parameters. Manning and Mullaly (1999) note that the family of gamma 
models (γ=2) are in some respects a natural “baseline” specification, since if the true model is 
actually C= exp(X·β)*u, then it is natural to suggest that Var[C|X] is proportional to the mean 
E[C|X] squared. Deb, Manning and Norton (2006) suggest the use of the GLM Family Test (a 
variant of the Park test) to identify the correct value of gamma. The purpose of the GLM Family 
Test is to determine the relationship between the mean and variance as specified in the last 
equation above. The procedure for implementing the test is as follows:17 
 

1. Regress interruption costs iC (raw scale) on iX (using either OLS or GLM) 

2. Save the raw scale residuals iû and iĈ , the predicted values of iC  
3. Regress the log of the estimated residuals on the log of the predicted values.  The 

estimated coefficient ̂ from this regression gives the family: 

                                                 
17 See Pregibon (1980). 
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If ̂ =0, Gaussian NLLS (variance unrelated to mean) 
If ̂ =1, Poisson (variance equals mean) 
If ̂ =2, Gamma (variance exceeds mean) 
If ̂ =3, Wald or inverse Gaussian 
 
The estimated values of gamma for the three customer groups are presented below: 
 

  
Estimate of 

Gamma 
Standard 

Error 

Medium and Large C&I 1.919 0.00608 

Small C&I 1.844 0.01083 

Residential 1.654 0.02997 

 
Although the high number of observations and resulting low standard errors lead to a rejection of 
the null hypothesis that gamma=2 in each case, the fact that the values are close to 2 strongly 
favors the use of the gamma family of errors. Thus the decision was made to employ GLM with 
a logarithmic link function with gamma distributed errors.  
 
Because the total number of observations represent the answers to multiple scenarios (up to 6), 
the standard errors presented in all of the regression estimates contained in the report are 
adjusted to reflect clustering by respondent.18 
 
2.4 The Regression Specification 

Previous literature has dealt with the peculiarities of interruption cost data using a variety of 
regression specifications, many of which can be described under the general rubric of switching 
regressions.19  The most general setting is as follows: 
 
Regime 1: iii uXy  11  if and only if ii uZ   

 
Regime 2: iii uXy  22  if and only if ii uZ   

 
The first term in each of the two regime descriptions above, where the presumed variable of 
interest yi is related to a set of determinants ( X1  ) is sometimes referred to as the outcome 
equation.  The second term ( Z  ) which specifies the determination between the two regimes is 
sometimes referred to as the selection equation. 

                                                 
18 See the svy command in the Stata reference manual. 
19 Although the terms switching regression and selection model are sometimes used interchangeably, technically 
selection models as well as both endogenous and exogenous switching models are distinct classes depending on 
which of the two regimes are observed versus unobserved and whether the selection equation is linked to the 
outcome equation.  As is explained below, because we assume that both regimes are observed (whether or not 
interruption costs are positive) and that the regime indicator has no effect on the outcome (interruption costs), the 
distinction is moot with regard to our analysis.  
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Censored and truncated models, selection models (such as the Heckman two-step model), and 
the two-part model employed here are all particular applications of switching regressions.  In 
censored or truncated models, the outcome variable yi is only observed in one regime state.  
Matters may be further complicated when the same factors that determine the regime affect the 
outcome variable.  With respect to interruption costs, the selection model determines whether or 
not respondents report positive interruption costs for the scenario in question.  The outcome 
model relates interruption costs to the scenario-related and firmographic variables, conditional on 
the fact that interruption costs are indeed positive. 
 
Although an interruption cost which is reported as zero may indeed be some small positive 
number which is too troublesome to compute exactly, there is no issue of truncation or 
censoring.  That is the zeros do not represent values below zero that have somehow been 
censored.  The standard Tobit model assumes that the observations are left-censored at zero, that 
is, that values which are zero are actually negative.  Figure 1 displays a graphic comparison of a 
distribution that corresponds with the form for which the Tobit model is appropriate and the 
actual distribution of interruption costs observed in this study for Medium and Large 
Commercial and Industrial Customers.  In the figure it is evident that the distribution of 
interruption costs is not at all similar to the distribution that is left censored.   
 
Figure 2-1, shows that the distribution of interruption costs increases uniformly as the value of 
interruption costs decrease, until the point mass at zero is reached.  Although interruption costs 
may decrease for some time over some duration, by definition net interruption costs cannot be 
negative, and in addition to reported interruption costs of zero there are many values near zero. 
 
As in the general case, a potential endogeneity in the estimation of interruption costs arises from 
the linkage between the parameters of the outcome equation and the selection equation.  The 
presence of this endogeneity determines the appropriateness (or inappropriateness) of the 
statistical model chosen.  In practical terms, the question is whether the factors that determine 
whether the interruption costs are zero also determine the magnitude of interruption costs. 
We assume that endogeneity is not an issue with respect to interruption costs, and that a model 
which accounts for this assumption explicitly presents the best approach from a statistical 
perspective.  Consider as an example the Heckman selection model, where the log odds ratio 
from the selection model appears in the outcome model to account for the presumed 
endogeneity.  The presence of the correction is due to the potential correlation between the error 
term in the selection model and the error term in the (conditional) outcome model.  On the one 
hand, if the conditional outcome model does not have the correction term, it may be under-
specified, leading to estimation bias.  On the other hand, if the correction term does not belong, 
the outcome model will underpredict interruption costs, perhaps significantly.  The correct 
choice between these two approaches is discussed in detail in Duan and Manning (1983).  In the 
following section we introduce our preferred approach and offer an empirical evaluation of its 
performance vis-à-vis other switching regressions. 
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interruption costs for only those customers who report positive costs are related to a set of 
independent variables (which may or may not be the same as the independent variables used in 
the first stage). Predictions are made from this model for all customers, including those who 
reported zero interruption costs. Finally, the predicted probabilities from the “first part” are 
multiplied by the estimated interruption costs from the “second part” to generate the final 
interruption cost predictions. Heuristically, the model can be described as follows, where Ci 
represents interruption costs for customer i, Zi and Xi represent vectors of customer 
characteristics as well as interruption scenario parameters for customer i, γ and β represent 
parameter vectors, and ui and εi represent disturbance terms: 
 
Part I: ),()0Pr( iii uZFC   (11) 
 

)̂(ˆ ii ZFP      (12) 
 
Part II: ),,,( iii XfC    0iC  (13) 
 

),( ii XfC   for all i   (14) 
 

iii CPC ˆˆ~      (15) 
 
 
Presumably the nomenclature “two-part” is employed rather than “two-stage” to emphasize the 
fact that the two parts of the model are not related in any way. The choice of independent 
variables and functional form are totally at the discretion of the researcher, and there is no 
linkage between the two equations. 
 
In order to evaluate the validity of our assumption regarding the appropriateness of the two-part 
model versus the Tobit or the Heckman selection model, an in-sample test of forecasting 
accuracy was performed.  The three different specifications were each used to estimate the 
interruption costs for 20% of the sample held back from the model parameter estimation 
exercise. Model parameters were estimated for all three customer groups: Small C&I customers, 
medium and large C&I customers, and residential customers.  The models were estimated using 
a randomly selected group of respondents representing 80% of the total respondents.  The 
estimated model was then used to predict interruption costs for the remaining 20% of the sample.  
The results of this in-sample validation exercise are presented in Table 2-1 through Table 2-3 
below.  The results indicate that the Two Part regression procedure produces much more 
accurate predictions of customer interruption costs than either of the other model specifications. 
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While suggesting a reasonable degree of coverage for conducting the meta-analysis, the results in 
Table 3-1 also point to a key limitation in the data: The results show that there are certain “holes” 
in the coverage that will limit the ability to use the merged data to sort out the effects for some 
variables.  In particular, the region of the country and the year of the study are highly correlated. 
In most years only one or two utilities conducted a study, and the studies were done in different 
parts of the county. As a result, a calculation of the average interruption cost for a given year is 
heavily influenced by the region and type of scenarios asked in that region. For this reason, the 
data probably cannot be used effectively to evaluate the changes in interruption costs over time 
without additional statistical controls for the region (or utility) and scenario characteristics. This 
problem surfaces for many of the calculations of interruption costs that would be of interest. 
Simple comparison of average interruption costs for levels of a variable of interest (such as 
interruption costs for different interruption durations or for different regions) must be interpreted 
very cautiously outside the context of a multivariate model that can control for other customer or 
interruption attributes. The underlying group of customers responding to a scenario will vary 
from scenario to scenario and differences in these underlying groups may be more important in 
explaining differences in the interruption costs than the levels of the variable of interest (such as 
duration). For this reason, we remind the reader that the regression analysis presented at the end 
of this chapter provide the most meaningful information on the value of service. The bivariate 
tabulations presented in the tables are suggestive, but due to the methodological and data 
structural issues, may be somewhat misleading. For example, it makes sense to compare the 
effect of a specific condition on interruption cost only when the same respondents provide 
information to both permutations. However, frequently one group of respondents provides 
information about only one kind of scenario, and these results may not be comparable to 
different respondents. Importantly, only multiple regression or similar analyses take all of these 
factors into consideration simultaneously and consistently.  
 
3.1 Interruption Cost Descriptive Statistics 

Table 3-2 and Table 3-3 show the distribution of interruption costs by interruption duration on a 
per-event and per-average kW basis, respectively for medium and large commercial and 
industrial customers. The results in Table 3-2 show interruption costs rising from an average of 
$7,220 for a voltage sag to $41,459 for an 8-hour interruption. Although the results trend 
generally upward as would be expected, there are substantial deviations from this trend. For 
example, the voltage sag has a significantly higher per event cost ($7,220) than a 15-minute 
interruption (at $2,432). In addition, reported interruption costs for a 30 minute interruption is 
greater than the cost for a 1 hour interruption and a one hour interruption has a lower average 
cost than a two hour interruption.  Neither of these differences makes sense.  They arise because 
both the 30 minute interruption and the 2 hour interruption were estimated for a relatively small 
subset of customers that differ substantially from the average customers in the study in terms of 
their size and type. As discussed above, the table (unlike the regression analysis presented in 
Section 3.2 below) does not control for all of the other factors within each duration which vary 
among the scenarios. The effect of duration on interruption costs can only be interpreted in the 
context of a multivariate model controlling for differences among the studies. 
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improvements in reliability are often expressed in terms of lost load (kW demand) or unserved 
energy (unserved annual kWh (properly scaled to interruption duration).   
 
Table 3-3 shows the effect of normalizing the per even interruption costs to an average kW/Hour 
basis.  Some of the oddities present in Table 3-2 are eliminated by this normalization, although 
there are still inconsistencies.  Because the individual figures for interruption costs per average 
kW/Hour are extremely variable, the mean and standard error figures are based on the total sum 
of interruption costs divided by annual average kW/Hour.20 The distribution percentiles are still 
based on the distribution of the individual values. The costs range from $8.1 per average 
kW/Hour of demand for a voltage sag to $93.3 per average kW/Hour for an 8-hour interruption 
(although the figure for a 12-hour interruption is lower than the figure for an 8-hour interruption, 
it is possible that this difference represents a methodological artifact as only one study used the 
12-hour duration). 
 
In Table 3-4 and Table 3-5, comparisons of the average interruption costs for a 1-hour 
interruption for several key variables—season, day of week, region, and industry—are presented. 
The data include the mean and standard deviation of interruption costs as well as several 
percentiles in the distribution. Table 3-4 presents these summary statistics for the raw 
interruption costs, while  
For data on regions, the rank order of the regions is somewhat different when the interruption 
costs are measured on a per average kW/Hour basis. The Southwest region has the highest costs 
per average kW/Hour ($37), while the Midwest and Northwest (at slightly less than $20 per 
average kW/Hour) have the lowest values. Finally, in terms of industry, construction has the 
highest cost per average kW/Hour at $62.9. The remaining business types range from $7.6 to 
$43.6 on a per average kW/Hour basis with mining being the lowest. 
 
Some of the interruption cost surveys also included scenarios with advanced warning for a 
particular interruption (For surveys which did not provide such alternatives, all scenarios are 
assumed to be interruptions which occur without warning). For medium and large C&I 
customers there were also questions regarding the presence of backup power generators or power 
conditioning equipment. However, the only way to make such cost comparisons meaningful is to 
be certain that one is comparing the same scenarios while varying the characteristics, and do so 
with essentially the same respondents. In particular, larger customers are likely to have both 
backup generation and power conditioning, so they might actually report higher interruption 
costs.  The separate effects of those choices as well as advance warning are presented in the 
regression results below. 
 presents the same information per average kW/Hour. These values are presented to provide a 
measure of the typical values and range of values in the underlying data used in the meta-
analysis, and provide a check of the validity of the data. However, as noted above, these averages 
must be compared carefully as the underlying pool of customers included in the calculation 
changes among each of these categories. 

                                                 
20 Another possible explanation is that the use of the facility by the customer has changed overtime as indicated by 
substantial shifts in electricity use over the year.  This could be the case of manufacturing facilities or even for 
restaurants or other small businesses that close for renovations and then reopen. 
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kW/Hour are higher on the weekend ($30.6) than during the weekday ($21.4) for medium and 
large commercial and industrial customers. This is counterintuitive, since we would expect lower 
average interruption costs during periods when most businesses are closed (weekends) compared 
to when they are open (weekdays).  The problem here is that only five surveys asked about 
weekend interruptions at all, and the average customer size for those five surveys was 1.2 million 
annual kWh versus 6.25 million annual kWh for the remaining surveys.  As such, any analysis 
which does not control for size (as in the regression analysis below) can yield misleading figures 
when simply tabulating costs on a univariate basis. 
 
For data on regions, the rank order of the regions is somewhat different when the interruption 
costs are measured on a per average kW/Hour basis. The Southwest region has the highest costs 
per average kW/Hour ($37), while the Midwest and Northwest (at slightly less than $20 per 
average kW/Hour) have the lowest values. Finally, in terms of industry, construction has the 
highest cost per average kW/Hour at $62.9. The remaining business types range from $7.6 to 
$43.6 on a per average kW/Hour basis with mining being the lowest. 
 
Some of the interruption cost surveys also included scenarios with advanced warning for a 
particular interruption (For surveys which did not provide such alternatives, all scenarios are 
assumed to be interruptions which occur without warning). For medium and large C&I 
customers there were also questions regarding the presence of backup power generators or power 
conditioning equipment. However, the only way to make such cost comparisons meaningful is to 
be certain that one is comparing the same scenarios while varying the characteristics, and do so 
with essentially the same respondents. In particular, larger customers are likely to have both 
backup generation and power conditioning, so they might actually report higher interruption 
costs.  The separate effects of those choices as well as advance warning are presented in the 
regression results below. 
 
3.2 Customer Damage Function Estimation 

The summary of interruption costs for the key characteristics outlined above provides a measure 
of whether the combination of various studies fit intuitively with expectations of interruption 
costs for this sector. However, the results may not be particularly useful when attempting to 
make sense of the values of one particular variable across studies. The average value of 
interruption costs for any given descriptor variable is a function of the interruption attributes, 
region, and the customer types that answered that particular scenario. As noted at the beginning 
of this section, the combination of customer and interruption characteristics can vary 
substantially depending on the variables being examined. To adequately control for these varying 
influences, a multivariate regression analysis was conducted to develop a customer damage 
function. The results of that regression analysis were then used to estimate a general customer 
damage function expressing commercial and industrial customers’ interruption costs as a 
function of interruption duration, onset time, season, and various customer characteristics such as 
annual usage, number of employees and other variables. 
 
As discussed above in the methodology section, the usual response distribution for the dependent 
variable – interruption costs presents certain modeling challenges. In almost all studies, and 
including the large commercial and industrial customers, a significant number of respondents 
report “0” (zero) interruption costs for many scenarios. This is particularly true of short duration 
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interruptions, but may be true of even longer ones at certain times of the day or seasons because 
of backup generation or the ability to shift production without incurring additional costs. To 
overcome this problem, the analysis reported below uses a two-part model. In the first step, a 
limited dependent model is used to assess the probability that a particular customer will indeed 
report a value of zero versus any positive value for a particular interruption scenario, based on a 
set of independent variables which describe the nature of the interruption as well as customer 
characteristics. The predicted probabilities from this first stage are retained. In the second step, 
interruption costs for only those customers who report positive costs are related to a set of 
independent variables (which may or may not be the same as the independent variables used in 
the first stage). Predictions are made from this model for all customers, including those who 
reported zero interruption costs. Finally, the predicted probabilities from the “first part” are 
multiplied by the estimated interruption costs from the “second part” to generate the final 
interruption cost predictions.  
 
A second issue with the typical distribution of interruption costs is the presence of a number of 
extremely large values. As detailed more fully in Section 3 above, all observations meeting the 
statistical definition of mild outlier (more than 3 times the interquartile range above the 75th or 
below the 25th percentile were eliminated from the data for both log interruption costs (within 
industry and duration) and for log of annual kWh usage (within industry). The total number of 
observations removed by these criteria is 397.21  
 
The data on interruption costs are also highly skewed, i.e., there are a small number of relatively 
high values. The high skew of the underlying data means that the results are not robust to smaller 
data sets, i.e., the results from one dataset may provide poor predictions for another dataset. A 
regression analysis such as OLS on the raw values will be extremely inefficient in the statistical 
sense due to the enormous residual variance, and can also produce negative interruption costs. To 
overcome this issue, the analysis was conducted under the assumption that the mean of 
interruption costs is related to the predictor variables through a logarithmic versus a linear link 
function. The decision to use a lognormal link function was based on several considerations. 
Using a lognormal transformation gives the underlying distribution of interruption costs a more 
normal shape with less severe tails (see Figure 3-1 and Figure 3-2). 
 
To observe the magnitude of the impact of the variables in the models on the interruption cost it 
is necessary to compare the predictions made by the function under varying assumptions. For 
example, it is possible to observe the effects of duration on interruption cost holding the other 
variables constant at their sample means. In this way, a prediction is obtained for customer 
interruption costs under different interruption conditions. 
 
To develop a set of models, several combinations of the variables representing attributes of the 
interruption (e.g., duration, time of day, advanced warning) and customer characteristics (e.g., 
number of employees, SIC code, and presence of backup equipment) as well as their interactions 
were tested. Because not all studies included the same variables, the regression models utilized 
variables that appeared in all studies 

                                                 
21 See the discussion on outliers above in Section 3.4. 
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Table 3-6 and 3-7 describes initial probit regression model that specifies the relationship between 
the presence of zero interruption costs and a set of independent variables that includes 
interruption characteristics, customer characteristics, and industry designation. Although the 
purpose of this preliminary limited dependent model is only to normalize the predictions from 
the interruption costs regression in the second part of the two-part model, there are a few 
interesting results of note: 

 The longer the interruption, the more likely that the costs associated with it are positive 
(the presence of a negative coefficient on the square of duration indicates that this effect 
diminishes for longer durations). 

 Afternoon interruption costs are more likely to incur positive costs than any other time of 
day. 

 Weekday interruptions are more likely to produce positive interruption costs than 
weekends. 

 Summer interruptions are more likely to incur costs than non-summer interruptions. 
 
Table 3-8 describes the GLM regression which relates the level of interruption costs to customer 
and interruption characteristics as well as industry designation for those variables for which 
sufficient data from multiple studies were available. A few results of note: 

 The longer the interruption, the higher the interruption cost. 
 Afternoon and evening interruptions cost more than morning interruptions, weekday 

interruptions are more costly than weekend interruptions. 
 Larger customers (in terms of annual MWh usage) incur larger costs for similar 

interruptions. 
 Construction and manufacturing industries incur larger costs for a similar interruption 

than other industries. 
 Interruption costs in winter and summer are not significantly different. 
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3.3 Key Drivers of Interruption Costs 

The customer damage models are the key output from this research. The models can be used to 
estimate interruption costs for a wide range of interruptions with different attributes (e.g., 
duration, time of day) and for different types of customers (e.g., large versus small companies). 
They replace the enormous number of tables that would be required to summarize all the 
different combinations of characteristics. Using this information is relatively straightforward. To 
simulate the interruption cost for a particular set of interruption or customer characteristics one 
multiplies the appropriate value for each variable times the coefficient for that variable. The 
multiplications are summed across the variables and added to the constant (first entry for each 
model). Since the variable being predicted—i.e., interruption cost—has been transformed to be 
the log of the interruption cost, as a final step in the simulation the antilog of the summed value 
must be taken. The resulting value is the predicted interruption cost for the set of values used for 
each independent variable. 
 
Figure 3-3, Figure 3-4, and Figure 3-5 below display comparisons of the results of the customer 
damage functions based on the estimated econometric model described above for various 
customer characteristics (including industry and size) as well as for varying times of day and 
seasons. It is evident that the relationship between interruption costs and duration is non-linear – 
increasing slowly within the first hour, accelerating through the second through the eighth hours, 
and then beginning to taper off thereafter. All of the predictions are positive at the intercept 
representing the impact of momentary interruptions. 
 
In Figure 3-3, the customer damage function assumes a summer weekday afternoon interruption 
for customers with the average value for annual kWh. There appears to be a natural break 
between “low-cost” interruption industries (Agriculture, Retail, Public Administration, Services, 
Utilities, and Mining) and “high-cost” interruption industries (Manufacturing, Construction and 
Finance, Insurance, & Real Estate). 
 
In Figure 3-4, the customer damage function assumes a summer weekday afternoon interruption 
for a customer with an industry equal to the average industry shares. While there is significant 
variation in interruption costs according to consumption, the relationship is not at all linear.  
Indeed, an increase in consumption from 100 kW/Hour to 2500 kW/Hour, an increase of 25-fold, 
increases interruption costs for a 1-hour interruption by a factor of slightly less than 10. 
 
Figure 3-5 shows the effect of day and season on interruption costs (assuming a customer of 
average size and an industry equal to the average industry shares).  For medium and large C&I 
customers, there is little seasonal variation, although afternoon interruptions are more costly. 
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While the data in Table 4-1 show fairly broad coverage across both geography and interruption 
type, they also indicate the need for caution in interpreting the data for certain combinations of 
characteristics, just as was true with the medium and large C&I. For example, all of the 1989 
data are winter weekday scenarios from one region (the Northwest), while all of the 1990 data 
are summer weekdays from the Southeast. Comparing the average interruption costs for the years 
1989 and 1990 without some effort to control for the effects of the differences in region and type 
of scenario would be misleading.  
 
4.1 Interruption Cost Descriptive Statistics 

The next few tables provide a summary of the observed interruption costs for a few key variables 
but, again, caution must be used in interpreting the results because of coverage issues.  
 
Table 4-2 shows the distribution of interruption costs per event by interruption duration. The 
results show interruption costs rising from an average of $273 for a voltage sag to $4,079 for an 
8-hour interruption. The results trend generally upward as would be expected, although the 
figure for a 30 minute interruption is higher than would be expected and the figure for a 12-hour 
interruption is less than the figure for an 8-hour interruption (It is possible that the latter result 
represents a methodological artifact as only one study used the 12-hour duration). However, as 
discussed above, the table (unlike the regression analysis presented in Section 4.2 below) cannot 
control for all of the other factors which vary among the scenarios included within each duration. 
The effect of duration on interruption costs can only be examined in the context of a multivariate 
model controlling for differences among the studies. 
 
Table 4-3 shows interruption costs converted to a cost per average kW/Hour. Because the 
individual figures for interruption costs per average kW/Hour are extremely variable (due in part 
to customers with extremely low kW usage and thus extremely high average kW/Hour figures), 
the mean and standard error figures are based on the total sum of interruption costs divided by 
annual average kW/Hour. The distribution percentiles are still based on the distribution of the 
individual values. Again, the figures are generally increasing, but as discussed above, only a 
multiple regression analysis can sort out these effects simultaneously to discern the true 
relationship between interruption duration and costs. 
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Table 4-8 describes the GLM regression which relates the level of interruption costs to customer 
and interruption characteristics as well as industry designation for those variables for which 
sufficient data from multiple studies were available. A few results of note: 
 

 The longer the interruption, the higher the interruption cost (the presence of a negative 
coefficient on the square of duration indicates that this effect diminishes for longer 
durations). 

 Weekday interruptions are more costly than weekend interruptions, but summer 
interruptions cost less than non-summer interruptions. 

 Larger customers (in terms of annual MWh usage) incur larger costs for similar 
interruptions. 

 The construction and mining industries incur larger costs for a similar interruption than 
other industries. 

 Time of day does not impact the magnitude of interruption costs. 
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4.3 Key Drivers of Interruption Costs 

Figures 4-3 - 4-6 display a comparison of the results of the customer damage function based on 
the estimated econometric model over the durations found in the sample dataset for several key 
drivers, including industry, time of day/season, and customer size. The results show that the 
relationship between damage and duration is non-linear for small customers just as it was for 
medium and large customers, albeit at much lower average values. Costs increase slowly within 
the first hour; accelerate through the second through the eighth hours; and, again, decline 
thereafter. All of the predictions are positive at the intercept representing the cost of momentary 
interruptions. 

The results indicate that interruption costs for construction are significantly higher than those of 
any other business activity in the small customer class. The costs are roughly 50% more than 
those experienced by the next highest sector, mining. Costs for construction and mining are 
significantly higher than those of other businesses because they depend heavily on electricity to 
directly support production. Costs for other business types are relatively close to those of retail 
trade – though the differences among them are statistically significant. 
 
Interruption costs for winter interruptions are significantly higher than those experienced in 
summer; and interruption costs during the night and on weekends are significantly lower as 
expected. The results show that an average small-medium customer in terms of number of 
employees and consumption will have approximately $818 in costs for a 1-hour summer 
afternoon interruption and $1,164 for a 1-hour winter afternoon interruption. 
 
Figure 4-4 shows that the size of customer’s load has an impact on interruption costs, but the 
relationship is nonlinear and small in magnitude. Increasing average kW/Hour consumption by a 
factor of 20 from 0.25 to 5.0 results in only a small increase in customer interruption cost, except 
at longer durations. 
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5. Residential Results 

The residential database differs from the two commercial and industrial databases. The most 
important difference is that most residential studies of interruption costs or value of service do 
not focus on direct worth or cost estimates; rather they utilize willingness to pay or willingness to 
accept measures. Developing these measures generally involves describing a scenario to a 
residential customer and then asking them what they would be willing to pay to avoid this 
specific interruption or what they would be willing to accept as compensation (usually described 
as a credit on their bill) in order to put up with the interruption. The primary reason for using 
these alternatives to direct cost is the assumption that much of the “cost” of an interruption for 
residential customers is associated with the hassle, inconvenience, and personal disruption of the 
interruption, rather than direct out-of-pocket expenses, like buying candles or flashlight batteries. 
In this situation, customers may be able to more accurately represent the value of reliability by 
expressing their willingness to pay to avoid an interruption (or their willingness to accept some 
type of credit to accept an interruption) rather than calculate an out of pocket cost or savings. 
 
In theory, from an economic perspective, willingness to pay (WTP) and willingness to accept 
(WTA or Credit) measures should produce the same value for a given interruption.23 In practice, 
it is difficult to construct questions that produce identical results. Customers tend to place paying 
the utility in a different frame of reference than accepting a credit from the utility. Typically, 
willingness to accept measures produce a higher estimated value than willingness to pay 
measures. There are various practical and theoretical reasons offered for this finding. As a 
practical matter for this meta-analysis, all of the studies used a WTP framework and only a few 
also tested a WTA framework. Consequently the analysis focuses only on the WTP results. 
 
In addition to the differences in measuring interruption costs, the residential sector is also a much 
more homogenous population with respect to interruption costs. Where commercial and 
industrial customer studies find interruption costs from 0 to hundreds of millions of dollars, the 
typical residential study shows that interruption costs vary over a much smaller range depending 
on the scenario. This effectively reduces the variation in the interruption cost measurement 
making it somewhat more difficult to find powerful explanatory variables. Households 
themselves are also more homogenous than business customers in terms of the end uses, 
dependence on electricity for critical operations, and consumption. This is not to say that 
reliability is not important to residential customers, rather to note that the range of variation in 
interruption costs and in customer characteristics is much narrower in the residential sector. 
 
The residential database was built from 8 studies conducted by 6 companies, with a total of 7,546 
respondents. There were approximately 26,026 individual responses to scenarios that form the 
basis of the merged dataset, subject to availability as a result of missing data and removal of 
outliers.  Table 5-1 below shows the distribution of responses available for analysis by region, 
season, day of the week, and year: 

                                                 
23 Although, technically WTP measures could be constrained by income. This analysis makes no attempts to 
reconcile any differences between WTA and WTP. 
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7. Recommendations for Further Research 

7.1 Interruption Cost Database Improvements 

Several significant improvements should be made to the interruption cost meta-database.  These 
improvements include the collection of additional interruption cost data on key geographical 
locations where information is currently not available and development of an easy to use 
interruption cost calculator that does not require extensive knowledge of econometric techniques 
to calculate customer interruption cost estimates. 
 
Additional Interruption Cost Surveying Should be Undertaken for Key Geographical 
Areas of the US 
 
The current interruption cost meta-database contains significant numbers of observations of 
interruption costs for customers located in the West, Southwest, Southeast, Northwest and Lower 
Mid-West.  Significantly absent are interruption cost estimates for customers in the Northern tier 
of the Mid-West (i.e., Chicago metro and Minneapolis) and the Northeast corridor (e.g., New 
York metro, Boston metro and Baltimore-Washington corridor).  There are reasons to suspect 
that interruption costs in these regions may be significantly different from those for other regions 
of the nation.  This problem could be solved by carrying out customer interruption cost studies 
for a small number of key utilities located in these regions using the sampling and measurement 
protocols that were used in the other studies in the meta-database.  This information is needed to 
round out the full database on the US and to ensure that interruption cost estimates can be made 
available to planners in those regions. 
 
An Easy to Use Interruption Cost Calculator Should be Developed Using the Customer 
Damage Functions from the Meta-Database 
 
An important factor limiting the expanded use of value-based electricity reliability planning is 
the somewhat arcane nature of the topic.  Customers, not to mention grid planners, and policy 
makers, typically have only a nebulous appreciation for the economic value of reliable electric 
service, and thus are unable to properly account for it during resource planning processes.  On a 
going forward basis as the demand for electricity capacity at all levels of electric systems 
expands to meet load growth resulting from the electrification of transportation and increasing 
penetration of renewable resources, the need for careful analysis of the benefits of capacity 
expansion, undervaluation of capacity investments may cause real problems. 
 
The interruption cost estimation procedures outlined in this report are valid and reasonable.  
However, in their present form they are difficult for most intended users to apply.  In order to 
address this issue, a simple, useful, and user-friendly tool that will enable customers to quickly 
estimate the economic value of reliable electric service should be developed.  In order to help 
make value-based reliability planning a more common practice, the tool should be publicly 
available and posted online along with reasonable documentation.  
 
The interruption cost calculator should be a windows application that requests some basic 
information from users about the interruption scenario from customers in order to produce 
customized estimates of interruption costs.  These input variables would correspond to the 
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planning level and the principle variables in the customer damage functions that have already 
been developed.  Examples of key inputs include: the share of residential, small C&I, and 
medium/large C&I customers; the duration and onset time of the interruptions, and 
environmental attributes such as the season, average temperature, and humidity.  The output 
would focus on the interruption costs for the region, utility, circuit, etc. that the user seeks to 
model.  In other words, the estimate would combine the residential and commercial interruption 
costs to reflect those in the area being modeled, and provide a break down of share of 
interruption costs borne by different customer types.  
 
In order to present the most robust, user-friendly tool to consumers, it should incorporate a 
number of toggles and options features in the calculator, enabling users to quickly and easily 
load default input factors and customize those inputs to suit their needs.  Prior to releasing this 
tool to the general public, it must undergo extensively pressure-testing to make sure it produces 
reasonable results and that users cannot easily cause it to produce erroneous calculations.  It 
should also be beta-tested it with planners and other industry users to work out all possible bugs 
or kinks and ensure a smooth roll-out. 
 
The Interruption Cost Calculator Should Explicitly Model Statistical Uncertainty 
 
In many planning applications it is not only important to know the expected or average value of 
lost load but the uncertainty associated with those impacts.  Uncertainty can arise from two 
sources:  uncertainty associated with the regression parameters of the statistical model and 
uncertainty associated with the key drivers or inputs into the customer damage function.  Any 
eventual interruption cost calculator should take account of both sources of uncertainty and 
produce the full probability distribution of the value of lost load.  With such a tool in place,  it 
would be possible to make such statements as “based on the known uncertainties in the estimates 
of interruption costs, customer population sizes and reliability history, there is a 95% chance that 
the value of lost load for the system of interest is greater than X” (e.g., X is $50 Billion).  
 
This could be accomplished by expanding the interruption cost calculator to work with Crystal 
Ball or @Risk, Monte Carlo simulation software packages that works as add-ins to MS Excel.  
The underlying calculator would also require some additional work on the input options in order 
to allow them to be modeled stochastically at the user’s discretion.  
 
With the development of the enhanced interruption cost calculator, it would be relatively 
straightforward to develop a Monte Carlo simulation-based model for estimating the value of lost 
load for the US, for a region, for a transmission line and even for a distribution circuit.  This 
aspect of the calculator would also have to undergo significant bench and beta-testing to ensure 
that it was working properly and that users were not able to drive it to produce results that were 
nonsensical. 
 
7.2 Interruption Cost Application Demonstration Projects 

An important impediment to the application of value based reliability planning is the absence of 
publically available templates and widely accepted examples of the application of economic 
analysis in the context of utility transmission and distribution planning.  Some utility planners 
and engineers may question whether the overlay of economic considerations will yield decisions 
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about reliability investments that are truly optimal.  An important next step in encouraging the 
use of value based planning by regulators and utilities is the assembly of carefully conducted 
demonstrations or case studies.  There are many policy decisions where interruption costs can be 
used to assess whether the benefits of increasing reliability (the avoided interruption costs) 
outweigh the costs of investments.  These include:  
 

1. Evaluation of the economic benefits of specific Smart Grid applications on specific 
systems; 

2. Assessing the economic costs and benefits of adding distributed generation (fuel cells, 
wind and solar) to grid connections;  

3. Evaluating the reasonableness of routine grid reinforcement investments designed to 
preserve reliability at its present levels; 

4. Selecting optimal resource adequacy levels for generation; and 
5. Evaluating the economic benefits of Demand Response programs. 

 
Some work has been undertaken in virtually all of these applications.  However, most of this 
work has been done by utilities during internal efforts to plan for system reinforcement in 
preparing requests for funds to undertake system reinforcement or in the context of other 
regulatory proceedings and virtually none of it has been published. 
 
There is a critical need to assemble concrete examples of the above kinds of analyses and to 
develop reasonable analysis techniques that both regulators and utility planners can understand.  
In most cases, this search will reveal that critical flaws existed either in the interruption cost 
assumptions used in the analysis or in the ways in which these cost assumptions were integrated 
with decision making.  Therefore, it is also highly desirable that a set of ideal demonstrations be 
built – taking account of what has already been learned, but incorporating the best available 
techniques for incorporating information about interruption costs into the above described types 
of planning decisions.  
 
7.3 Basic Research in Interruption Cost Estimation 

Use of Common Reliability Indicators with Customer Interruption Cost Information Needs 
Development and Test 
 
For many years now utilities have been tracking the reliability of their transmission and 
distribution systems using aggregate level performance indicators such as the System Average 
Interruption Frequency Index (SAIFI), the System Average Interruption Duration Index (SAIDI) 
and the Momentary Average Interruption Frequency Index (MAIFI).  These average 
performance indicators provide very crude information about the impacts of unreliability on 
customers.  Take, for example, the measurement of SAIFI.  It represents the average frequency 
of interruption for all customers on the system components for which it is being reported 
(system, area, substation, line, etc.). It is the number of customer interruptions divided by the 
number of customers on the system.  Unfortunately, this research shows that not only does the 
frequency of interruptions matter from the point of view of interruption cost, but so does duration 
– as well as the types of customers being interrupted.  It is not possible to calculate the 
interruption cost for the system component by multiplying the interruption cost per event of 
duration (SAIDI) (properly weighted for the composition of customers by type on the system) 
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times the average frequency of interruptions (SAIFI).  This is so because underlying SAIDI is 
some set (frequency) of events of varying duration.  A simplifying assumption that can be made 
is that the average duration is made up of n = (SAIFI) interruptions.  In essence, this scales the 
SAIDI to the average frequency of interruptions.  The problem with this approach is that it 
ignores the real distribution of unreliability with respect to time.  Moreover, because the 
relationship between interruption cost and duration is positive and non-linear, this approach 
contains the potential to significantly underestimate the real interruption costs being experienced 
on the system component. 
 
The use of these system average indicators is well established and will not likely change to 
accommodate the calculation of more realistic reliability impacts.  Instead what is needed is 
careful research to discover and document the biases (if any) that may be introduced in making 
different kinds of simplifying assumptions designed to estimate interruption costs for system 
components (under different conditions) from information about the impacts of these conditions 
on commonly used reliability indicators. 
 
Partial Interruption Costs Are Not Well Understood 
 
Virtually all interruption cost studies to date have developed interruption costs for full 
interruptions.  While this information is vary useful for valuing reliability improvements 
obtainable from system reliability reinforcements, they are of limited use for evaluating the costs 
and benefits of demand response.  Demand response typically involves partial, rather than full 
interruptions.  Most demand response programs do not involve full interruptions.  Instead, 
customers reduce their demand partially in response to control or price signals coming from the 
system operators.  The value of demand response to the system is the cost of the full interruption 
that might have been experienced by all parties on the system absent the demand response.  The 
costs experienced by demand response participants are not the cost of a full interruption, but 
instead are the value of the part of the load they curtail at the time of the demand response 
request.  For purposes of evaluating the cost effectiveness of demand response programs, it is not 
appropriate to consider the value of the partial interruption to be zero – although in some cases it 
undoubtedly is.  The question is: what is the value of the partial interruption for customers 
participating in these programs if it is not zero.   
 
The current meta-database (focused on the value of full interruptions) cannot address this issue.  
To do so, additional research should be undertaken to measure the cost of partial interruptions for 
loads of different types.  There is a solid literature on utility customer response to curtailable and 
interruptible programs and to time varying rates.  With the increasing penetration of advanced 
metering equipment, evidence of customer response to pricing and load control methodologies is 
becoming increasingly available.  A careful review of the literature and results of ongoing 
customer studies designed to estimate the value of partial interruptions to customers should be 
undertaken to supplement the existing information in the meta database on full interruption costs.  
 
Less Costly Methods for Measuring Customer Interruption Cost are Needed 
 
A major barrier to widespread use of customer interruption cost information in regulation and 
utility planning is the cost of collecting reliable information on customer interruption costs.  The 
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meta-data base and customer damage functions described in this paper will make reasonable 
“placeholder” estimates of customer interruption costs widely available and should go a long 
way toward solving this problem. 
 
However, in the ideal case, a more refined and less expensive approach should be developed for 
estimating customer interruption costs.  The current generation of customer interruption cost 
surveys was built on state of the art survey techniques that were available in the 1980s.  Given 
the experience with these methods and the changes in survey technology that have evolved over 
the past 10 years it should be possible to develop a new, more accurate and much less expensive 
process for measuring customer interruption costs.  In particular, the following improvements 
should be investigated: 
 

1. It is likely that large commercial and industrial customer interruption cost can be 
measured using a combination of internet and telephone interviewing – reducing the costs 
of the current on-site approach to interruption cost measurement for this class of 
customer by two-thirds.  This approach should be tested. 

2. It may also be possible to measure large and medium customer interruption costs using a 
webinar format in which a large number of respondents are guided through a standard 
survey instrument by a single super-interviewer who answers questions from the 
audience as the form is completed on line.  Again, this would significantly reduce costs 
and should be tested. 

3. Medium and small commercial and industrial customers can be measured using the 
internet after an appropriate respondent at each target organization has been identified by 
telephone. 

 
All of these approaches (and maybe others) should result in much lower data collection cost.  
The question is: will the resulting data be comparable to what is obtained using conventional 
survey measurement techniques? 
 
Experiments should be undertaken to test and perfect alternative interruption cost data collection 
methodologies that yield both valid and reliable information.  These tests will be difficult to 
carry out.  The inherent variation in interruption costs measurements and the current costs of 
some of the measurement techniques are high.  The challenge will be to design experimental 
tests of the reliability of measurements that are sufficiently powerful to detect meaningful 
differences arising from the survey designs.   
 
The Impact of Changing Interruption Frequency is Not Well Understood 
 
All of the surveys used in the meta-analysis measured the economic cost a single interruption in 
the context of the customer’s current level of service.  That is, they ask the customer to describe 
the costs they would experience in the event of a single interruption.  It is not described as an 
additional interruption.  Indeed the survey forms do not allow measurement of the impact of 
increasing frequency on interruption cost.  It is unknown how the costs of interruption would 
change if the frequency of interruptions were increased or decreased.   
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While it is reasonable to assume that interruption costs will increase or decrease monotonically 
with frequency, this assumption should be investigated. 
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8. Summary and Conclusions 

This paper describes research designed to merge the results from 28 previously confidential 
interruption cost surveys into several large, integrated data sets (for different customer types) that 
can be used to estimate electricity customer interruption costs for the US. The principal benefit 
of this work is the development of reliable estimates of customer interruption costs for 
populations of industrial, commercial, and residential customers in the US derived from a rich 
database of responses to customer interruption cost surveys. The interruption costs reported in 
this paper illustrate the usefulness of the customer damage functions that have been estimated 
using the meta-database assembled for this research.  
 
Although customer damage functions reported in this paper represent a significant improvement 
over past information about customer interruption costs, there are limitations to how the data 
from this meta-analysis should be used. First, certain very important variables in the data are 
confounded among the studies we examined. In particular, region of the country and year of the 
study are correlated in such a way that it is impossible to separate the effects of these two 
variables on customer interruption costs. Thus, for example, it is unclear whether the higher 
interruption cost values for the southwest are purely the result of the hot summer climate in that 
region or whether those costs are higher in part because of the particular economic and market 
conditions that prevailed during the year when the study for that region was done.  
 
There is also some correlation between regions and scenario characteristics. The sponsors of the 
interruption-cost studies were generally interested in measuring interruption costs for conditions 
that were important for planning for their specific systems. As a result, interruption conditions 
described in the surveys for a given region tended to focus on periods of time when interruptions 
were more “problematic” for that region (e.g., summer peak or months when thunderstorms are 
common). Unfortunately, the time periods when the chance of interruptions is greatest are not 
identical for all sponsors of the studies we relied upon, so interruption scenario characteristics 
tended to be different in different regions. Fortunately, most of the studies we examined included 
a summer afternoon interruption, so we could compare that condition among studies. 
 
A further limitation of our research is that the surveys that formed the basis of the studies we 
examined were limited to certain parts of the country. No data were available from the 
northeast/mid-Atlantic region, and limited data were available for cities along the Great Lakes. 
The absence of interruption cost information for the northeast/mid-Atlantic region is particularly 
troublesome because of the unique population density and economic intensity of that region. It is 
unknown whether, when weather and customer compositions are controlled, the average 
interruption costs from this region are different than those in other parts of the country.  
 
This paper has removed an important barrier to the widespread use of value based reliability 
planning in regulation and utility system planning – the availability of reasonable estimates of 
customer interruption costs.  There are others.  Additional work that needs to be done includes: 

1. Additional interruption cost surveying should be carried out in regions where 
information on customer interruption costs is currently unavailable (i.e., the Northeast 
Corridor and the Northern Tier of the Mid-West) 
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2. An easy to use interruption cost calculator should be developed driven by the customer 
damage functions described in this paper. 

3. Additional work should be carried out to develop the ability to model uncertainty in 
interruption cost estimates 

4. Robust examples of the use of customer interruption costs to assess the benefits arising 
from different kinds of reliability reinforcements and regulatory decisions should be 
developed and published 

5. Additional basic research is needed to develop reasonable ways of using customer 
interruption cost information with currently used indicators of reliability performance 
(e.g., SAIFI and SAIDI); estimate partial interruption cost; and develop modern and less 
expensive techniques for estimating customer interruption costs. 
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and large C&I dataset has 30,966 observations and the small C&I dataset has 21,365 
observations. 
 
As explained in the note at the bottom of Table A- 1, the Midwest-1 company’s customer base 
was divided into industrial and commercial customer types, rather than using small C&I and 
medium and large C&I. To conform to the customer types defined in the other datasets, we apply 
the same decision rule, based on annual kWh, to their industrial and commercial customers, 
effectively reassigning them as small C&I or medium and large C&I.  
 
The combined residential dataset is a straightforward merge of the eight individual residential 
datasets. The resulting residential dataset has 26,738 observations. 
 
A.3 Missing Data and Treatment Of Outliers 
 
There are two relevant dependent variables in the all three of the datasets: (1) total interruption 
cost, and (2) total interruption cost per average kW (calculated by dividing annual kWh by 8760 
– the number of hours in a year). For the purposes of analysis, there is a different sample size for 
each dependent variable, based on the number of observations with missing values on the 
particular dependent variable.  
 
The analysis samples are constructed from the original survey datasets as follows: First, all 
observations meeting the statistical definition of mild outlier (more than 3 times the interquartile 
range above the 75th or below the 25th percentile were eliminated from the data for both log 
interruption costs (within industry and duration) and for log of annual kWh usage (within 
industry) were removed from the analysis.25 Second, those observations with missing values on 
the relevant dependent variable are eliminated.  
 
For all C&I data combined, there are 60,537 cases, but only 53,406 have data for average kW. 
About 2.8% of cases are excluded owing to outliers and missing data, leaving 51,741 cases 
available for calculating total cost.  
 
For the residential dataset, there are 36,168 cases, but only 26,789 have data for average kW, 
household income and household size. About 2.7% of cases are excluded owing to outliers and 
missing data, leaving 26,026 cases available for calculating total cost. 
 
A.4 Calculation of Total Interruption Costs – C&I 
 
The calculation of total interruption cost varies according to the format of each survey. Some 
surveys, in addition to asking about total interruption costs, ask for detailed estimates of 
component costs, including lost production/sales, damage to equipment or materials, extra 
overhead, addition labor and overtime costs, and other costs associated with an interruption. 
Other surveys only request a total estimated cost for each interruption scenario.26  

                                                 
25 See the discussion on outliers above in Section 3.4. 
26 This analysis assumes that reported costs are the same whether the question asks for specific cost components or 
total costs.  The issue of whether the format of such question might tend to bias the results in one direction or 
another is left to future research. 
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In cases where both total costs and component costs are available, our estimate of total 
interruption cost is based on the sum of the component costs. However, if the sum of component 
costs does not match the estimate of total cost provided by the customer, we use the estimate of 
total cost in our analysis instead of the sum of component costs.  
 
Furthermore, many surveys include multiple scenarios to gather information about interruptions 
under different conditions. Interruption scenarios may vary by the time of day, day of the week, 
season, duration of the interruption, and whether or not there is advanced warning of the 
interruption. Within our datasets, each scenario is a separate observation. Therefore, each 
customer may have multiple records within a given dataset, up to a maximum of 6 records for the 
Northwest-2 C&I data. In other words, the scenario became a case to which the individual data 
were appended. 
 
A.5 Calculation Of Willingness to Pay – Residential 
 
The residential surveys do not ask customers for estimates of interruption costs because 
household respondents are unable to accurately gauge the costs unlike business customers. 
Rather, residential customers are generally asked two questions: (1) how much would you be 
willing to pay for electric service to avoid the power interruption in the case of this interruption 
(willingness to pay or WTP)? and (2) how much would you accept as a credit for a particular 
interruption scenario (willingness to accept or WTA)? 
 
These questions can be posed in many ways. Some surveys allow customers to select WTP and 
WTA amounts from a list of possible choices. Others permit customers to enter any amount into 
a blank field. Many surveys use a combination of methods. For example, the West-1 residential 
survey asks customers the following questions to determine WTP and WTA. 
 

Suppose an electric service was available to handle all of your electrical needs during this 
Y hour interruption. With this service, you would not have to make any adjustments to 
the interruption since your electricity would not go off.  
 
Would you pay $X for this electric service to avoid this Y hour interruption? (CIRCLE 
ONE NUMBER) 
1 No 
2 Yes 
-8 Don’t Know 
-9 Refused/Missing 
 
Would you pay 2 * $X for this electric service to avoid this Y hour interruption? 
(CIRCLE 
ONE NUMBER) 
1 No 
2 Yes 
-8 Don’t Know 
-9 Refused/Missing 
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Would you pay ½ * $X for this electric service to avoid this Y hour interruption? 
(CIRCLE 
ONE NUMBER) 
1 No 
2 Yes 
-8 Don’t Know 
-9 Refused/Missing 
 
What is the maximum you would pay for this electric service to avoid this Y hour 
interruption? 
$_______ 
-8 Don’t Know 
-9 Refused/Missing 

 
Our WTP and WTA amounts are calculated as the maximum amount provided by the customer. 
In the case of a categorical response, each category was converted to a numeric value prior to 
applying the maximization rule. 
 
A.6 Explanatory Variables 
 
In order to consolidate our 28 datasets into a single dataset for each customer type, we needed to 
enforce conformity of measures across datasets. Year of survey simply ranges from 1989 to 
2005. The region of the U.S. is recoded as: West, Southwest, Northwest, Midwest, and 
Southeast. Regional assignments are based on the location of the utility company. We do not 
have any information from the Northeast.  
 
Most interruption scenarios include the duration of the interruption, season of the year, day of the 
week, hour of the day, and whether or not advance warning of the interruption is provided. There 
are 12 different durations, ranging from a voltage sag to a 12-hour interruption. It is coded as a 
continuous variable Season has been coded as a dichotomous variable for winter or summer (no 
spring or fall scenarios). Day of the week is sometimes specified, although most surveys only 
distinguish between a weekday and a weekend, so it is coded as a dichotomous variable. Hour of 
the day has been collapsed into four categories: night (11pm-1am) morning (6am-11am), 
afternoon (12pm-4pm), evening (5pm-8pm). Interruption scenarios do not cover all hours of the 
day. Advance warning of an interruption is dichotomized into a Yes/No indicator. 
 
SIC is a 4-digit coded used to categorize companies into industries. The first digit represents the 
broadest industry classification and each subsequent digit provides a more granular description 
of the company’s activities. We have coded SICs into a relatively broad 9-category indicator of 
industry classification, using the first two digits of each company’s SIC codes.  
 
Our categories are: manufacturing; agriculture; mining; construction; retail and trade; finance, 
insurance, and real estate; services; telecommunications and utilities; and public administration. 
Each category and its corresponding range of SIC codes is listed in Table A- 4.  
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Appendix B. Survey Methodology 
 
With the publication of the Interruption Cost Estimation Guidebook, survey protocols for 
gathering these data were developed and generally followed by the various firms conducting 
VOS studies. The methodology varies somewhat for each customer group, and each will be 
summarized in this appendix. 
 
B.1 Survey-Based Method of Cost Estimation 
 
The studies used to create the meta-database in this project employed a survey-based 
methodology to gather information about the value of reliable service. The results allow for the 
development of estimates of interruption costs. There are two forms of estimates – direct cost (or 
worth) and imputed cost estimation. Direct cost is more typically used for non-residential 
customers, whereas the imputed cost is used for residential customers because many of the costs 
to residential customers are of an intangible nature, whereas the costs to businesses typically are 
quantifiable. 
 
B.1.1 Direct Cost Estimation 
 
With the direct measurement approach, the survey describes hypothetical interruption 
“scenarios” that have different characteristics. Each interruption scenario describes a specific 
combination of characteristics making up one interruption event. Characteristics that are varied 
include: 
 

 The season in which it occurs (summer and winter). 
 The day of the week (weekend versus a weekday). 
 Start time. 
 Duration. 
 Complete or partial loss of service (voltage sag or black-out). 
 Voluntary or mandatory. 
 Amount of advance warning, if any. 

 
Respondents will usually receive several scenarios. However, because the utility often wants to 
explore more scenarios that respondents can reasonably expect to have time or patience to 
answer, there are typically several versions with a questionnaire, each having three to five 
scenarios. An example of such a scenario is: 
 

At 1:00 PM on a summer weekday, the electric power serving your business stops 
without warning. You don’t know how long this power interruption will last when it 
occurs. After one hour your power comes back on. 
 

Then the C&I customers are asked to estimate the costs, damages, and if relevant, savings 
accrued from each interruption. They are given a worksheet to fill out which looks something 
like this: 
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For this interruption, estimate costs from: 
Damage to equipment:  $________ 
Damage to materials:  $________ 
Wages paid without production:  $________ 
Other costs:  $________ 
Lost sales (or production):  $________ 
Percentage of sales to be recouped: % x Sales lost  $________ 
Total sales lost:  $________ 

Less: 
Wages saved:  $________ 
Energy costs saved:  $________ 
Other savings:  $________ 

Total Costs:  $________ 
 
B.1.2 Cost Estimation Through Imputation 
 
Willingness to pay and willingness to accept credit (WTP and WTA) approaches instead ask the 
customer what they would pay to avoid the interruption occurrence, or how much the customer 
would have to be compensated to be indifferent to the interruption. As with the direct cost 
approach, the survey describes hypothetical interruption “scenarios” that have different 
characteristics. The imputed approaches are especially useful in situations where intangible costs 
are present that are difficult to estimate using the direct worth approach, which is typically the 
case for residential customers. Because not all surveys used the WTA measure, the meta-analysis 
employed mainly WTP. A full discussion of the advantages and disadvantages of the direct 
worth and imputed methods can be found in Chapter 3 of the Interruption Cost Estimation 
Guidebook. 
 
The example below is from a mail survey. 
 

Case #1: On a summer weekday, a power interruption occurs at 3:00 PM without any 
warning. You do not know how long the power interruption will last, but after 1 hour 
your household’s electricity is fully restored. 
 
Willingness to Accept Credit Imputation: 
 
Suppose your Utility could provide you with a credit on your bill each time your home 
experienced this interruption, whether or not you were home. What would be the least 
amount that you would consider a fair payment for each time this interruption occurred in 
your home? (Circle or enter a number) 
 
$0  $.10  $.25  $.50  $1  $2  $3  $4  $5  $6  $8 
$10  $12  $15  $20  $25  $30  $40  $50  Other: $_____ 
 
Willingness to Pay Imputation: 
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Suppose a back-up service was available to handle all of your household’s electrical needs 
during this power interruption. You would be billed by the supplier only for when and for how 
long the back-up service provided you with electricity. If you were charged a fee for this service 
only when you decided to use it (by using an on-off switch in your home), what is the most you 
would be willing to pay for this service each time you used it to avoid this power interruption? 
(Circle or enter number) 
 

$0  $.10  $.25  $.50  $1  $2  $3  $4  $5  $6  $8 
$10  $12  $15  $20  $25  $30  $40  $50  Other: $_____ 
 

An alternate version of a WTP question when fielded by telephone is: 
 

Suppose an electrical service was available to you during the power interruption. With 
this service, you would not have to make any adjustments to the interruption since your 
electricity would not go off.  
 
Would you pay $10.00 for this service to avoid the interruption? (YES or NO) 
[IF YES]: Would you pay $20.00 for this service? 
[IF NO]: Would you pay $5.00 for this service? 
 

In general, however, it is ideal to conduct this kind of research using mailed survey instruments, 
although it’s possible a combined mixed mode mail-Internet methodology may now be 
reasonable. 
 
B.1.3 Survey Design 
 
As is typical, the survey is conducted based on actual usage, hence groups into medium and large 
C&I or small. In reality, the survey instruments may be designed to ask questions that are 
relevant to different companies given their primary mode of business. Manufacturing companies 
are asked about production and materiel costs, damages and savings resulting from interruptions 
to their resources, equipment, and labor. Retail and commercial organizations are asked about the 
impact of power loss on sales and inventory. A few studies have included other subgroups, such 
as agricultural customers, hospitals, and service organizations. In the meta-database, we exclude 
these latter categories due to an inadequate number of cases. 
 
B.2 Data Collection Methodology 
 
B.2.1 Non-Residential Customers 
 
Survey instruments for interruption cost studies are complex and difficult to answer. For very 
large organizations, it is best to have a mid-level to senior-level analyst or consultant conducting 
the interview on-site. This interview takes approximately 2 to 4 hours, and can include input 
from more than one departmental manager. Sometimes several persons will be interviewed 
together, and other times sequentially. Answers required for the survey are not likely to be 
known “off the top of one’s head” nor would they be reliable if given as such. Therefore, the 
process is a “phone-mail-interview” technique, where the research organization is given the 
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initial list of company and contacts, the correct respondent(s) is identified in an initial phone call, 
and an onsite interview is then scheduled. The respondent is then mailed or faxed the survey 
instrument with instructions, so that this information will be available at the time of the on-site 
interview. The presence of the interviewer ensures that the respondent has a clear understanding 
of how to interpret the survey requirements. 
 
A less expensive variation of this procedure is “phone-mail-phone” where instead of conducting 
the interview on-site, the interview is conducted over the phone. This methodology may be 
appropriate for the small/medium organizations. Finally, there have been low budget projects 
where the account contact was sent the survey by mail and then returned it. With follow-up, such 
as reminder postcards and other best practices in mail surveys, this method may have a 
reasonably high response rate but the data quality tend to be compromised. 
 
B.2.2 Residential Customers 
 
There is much less of a respondent recruit issue for residential customers. This survey is usually 
conducted by mail, using best practices for mail surveys to garner a high response rate. 
Residential surveys can also be conducted by telephone. There are certain implications about 
questionnaire design (such as the way WTP questions can be asked) for each methodology. 
Insert text here 
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Appendix C. Recommendations for Questionnaire Design 
 
One of the benefits of conducting this meta-analysis is revisiting the questionnaire design and the 
data analysis made possible by these survey instruments. Reviewers of an earlier version of this 
document also noted that improvements to methodology could be made. Therefore, should a 
utility, Public Utilities Commission, a federal agency or other organization choose to conduct a 
VOS study, it is worthwhile to consider the lessons learned along the way. Certainly, studies 
conducted by utilities need to address that utility’s specific operating environment and customer 
mix. Nevertheless, there are some practices that could not only provide the utility with better 
data, but also allow for future meta-analyses and contributions to a wider industry understanding 
of the value customers place on reliability. These practices are summarized in this Appendix. 
 
C.1 Macro- Versus Micro-Views 
 
The customer groups presented in this research include households, businesses, and 
manufacturers. While some utilities branch out to a more diverse set of businesses, 
manufacturers or producers, such as agricultural or healthcare organizations, no study include the 
broad impacts of an interruption on societal or government costs. Some of those costs would 
understandably be more difficult to quantify, but others can be captured in dollars. For example, 
governments lose sales tax revenue, and may need to expend emergency dollars for police or 
other security measures. A government office does not lose sales revenue, but it does lose 
productivity in the form of staff that gets paid regardless, or fees for government licenses and 
services that go uncollected. Future studies are advised to branch out to these non-business 
interruption costs. 
 
C.2 The Impact of Back-Up Systems 
 
After extensively analyzing the different survey instruments, it is becoming obvious that the 
meaning and implications of having a back-up generation system are not consistently captured in 
the survey methodology. In these questionnaires, respondents are asked at one point in the survey 
whether they have a back-up generator or system, and then only later answer the scenario-
specific questions. Two problems are inherent in the question about back-up systems. First, the 
precise kind of back-up system is not necessarily clarified, for example, is it just for lighting, or 
is it for full operations? Second, the presence of the generator and the tally of interruption costs 
are separated, so it is not clear if the respondent is adequately taking the backup generation 
capability or costs into consideration. 
 
C.3 Advance Warning 
 
In the studies employed in this meta-analysis, scenarios with advance warning are not necessarily 
paired with the identical scenario (and company-respondent) without advance warning, so the 
aggregate analysis yield highly problematic or counter-intuitive results. The implication of this 
methodological problem is that it will be difficult to compare the costs of transmission to 
generation interruptions. 
 

I/A



98 

C.4 Facilitating Regional Comparisons 
 
Being able to compare the results of one study to another are important for an individual utility 
as well as for cross-service territory insights. There are several techniques in survey design or 
database design that would facilitate this kind of analysis. These are: 
 

 Noting regional climates in a standardized nomenclature. 
 Including standard interruption scenarios, such as, by including one-hour summer 

afternoon weekday for C&I, and one-hour winter morning weekend for residential 
customers. 

 Standardization of costs and savings calculations in the commercial and industrial 
surveys, and scales for asking willingness to pay and willingness to accept credit 
questions for the residential surveys. 

 Noting whether the location is urban, suburban or rural. 
 

Many organizations and industries have standardized protocols (such as quality) in order to have 
a better understanding of benchmarks, trending and best practices. Standards to VOS studies 
would go a long way in ensuring comparability across time and territory. 
 
C.5 Commercial and Industrial Classification Codes 
 
More help needs to be provided to respondents in answering this question, such as a brief 
summary next to a check-box for the code so at the very least, they can get the correct top-level 
classification. Yet even using a precise industrial classification code has its limitations. A retail 
company that gets the bulk of its business on weekdays from 9am to 5pm from customers in the 
store is going to have a different reaction to an interruption than an establishment that does 75% 
of its business in the evenings, or during Friday to Sunday (e.g., movie theatres). A professional 
services firm that relies on electronics and telecommunications equipment comes to a standstill, 
while another has activities that can be accomplished without power. While some instruments do 
note the regular business hours, the information about the kind of business needs to be 
standardized for ease of analysis and cross-comparison. 
 
C.6 Residential Costs and Presence At Home 
 
In some cases, household respondents are asked to input their WTP or WTA for interruptions 
regardless of whether they were home. Yet a debate around the meaning of costs for residents 
hinges on whether they are home, and how much of the cost of an interruption is due to cessation 
of household activity, and how much is due to impact on household appliances and electronics. 
Indicating whether the respondent is normally at home during the time of the interruption 
scenario would add clarification. 
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DUKE ENERGY CAROLINAS, LLC 

Request: 

Please provide a narrative that describes the integration process of supply side and demand side 
resources where DEC attempts to determine the optimal level of prospective DSM/EE programs. 
This response should include discussion on areas in the process where there is a lack of integration. 
This response should also include a discussion of how DEC identifies the threshold DSM/EE levels 
that result in changes in the resource plan, e.g. with zero DSM/EE, the resource plan results in new 
capacity needed in year X, with some level of DSM/EE, the need for new capacity is moved out to 
year X +1, with further DSM/EE, the need for new capacity is moved out to year X + 2 and so on.  
If DEC does not do this type of analysis, please explain how DEC determines that its total quantity 
of DSM/EE is optimal in the context of an Integrated Resource Plan that in principle is meant to 
balance supply- and demand-side resources such that the marginal MW of supply and demand-side 
resources are equal in cost. 

Response: 

Unlike natural gas units, solar facilities, hydro facilities or other supply-side options, DSM/EE 
MW impacts depend on forecasts of customer adoption for each individual DSM/EE measure 
and program.  These long-term adoption rate estimates are shown at a technical potential, 
economic potential and achievable potential levels as represented in periodically updated 
“Market Potential Studies.”  Shorter term projections of EE MW impacts come from forecasted 
adoption rates from existing NCUC approved DSM/EE programs based on the experience of the 
program managers along with M&V results.  It is this combination of short-term projections for 
existing programs and longer term achievable potential that, when combined, produce the MW 
and MWh reduction in the retail load forecast due to utility sponsored EE.  It must be noted that 
achievable potential as represented in the Market Potential Study recognizes many factors 
outside of a traditional IRP process which focuses primarily on PVRR minimization.  Factors 
such as appliance turn-over rates, participant cost effectiveness, general customer acceptance, 
free rider assumptions, efficiency standards, etc. all influence long-term projections for DSM/EE 
impacts.  Furthermore, DSM/EE programs have separate cost-effectiveness metrics that include 
the utility cost test (UCT), the participant cost test (PCT) and the non-participant (or rate impact) 
RIM upon which programs are submitted to the NCUC for consideration.  The IRP process, 
once completed, does inform DSM/EE cost-effectiveness for future filings by providing the EE 
analysis the avoided marginal energy benefits of DSM/EE consistent with the IRP planning 
assumptions around load, commodity prices  and other input variables.  Similar to historic QF 
pricing of capacity, historic DSM/EE utilize the current cost of a peaker for the avoided capacity 
component of cost effectiveness irrespective of the utility’s need for capacity.  All approved 
cost-effective programs then reduce the retail load that goes into the IRP.  The balancing of EE 
relative to utility need for capacity, as described in Staff’s question, would happen when  
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incremental new programs are tested for cost effectiveness under the UCT.  At that point, for 
example, if the utility did not have a need new capacity until 2022, no avoided capacity value 
would be ascribed in the UCT until 2022.  By way of comparison, this is consistent with new 
solar facilities that would not have capacity value ascribed until 2022 while existing solar 
facilities are receiving a capacity payment based on an immediate need for capacity.  It is wholly 
consistent to treat avoided capacity value for existing EE the same way existing QFs are treated 
with respect to capacity valuation, while treating incremental EE capacity value in the same 
manner incremental solar QF capacity value is being treated. 
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DUKE ENERGY CAROLINAS, LLC 

Request: 

Please discuss the changes in the resource plan (e.g. new capacity would be needed sooner or later 
and avoided energy and capacity costs would go up or down) that would likely occur if all 
anticipated future QF contracts that are modeled in the IRP are taken out.   

Response: 

If all anticipated future QF contracts were removed from the DECarolinas 2016 resource plan, the 
need for new capacity would advance one year, from December 2022 to December 2021.  Some of 
the future QFs already have existing LEOs before November 1, 2016.  These QFs will have 
capacity payments that did not take into account the need for capacity in the derivation of the 
capacity rate. 
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Exhibit JRW-1

Duke Energy Carolinas, LLC
Recommended Cost of Capital

Panel A - Primary Cost of Capital Recommendation
Capitalization Cost Weighted

    Capital Source Ratios* Rate Cost Rate
Long-Term Debt 50.00% 4.51% 2.26%
Common Equity 50.00% 9.00% 4.50%
Total Capitalization 100.00% 6.76%
* Capital Structure Ratios are developed in Exhibit JRW-3.

Panel B - Alternative Cost of Capital Recommendation
Capitalization Cost Weighted

    Capital Source Ratios* Rate Cost Rate
Long-Term Debt 47.00% 4.51% 2.12%
Common Equity 53.00% 8.40% 4.45%
Total Capitalization 100.00% 6.57%
* Capital Structure Ratios are developed in Exhibit JRW-3.
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Duke Energy Carolinas, LLC

Panel A
Electric Proxy Group

Company

Operating 
Revenue 

($mil)
Percent Reg Elec 

Revenue

Percent Reg 
Gas 

Revenue
Net Plant 

($mil)
Market Cap 

($mil)
S&P Issuer 

Credit Rating
Moody's Long 
Term Rating

Pre-Tax 
Interest 

Coverage Primary Service Area
Common 

Equity Ratio
Return on 

Equity
Market to 
Book Ratio

Market to Book 
Ratio

ALLETE, Inc. (NYSE-ALE) $1,498.6 71% 0% $3,904.4 $3,993.8 BBB+ Baa1 3.34 MN, WI 59.2% 8.2% 1.85 1.85

Alliant  Energy Corporation (NYSE-LNT) $3,534.5 85% 13% $12,462.4 $10,172.3 A- Baa1 3.31 WI,IA,IL,MN 44.6% 11.4% 2.13 2.13
Ameren Corporation (NYSE-AEE) $6,291.0 85% 15% $22,810.0 $16,366.8 BBB+ Baa1 3.64 IL,MO 46.2% 10.9% 2.11 2.11
American Electric Power Co. (NYSE-AEP) $16,195.7 88% 0% $55,099.1 $37,379.9 A- Baa1 2.99 10 States 42.7% 10.3% 1.96 1.96
Avangrid (NYSE-AVG) $6,291.0 56% 23% $22,810.0 $16,366.8 BBB+ Baa1 3.53 NY,CT,ME 70.8% 3.9% 1.06 1.06
Avista Corp (NYSE-AVA) $1,396.9 64% 22% $4,648.9 $2,881.1 BBB Baa2 2.61 WA,OR,AK,ID 45.7% 7.80% 1.62 2.91
CMS Energy Corporation (NYSE-CMS) $6,873.0 66% 28% $18,126.0 $13,966.2 BBB+ Baa1 2.67 MI 28.9% 14.2% 2.91 1.52
Consolidated Edison, Inc. (NYSE-ED) $12,337.0 70% 19% $41,749.0 $25,673.3 BBB+ A3 3.03 NY,PA 44.8% 8.6% 1.52 1.45
Dominion Energy, Inc. (NYSE-D) $13,366.0 70% 15% $54,560.0 $51,000.1 BBB+ NA 3.10 VA,NC,SC,OH,WV,UT 38.5% 12.31% 2.31 1.43
Duke Energy Corporation (NYSE-DUK) $24,521.0 90% 7% $91,694.0 $63,736.1 A- Baa1 2.47 NC,OH,FL,SC,KY 43.1% 6.2% 1.45 1.86
Edison International (NYSE-EIX) $12,657.0 100% 0% $41,348.0 $18,107.4 BBB Baa3 (0.48) CA 45.1% -2.4% 1.43 1.87
Entergy Corporation (NYSE-ETR) $11,009.5 85% 1% $31,974.4 $16,448.0 BBB+ Baa2 0.69 LA,AR,MS,TX 32.8% 10.2% 1.86 1.40
Evergy (NYSE:EVRG) $4,275.9 100% 0% $18,782.5 $14,840.0 A- Baa1 3.11 KS,MO 54.2% 7.9% 1.49 2.77
Eversource Energy (NYSE-ES) $8,448.2 79% 10% $25,610.4 $21,470.9 A- Baa1 3.67 CT,NH,MA 46.7% 9.2% 1.87 1.88
Exelon Corporation (NYSE-EXC) $11,009.5 56% 5% $31,974.4 $46,448.0 BBB+ Baa2 2.44 PA,NJ,IL,MD,DCDE 47.8% 6.4% 1.40 3.60
FirstEnergy Corporation (NYSE-FE) $11,261.0 91% 0% $29,911.0 $18,851.1 BBB Baa3 2.17 OH,PA,NY,NJ,WV,MD 25.8% 25.1% 2.77 2.82
Hawaiian Electric Industries (NYSE-HE) $2,860.8 89% 0% $4,830.1 $4,060.1 BBB- NA 3.87 HI 51.2% 9.6% 1.88 2.22
IDACORP, Inc. (NYSE-IDA) $1,370.8 100% 0% $4,395.7 $8,562.5 BBB Baa1 3.85 ID 56.4% 9.8% 3.60 1.54
MGE Energy, Inc. (NYSE-MGEE) $559.8 72% 28% $1,509.4 $2,303.7 AA- Aa2 7.69 WI 61.5% 10.6% 2.82 1.97
NextEra Energy, Inc. (NYSE-NEE) $16,727.0 71% 0% $70,334.0 $83,224.6 A- Baa1 5.87 FL 49.8% 17.3% 2.22 3.04
NorthWestern Corporation (NYSE-NWE) $1,192.0 77% 23% $4,521.3 $2,991.2 BBB NA 2.94 MT,SD,NE 47.8% 10.5% 1.54 1.92
OGE Energy Corp. (NYSE-OGE) $2,270.3 100% 0% $8,643.8 $7,899.1 BBB+ Baa1 4.19 OK,AR 56.0% 10.8% 1.97 1.71
Pinnacle West Capital Corp. (NYSE-PNW) $3,691.2 95% 0% $14,029.6 $16,260.8 A- A3 4.04 AZ 50.6% 10.1% 3.04 1.75
Portland General Electric Company (NYSE-POR) $1,991.0 100% 0% $6,887.0 $4,287.2 BBB+ A3 2.85 OR 50.3% 8.6% 1.71 1.63
PNM Resources, Inc. (NYSE-PNM) $1,436.6 100% 0% $5,234.6 $3,360.4 BBB+ Baa3 1.73 NM,TX 37.6% 5.8% 1.92 1.67
PPL Corporation (NYSE-PPL) $7,785.0 94% 4% $34,458.0 $20,457.2 A- Baa2 3.37 PA,KY 34.6% 16.3% 1.75 2.30
Sempra Energy (NYSE-SRE) $1,991.0 56% 44% $6,887.0 $31,467.5 BBB+ Baa1 2.02 CA,TX 43.1% 6.5% 1.63 2.13
Southern Company (NYSE-SO) $23,495.0 65% 14% $80,797.0 $48,493.6 A- Baa2 2.49 GA,FL,NJ,IL,VA,TN,MS 38.3% 8.4% 1.67 2.02
WEC Energy Group (NYSE-WEC) $7,679.5 58% 42% $22,000.9 $22,541.0 A- Baa1 3.76 WI,IL,MN,MI 45.3% 3.3% 2.30 1.88
Xcel Energy Inc. (NYSE-XEL) $11,537.0 84% 15% $36,944.0 $25,972.7 A- Baa1 3.21 MN,WI,ND,SD,MI 41.5% 10.7% 2.13
Mean $7,851.8 81% 11% $26,964.6 $21,986.1 BBB+ Baa1 3.14 46.0% 9.6% 2.00
Median $6,582.0 85% 6% $22,405.5 $16,407.4 BBB+ Baa1 3.10 45.5% 9.7% 1.87
Data Source   Company 2018 SEC 10-K filings; Value Line Investment Survey , 2019.

Panel B
Hevert Proxy Group

Company

Operating 
Revenue 

($mil)
Percent Reg Elec 

Revenue

Percent Reg 
Gas 

Revenue
Net Plant 

($mil)
Market Cap 

($mil)
S&P Issuer 

Credit Rating
Moody's Long 
Term Rating

Pre-Tax 
Interest 

Coverage Primary Service Area
Common 

Equity Ratio
Return on 

Equity
Market to 
Book Ratio

Market to Book 
Ratio

ALLETE, Inc. (NYSE-ALE) $1,498.6 71% 0% $3,904.4 $3,993.8 BBB+ Baa1 3.34 MN, WI 59.2% 8.2% 1.85 1.85

Alliant  Energy Corporation (NYSE-LNT) $3,534.5 85% 13% $12,462.4 $10,172.3 A- Baa1 3.31 WI,IA,IL,MN 44.6% 11.4% 2.13 2.13
Ameren Corporation (NYSE-AEE) $6,291.0 85% 15% $22,810.0 $16,366.8 BBB+ Baa1 3.64 IL,MO 46.2% 10.9% 2.11 2.11
American Electric Power Co. (NYSE-AEP) $16,195.7 88% 0% $55,099.1 $37,379.9 A- NA 2.99 10 States 42.7% 10.3% 1.96 1.96
Avangrid (NYSE-AVG) $6,291.0 56% 23% $22,810.0 $16,366.8 BBB+ Baa1 3.53 NY,CT,ME 70.8% 3.9% 1.06 1.06
CMS Energy Corporation (NYSE-CMS) $6,873.0 66% 28% $18,126.0 $13,966.2 BBB+ NA 2.67 MI 28.9% 14.2% 2.91 1.52
DTE Energy Company (NYSE-DTE) $14,212.0 37% 39% $21,650.0 $20,066.4 BBB+ Baa1 3.15 MI 42.9% 10.8% 1.87
Evergy (NYSE:EVRG) $4,275.9 100% 0% $18,782.5 $14,840.0 A- Baa1 3.11 KS,MO 54.2% 7.9% 1.49 2.77
Hawaiian Electric Industries (NYSE-HE) $2,860.8 89% 0% $4,830.1 $4,060.1 BBB- NA 3.87 HI 51.2% 9.6% 1.88 2.22
NextEra Energy, Inc. (NYSE-NEE) $16,727.0 71% 0% $70,334.0 $83,224.6 A- Baa1 5.87 FL 49.8% 17.3% 2.22 3.04
NorthWestern Corporation (NYSE-NWE) $1,192.0 77% 23% $4,521.3 $2,991.2 BBB NA 2.94 MT,SD,NE 47.8% 10.5% 1.54 1.92
OGE Energy Corp. (NYSE-OGE) $2,270.3 100% 0% $8,643.8 $7,899.1 BBB+ NA 4.19 OK,AR 56.0% 10.8% 1.97 1.71
Otter Tail Corporation (NDQ-OTTR) $916.4 49% 0% $1,581.1 $1,975.3 BBB Baa2 4.19 OK,AR 54.5% 11.6% 2.71
Pinnacle West Capital Corp. (NYSE-PNW) $3,691.2 95% 0% $14,029.6 $16,260.8 A- A3 4.04 AZ 50.6% 10.1% 3.04 1.75
Portland General Electric Company (NYSE-POR) $1,991.0 100% 0% $6,887.0 $4,287.2 BBB+ A3 2.85 OR 50.3% 8.6% 1.71 1.63
PNM Resources, Inc. (NYSE-PNM) $1,436.6 100% 0% $5,234.6 $3,360.4 BBB+ Baa3 1.73 NM,TX 37.6% 5.8% 1.92 1.67
Southern Company (NYSE-SO) $23,495.0 65% 14% $80,797.0 $48,493.6 A- NA 2.49 GA,FL,NJ,IL,VA,TN,MS 38.3% 8.4% 1.67 1.95
WEC Energy Group (NYSE-WEC) $7,679.5 58% 42% $22,000.9 $22,541.0 A- Baa1 3.76 WI,IL,MN,MI 45.3% 3.3% 2.30 1.88
Xcel Energy Inc. (NYSE-XEL) $11,537.0 84% 15% $36,944.0 $25,972.7 A- Baa1 3.21 MN,WI,ND,SD,MI 41.5% 10.7% 2.13
Mean $6,998.4 78% 11% $22,707.8 $18,643.1 BBB+ Baa1 3.42 48.0% 9.7% 2.03
Median $4,275.9 84% 0% $18,126.0 $14,840.0 BBB+ Baa1 3.31 47.8% 10.3% 1.96
Data Source   Company 2018 SEC 10-K filings; Value Line Investment Survey , 2019.
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Duke Energy Carolinas, LLC
Value Line  Risk Metrics

Panel A
Electric Proxy Group

Company Beta
Financial 
Strength Safety

Earnings 
Predictability

Stock Price 
Stability

ALLETE, Inc. (NYSE-ALE) 0.65 A 2 85 95
Alliant  Energy Corporation (NYSE-LNT) 0.60 A 2 90 95
Ameren Corporation (NYSE-AEE) 0.55 A 2 85 95
American Electric Power Co. (NYSE-AEP) 0.55 A+ 1 85 100
Avangrid (NYSE-AVG) 0.40 B++ 2 NMF 95
Avista Corp (NYSE-AVA) 0.60 A 2 65 90
CMS Energy Corporation (NYSE-CMS) 0.50 B++ 2 85 100
Consolidated Edison, Inc. (NYSE-ED) 0.45 A+ 1 100 100
Dominion Energy Inc. (NYSE-D) 0.55 B++ 2 60 100
Duke Energy Corporation (NYSE-DUK) 0.50 A 2 90 100
Edison International (NYSE-EIX) 0.55 B+ 3 10 85
Entergy Corporation (NYSE-ETR) 0.60 B++ 2 60 95
Evergy (NYSE:EVRG) NMF B++ 2 NMF NMF
Eversource Energy (NYSE-ES) 0.55 A 1 95 100
Exelon Corporation (NYSE-EXC) 0.65 B++ 2 60 95
FirstEnergy Corporation (NYSE-FE) 0.65 B++ 2 40 90
Hawaiian Electric Industries (NYSE-HE) 0.55 A 2 60 100
IDACORP, Inc. (NYSE-IDA) 0.55 A 2 95 100
MGE Energy, Inc. (NYSE-MGEE) 0.55 A 1 95 85
NextEra Energy, Inc. (NYSE-NEE) 0.55 A+ 1 70 100
NorthWestern Corporation (NYSE-NWE) 0.60 B++ 2 85 100
OGE Energy Corp. (NYSE-OGE) 0.75 A 2 80 95
Pinnacle West Capital Corp. (NYSE-PNW) 0.50 A+ 1 95 100
PNM Resources, Inc. (NYSE-PNM) 0.60 B+ 3 75 85
Portland General Electric Company (NYSE-POR) 0.55 B++ 2 85 95
PPL Corporation (NYSE-PPL) 0.70 B++ 2 70 95
Sempra Energy (NYSE-SRE) 0.70 A 2 70 95
Southern Company (NYSE-SO) 0.50 A 2 85 100
WEC Energy Group (NYSE-WEC) 0.50 A+ 1 90 95
Xcel Energy Inc. (NYSE-XEL) 0.50 A+ 1 100 100
Mean 0.57 A 1.8 77 96
Data Source:  Value Line Investment Survey , 2019

Panel B
Hevert Proxy Group

Company Beta
Financial 
Strength Safety

Earnings 
Predictability

Stock Price 
Stability

ALLETE, Inc. (NYSE-ALE) 0.65 A 2 85 95
Alliant  Energy Corporation (NYSE-LNT) 0.60 A 2 90 95
Ameren Corporation (NYSE-AEE) 0.55 A 2 85 95
American Electric Power Co. (NYSE-AEP) 0.55 A+ 1 85 100
Avangrid (NYSE-AVG) 0.40 B++ 2 NMF 95
CMS Energy Corporation (NYSE-CMS) 0.50 B++ 2 85 100
DTE Energy Company (NYSE-DTE) 0.55 B++ 2 85 100
Evergy (NYSE:EVRG) NMF B++ 2 NMF NMF
Hawaiian Electric Industries (NYSE-HE) 0.55 A 2 60 100
NextEra Energy, Inc. (NYSE-NEE) 0.55 A+ 1 70 100
NorthWestern Corporation (NYSE-NWE) 0.60 B++ 2 85 100
OGE Energy Corp. (NYSE-OGE) 0.80 A 2 80 95
Otter Tail Corporation (NDQ-OTTR) 0.70 A 2 65 90
Pinnacle West Capital Corp. (NYSE-PNW) 0.50 A+ 1 95 100
PNM Resources, Inc. (NYSE-PNM) 0.60 B+ 3 75 85
Portland General Electric Company (NYSE-POR) 0.55 B++ 2 85 95
Southern Company (NYSE-SO) 0.50 A 2 85 100
WEC Energy Group (NYSE-WEC) 0.50 A+ 1 90 95
Xcel Energy Inc. (NYSE-XEL) 0.50 A+ 1 100 100
Mean 0.56 A 1.8 83 97
Data Source:  Value Line Investment Survey , 2019
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Duke Energy Carolinas, LLC
Capital Structure Ratios and Debt Cost Rate

Panel A - DEC's Proposed Capital Structure and Debt Cost Rates
 Percent of

Total Cost
Long-Term Debt 47.00% 4.51%
Common Equity 53.00%
Total Capital 100.00%

Panel B - Duke Energy Carolinas, LLC and Duke Energy Corporation Capital Structure Ratios
Duke Energy Carolinas, LLC Ratios
Short-Term Debt 4.2%
Long-Term Debt 44.6%
Common Equity 51.2%
Total Capital 100.0%

Duke Energy Corporation Ratios
Short-Term Debt 6.0%
Long-Term Debt 50.6%
Common Equity 43.4%
Total Capital 100.0%

Panel C - Staff's Capital Structure Ratios and Debt Cost Rates
DEC Proposed Adjustment Staff Proposed Cost

Long-Term Debt 47.00% 1.063830 50.00% 4.51%
Common Equity 53.00% 0.943396 50.00%
Total Capital 100.00% 100.00%
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Duke Energy Carolinas, LLC and Duke Energy Corporation Capital Structure Ratios
Quarterly - 2017-2019

2017 FQ4 2018 FQ1 2018 FQ2 2018 FQ3 2018 FQ4 2019 FQ1 2019 FQ2 2019 FQ3
Duke Energy Carolinas, LLC 12/31/2017 3/31/2018 6/30/2018 9/30/2018 12/31/2018 3/31/2019 6/30/2019 9/30/2019 Average
Short-Term Debt 6.1% 3.8% 5.5% 5.8% 1.9% 3.2% 5.2% 2.1% 4.2%
Long-Term Debt 41.3% 44.6% 44.1% 43.5% 47.4% 46.0% 43.5% 46.1% 44.6%
Common Equity 52.7% 51.6% 50.4% 50.8% 50.7% 50.8% 51.3% 51.8% 51.2%
Total Capital 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

2017 FQ4 2018 FQ1 2018 FQ2 2018 FQ3 2018 FQ4 2019 FQ1 2019 FQ2 2019 FQ3
Duke Energy Corporation 12/31/2017 3/31/2018 6/30/2018 9/30/2018 12/31/2018 3/31/2019 6/30/2019 9/30/2019 Average
Short-Term Debt 5.6% 7.1% 6.3% 6.4% 6.6% 5.2% 6.1% 5.1% 6.0%
Long-Term Debt 51.0% 50.2% 50.6% 50.6% 49.9% 51.1% 50.8% 50.5% 50.6%
Common Equity 43.4% 42.8% 43.1% 43.1% 43.5% 43.7% 43.1% 44.4% 43.4%
Total Capital 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Source: S&P Global Market Intelligence
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Electric Utilities and Gas Distribution Companies

Market-to-Book

Expected Return on Equity
R-Square = .50, N=43

Source: Value Line Investment Survey , 2019.
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Long-Term 'A' Rated Public Utility Bonds

 Data Source: Mergent Bond Record
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Electric Utility Average Dividend Yield

Data Source:  Value Line Investment Survey.
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Electric Utility Average Return on Equity and Market-to-Book Ratios

Data Source:  Value Line Investment Survey.
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Exhibit JRW-5
Industry Average Betas*

Value Line Investment Survey Betas**
20-Jan-20

Rank Industry Beta Rank Industry Beta Rank Industry Beta
1 Petroleum (Producing) 1.81 34 Precision Instrument 1.18 67 Cable TV 1.05
2 Natural Gas (Div.) 1.77 35 Apparel 1.18 68 Funeral Services 1.04
3 Oilfield Svcs/Equip. 1.74 36 Paper/Forest Products 1.18 69 IT Services 1.04
4 Metals & Mining (Div.) 1.58 37 Advertising 1.16 70 Foreign Electronics 1.02
5 Steel 1.58 38 Homebuilding 1.16 71 Retail (Softlines) 1.02
6 Maritime 1.45 39 Retail Building Supply 1.16 72 Pharmacy Services 1.02
7 Metal Fabricating 1.44 40 Bank (Midwest) 1.16 73 Med Supp Non-Invasive 1.00
8 Oil/Gas Distribution 1.43 41 Internet 1.15 74 Healthcare Information 1.00
9 Chemical (Specialty) 1.39 42 Newspaper 1.15 75 Information Services 0.98
10 Petroleum (Integrated) 1.36 43 Entertainment 1.15 76 Retail Store 0.98
11 Chemical (Basic) 1.34 44 Computer Software 1.15 77 Med Supp Invasive 0.98
12 Chemical (Diversified) 1.33 45 Public/Private Equity 1.14 78 Educational Services 0.96
13 Engineering & Const 1.32 46 Drug 1.14 79 Investment Co.(Foreign) 0.94
14 Heavy Truck & Equip 1.31 47 Human Resources 1.14 80 Environmental 0.94
15 Hotel/Gaming 1.31 48 Telecom. Equipment 1.14 81 Thrift 0.93
16 Pipeline MLPs 1.29 49 Shoe 1.14 82 Reinsurance 0.93
17 Auto Parts 1.29 50 Power 1.14 83 Insurance (Prop/Cas.) 0.89
18 Office Equip/Supplies 1.29 51 Retail Automotive 1.14 84 Restaurant 0.88
19 Building Materials 1.28 52 Diversified Co. 1.13 85 Household Products 0.87
20 Electronics 1.28 53 Financial Svcs. (Div.) 1.13 86 Investment Co. 0.86
21 Computers/Peripherals 1.27 54 Packaging & Container 1.13 87 Beverage 0.84
22 Railroad 1.23 55 Bank 1.13 88 R.E.I.T. 0.84
23 Semiconductor 1.23 56 Wireless Networking 1.13 89 Tobacco 0.83
24 Semiconductor Equip 1.23 57 Furn/Home Furnishings 1.12 90 Food Processing 0.80
25 Machinery 1.22 58 Publishing 1.09 91 Retail/Wholesale Food 0.80
26 Electrical Equipment 1.21 59 Telecom. Utility 1.09 92 Water Utility 0.68
27 Air Transport 1.21 60 Medical Services 1.09 93 Natural Gas Utility 0.67
28 E-Commerce 1.20 61 Entertainment Tech 1.08 94 Precious Metals 0.64
29 Insurance (Life) 1.20 62 Industrial Services 1.07 95 Electric Util. (Central) 0.61
30 Automotive 1.20 63 Telecom. Services 1.06 96 Electric Utility (West) 0.59
31 Biotechnology 1.19 64 Toiletries/Cosmetics 1.06 97 Electric Utility (East) 0.56
32 Retail (Hardlines) 1.19 65 Recreation 1.06
33 Trucking 1.19 66 Aerospace/Defense 1.05 Mean 1.12

*    Industry averages for 97 industries using Value Line 's database of 1,706 companies - Updated 1-20-20.
**  Value Line  computes betas using monthly returns regressed against the New York Stock Exchange Index for five years.
      These betas are then adjusted as follows: VL  Beta = [{(2/3) * Regressed Beta} + {(1/3) * (1.0)}] to account to tendency 
      for Betas to regress toward average of 1.0.  See M. Blume, “On the Assessment of Risk,” Journal of Finance , March 1971.

I/A



I/A



I/A



DOCKET NO. E-7, SUB 1214 
Exhibit JRW-7

DCF Study
Page 2 of 6

Exhibit JRW-7

Duke Energy Carolinas, LLC
Monthly Dividend Yields

Panel A
Electric Proxy Group*

Dividend Dividend Dividend
Annual Yield Yield Yield

Company Dividend 30 Day 90 Day 180 Day
ALLETE, Inc. (NYSE-ALE) $2.35 2.9% 2.8% 2.8%
Alliant  Energy Corporation (NYSE-LNT) $1.42 2.6% 2.7% 2.8%
Ameren Corporation (NYSE-AEE) $1.98 2.6% 2.6% 2.6%
American Electric Power Co. (NYSE-AEP) $2.80 3.0% 3.0% 3.1%
Avangrid (NYSE-AVG) $1.76 3.5% 3.5% 3.5%
Avista Corporation (NYSE-AVA) $1.55 3.3% 3.3% 3.4%
CMS Energy Corporation (NYSE-CMS) $1.53 2.5% 2.5% 2.5%
Consolidated Edison, Inc. (NYSE-ED) $2.96 3.4% 3.3% 3.3%
Dominion Resources, Inc. (NYSE-D) $3.67 4.5% 4.5% 4.7%
Duke Energy Corporation (NYSE-DUK) $3.78 4.2% 4.1% 4.2%
Edison International (NYSE-EIX) $2.55 3.5% 3.6% 3.7%
Entergy Corporation (NYSE-ETR) $3.72 3.1% 3.2% 3.4%
Evergy, Inc. (NYSE-EVRG) $2.02 3.2% 3.2% 3.2%
Eversource Energy (NYSE-ES) $2.14 2.6% 2.6% 2.7%
Exelon Corp. (NYSE-EXC) $1.45 3.2% 3.2% 3.1%
FirstEnergy Corporation (ASE-FE) $1.56 3.2% 3.3% 3.4%
Hawaiian Electric Inductries (NYSE-HE) $1.28 2.8% 2.9% 2.9%
IDACORP, Inc. (NYSE-IDA) $2.68 2.5% 2.5% 2.5%
MGE Energy, Inc. (NYSE-MGEE) $1.41 1.8% 1.8% 1.9%
NextEra Energy Inc. (NYSE-NEE) $5.00 2.1% 2.1% 2.3%
NorthWestern Corporation (NYSE-NWE) $2.30 3.2% 3.2% 3.2%
OGE Energy Corp. (NYSE-OGE) $1.55 3.6% 3.6% 3.6%
Pinnacle West Capital Corp. (NYSE-PNW) $3.13 3.6% 3.4% 3.4%
Portland General Electric Company (NYSE-POR) $1.54 2.8% 2.8% 2.8%
PNM Resources, Inc. (NYSE-PNM) $1.23 2.5% 2.4% 2.5%
PPL Corporation (NYSE-PPL) $1.65 4.7% 5.0% 5.2%
SEMPRA Energy (NYSE-SRE) $3.87 2.6% 2.6% 2.7%
Southern Company (NYSE-SO) $2.48 4.0% 4.0% 4.2%
WEC Energy Group (NYSE-WEC) $2.53 2.8% 2.8% 2.9%
Xcel Energy Inc. (NYSE-XEL) $1.62 2.6% 2.6% 2.6%
Mean 3.1% 3.1% 3.2%
Median 3.1% 3.1% 3.1%
Data Sources:  http://quote yahoo com, January, 2020

Panel B
Hevert Proxy Group

Dividend Dividend Dividend
Annual Yield Yield Yield

Company Dividend 30 Day 90 Day 180 Day
ALLETE, Inc. (NYSE-ALE) $2.35 2.9% 2.8% 2.8%
Alliant  Energy Corporation (NYSE-LNT) $1.42 2.6% 2.7% 2.8%
Ameren Corporation (NYSE-AEE) $1.98 2.6% 2.6% 2.6%
American Electric Power Co. (NYSE-AEP) $2.80 3.0% 3.0% 3.1%
Avangrid (NYSE-AVG) $1.76 3.5% 3.5% 3.5%
CMS Energy Corporation (NYSE-CMS) $1.53 2.5% 2.5% 2.5%
DTE Energy Company (NYSE-DTE) $4.05 3.2% 3.2% 3.2%
Evergy, Inc. (NYSE-EVRG) $2.02 3.2% 3.2% 3.2%
Hawaiian Electric Inductries (NYSE-HE) $1.28 2.8% 2.9% 2.9%
NextEra Energy Inc. (NYSE-NEE) $5.00 2.1% 2.1% 2.3%
NorthWestern Corporation (NYSE-NWE) $2.30 3.2% 3.2% 3.2%
OGE Energy Corp. (NYSE-OGE) $1.55 3.6% 3.6% 3.6%
Otter Tail Corporation (NDQ-OTTR) $1.40 2.8% 2.7% 2.7%
Pinnacle West Capital Corp. (NYSE-PNW) $3.13 3.6% 3.4% 3.4%
Portland General Electric Company (NYSE-POR) $1.54 2.8% 2.8% 2.8%
PNM Resources, Inc. (NYSE-PNM) $1.23 2.5% 2.4% 2.5%
Southern Company (NYSE-SO) $2.48 4.0% 4.0% 4.2%
WEC Energy Group (NYSE-WEC) $2.53 2.8% 2.8% 2.9%
Xcel Energy Inc. (NYSE-XEL) $1.62 2.6% 2.6% 2.6%
Mean 3.0% 2.9% 3.0%
Median 2.8% 2.8% 2.9%
Data Sources:  http://quote yahoo com, January, 2020
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Duke Energy Carolinas, LLC
DCF Equity Cost Growth Rate Measures

Value Line Historic Growth Rates

Panel A
Electric Proxy Group

Value Line Historic Growth

Company Past 10 Years Past 5 Years
Earnings Dividends Book Value Earnings Dividends Book Value

ALLETE, Inc. (NYSE-ALE) 1.0 3.0 5.5 4.0 3.0 5.5
Alliant  Energy Corporation (NYSE-LNT) 4.5 7.5 4.0 4.5 7.0 4.5
Ameren Corporation (NYSE-AEE) 0.5 -3.5 -0.5 4.5 2.5 0.5
American Electric Power Co. (NYSE-AEP) 3.0 4.5 4.0 5.0 5.0 3.5
Avangrid (NYSE-AVG)
Avista Corp (NYSE-AVA) 5.5 8.5 4.0 5.0 4.5 4.5
CMS Energy Corporation (NYSE-CMS) 10.0 21.5 4.5 7.0 7.0 5.5
Consolidated Edison, Inc. (NYSE-ED) 2.5 2.0 4.0 2.0 2.5 4.0
Dominion Energy Inc. (NYSE-D) 3.0 7.5 4.5 3.5 7.5 6.5
Duke Energy Corporation (NYSE-DUK) 2.5 7.0 1.0 0.5 3.0 1.5
Edison International (NYSE-EIX) -3.5 6.5 3.0 -9.0 11.0 3.0
Entergy Corporation (NYSE-ETR) 0.5 3.0 1.0 -0.5 1.0 -2.5
Evergy (NYSE-EVRG)
Eversource Energy (NYSE-ES) 8.0 9.5 6.5 7.0 8.0 5.0
Exelon Corporation (NYSE-EXC) -5.5 -3.5 7.0 -3.5 -7.0 4.5
FirstEnergy Corporation (NYSE-FE) -7.0 -2.5 -8.0 -2.5 -5.0 -17.5
Hawaiian Electric Industries (NYSE-HE) 5.0 3.0 4.0 3.5
IDACORP, Inc. (NYSE-IDA) 7.0 6.5 5.5 4.0 10.0 5.0
MGE Energy, Inc. (NYSE-MGEE) 4.5 3.0 5.5 3.5 4.0 6.0
Nextera Energy, Inc. (NYSE-NEE) 6.0 9.0 8.5 6.0 10.5 9.5
NorthWestern Corporation (NYSE-NWE) 8.5 5.0 5.5 7.0 7.0 8.0
OGE Energy Corp. (NYSE-OGE) 4.0 6.5 7.5 1.0 9.5 6.0
Pinnacle West Capital Corp. (NYSE-PNW) 4.5 2.5 2.5 5.0 3.0 4.5
PNM Resources, Inc. (NYSE-PNM) 7.0 2.5 6.0 11.0 1.0
Portland General Electric Company (NYSE-POR) 3.5 4.5 2.5 4.0 4.5 3.5
PPL Corporation (NYSE-PPL) 2.5 1.0 -0.5 2.0 -4.0
Sempra Energy (NYSE-SRE) 1.0 10.0 5.5 2.0 7.5 4.0
Southern Company (NYSE-SO) 3.0 3.5 4.0 2.5 3.5 3.0
WEC Energy Group (NYSE-WEC) 8.5 15.5 8.5 6.0 11.0 10.5
Xcel Energy Inc. (NYSE-XEL) 5.5 4.5 4.5 5.0 6.0 4.5
Mean 3.4 5.4 3.9 3.0 5.2 3.3
Median 4.0 4.5 4.0 4.0 5.0 4.5
Data Source:  Value Line Investment Survey. Average of Median Figures = 4.3

Panel B
Hevert Proxy Group

Value Line Historic Growth

Company Past 10 Years Past 5 Years
Earnings Dividends Book Value Earnings Dividends Book Value

ALLETE, Inc. (NYSE-ALE) 1.0 3.0 5.5 4.0 3.0 5.5
Alliant  Energy Corporation (NYSE-LNT) 4.5 7.5 4.0 4.5 7.0 4.5
Ameren Corporation (NYSE-AEE) 0.5 -3.5 -0.5 4.5 2.5 0.5
American Electric Power Co. (NYSE-AEP) 3.0 4.5 4.0 5.0 5.0 3.5
Avangrid (NYSE-AVG)
CMS Energy Corporation (NYSE-CMS) 10.0 21.5 4.5 7.0 7.0 5.5
DTE Energy Company (NYSE-DTE) 8.0 4.5 4.0 8.0 6.5 4.5
Evergy (NYSE-EVRG)
Hawaiian Electric Industries (NYSE-HE) 5.0 3.0 4.0 3.5
Nextera Energy, Inc. (NYSE-NEE) 6.0 9.0 8.5 6.0 10.5 9.5
NorthWestern Corporation (NYSE-NWE) 8.5 5.0 5.5 7.0 7.0 8.0
OGE Energy Corp. (NYSE-OGE) 4.0 6.5 7.5 1.0 9.5 6.0
Otter Tail Corporation (NDQ-OTTR) 2.0 1.0 14.0 1.5 3.5
Pinnacle West Capital Corp. (NYSE-PNW) 4.5 2.5 2.5 5.0 3.0 4.5
PNM Resources, Inc. (NYSE-PNM) 7.0 2.5 6.0 11.0 1.0
Portland General Electric Company (NYSE-POR) 3.5 4.5 2.5 4.0 4.5 3.5
Southern Company (NYSE-SO) 3.0 3.5 4.0 2.5 3.5 3.0
WEC Energy Group (NYSE-WEC) 8.5 15.5 8.5 6.0 11.0 10.5
Xcel Energy Inc. (NYSE-XEL) 5.5 4.5 4.5 5.0 6.0 4.5
Mean 5.0 5.8 4.5 5.5 6.2 4.8
Median 4.5 4.5 4.0 5.0 6.3 4.5
Data Source:  Value Line Investment Survey. Average of Median Figures = 4.8
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Duke Energy Carolinas, LLC
DCF Equity Cost Growth Rate Measures

Value Line Projected Growth Rates

Panel A
Electric Proxy Group

Value Line Value Line 
Projected Growth Sustainable Growth

Company               Est'd. '16-'18 to '22-'24 Return on Retention Internal
Earnings Dividends Book Value Equity Rate Growth

ALLETE, Inc. (NYSE-ALE) 5.0 5.0 3.0 9.0% 34.0% 3.1%
Alliant  Energy Corporation (NYSE-LNT) 6.5 5.5 7.5 10.0% 38.0% 3.8%
Ameren Corporation (NYSE-AEE) 6.5 4.5 5.5 10.5% 44.0% 4.6%
American Electric Power Co. (NYSE-AEP) 4.0 5.5 4.5 10.5% 32.0% 3.4%
Avangrid (NYSE-AVG) 8.5 3.0 1.0 5.5% 30.0% 1.7%
Avista Corp (NYSE-AVA) 3.5 3.5 3.5 8.0% 32.0% 2.6%
CMS Energy Corporation (NYSE-CMS) 7.0 7.0 7.0 13.5% 38.0% 5.1%
Consolidated Edison, Inc. (NYSE-ED) 3.0 3.5 3.5 8.5% 33.0% 2.8%
Dominion Energy Inc. (NYSE-D) 6.5 5.0 7.0 13.0% 21.0% 2.7%
Duke Energy Corporation (NYSE-DUK) 6.0 2.5 2.5 8.5% 30.0% 2.6%
Edison International (NYSE-EIX) NMF 4.5 5.5 11.0% 41.0% 4.5%
Entergy Corporation (NYSE-ETR) 2.0 3.5 4.5 11.5% 36.0% 4.1%
Evergy (NYSE-EVRG) NMF NMF NMF 8.5% 35.0% 3.0%
Eversource Energy (NYSE-ES) 5.5 5.5 4.5 9.0% 38.0% 3.4%
Exelon Corporation (NYSE-EXC) 9.0 5.5 5.0 9.0% 52.0% 4.7%
FirstEnergy Corporation (NYSE-FE) 6.5 3.5 7.0 16.0% 36.0% 5.8%
Hawaiian Electric Industries (NYSE-HE) 2.5 3.0 3.5 9.0% 32.0% 2.9%
IDACORP, Inc. (NYSE-IDA) 3.5 7.0 4.0 9.5% 37.0% 3.5%
MGE Energy, Inc. (NYSE-MGEE) 6.0 5.0 5.0 10.5% 46.0% 4.8%
Nextera Energy, Inc. (NYSE-NEE) 10.5 10.0 7.5 12.5% 40.0% 5.0%
NorthWestern Corporation (NYSE-NWE) 2.0 4.5 3.5 9.0% 31.0% 2.8%
OGE Energy Corp. (NYSE-OGE) 6.5 6.5 4.0 11.5% 33.0% 3.8%
Pinnacle West Capital Corp. (NYSE-PNW) 4.0 6.0 3.5 10.0% 32.0% 3.2%
PNM Resources, Inc. (NYSE-PNM) 7.0 7.0 5.0 9.0% 42.0% 3.8%
Portland General Electric Company (NYSE-POR) 4.5 6.5 3.0 9.0% 34.0% 3.1%
PPL Corporation (NYSE-PPL) 1.5 2.0 5.5 13.0% 36.0% 4.7%
Sempra Energy (NYSE-SRE) 11.0 8.0 6.5 11.5% 42.0% 4.8%
Southern Company (NYSE-SO) 3.5 3.0 3.5 12.5% 27.0% 3.4%
WEC Energy Group (NYSE-WEC) 6.0 6.0 3.5 12.0% 33.0% 4.0%
Xcel Energy Inc. (NYSE-XEL) 5.5 6.0 5.5 10.5% 36.0% 3.8%
Mean 5.5 5.1 4.7 10.4% 35.7% 3.7%
Median 5.8 5.0 4.5 10.3% 35.5% 3.6%
Average of Median Figures = 5.1 Median = 3.6%
* 'Est'd. '16-'17 to '22-'24' is the estimated growth rate from the base period 2016 to 2018 until the future period 2022 to 2024.

Data Source:  Value Line Investment Survey.

Panel B
Hevert Proxy Group

Value Line Value Line 
Projected Growth Sustainable Growth

Company               Est'd. '16-'18 to '22-'24 Return on Retention Internal
Earnings Dividends Book Value Equity Rate Growth

ALLETE, Inc. (NYSE-ALE) 5.0 5.0 3.0 9.0% 34.0% 3.1%
Alliant  Energy Corporation (NYSE-LNT) 6.5 5.5 7.5 10.0% 38.0% 3.8%
Ameren Corporation (NYSE-AEE) 6.5 4.5 5.5 10.5% 44.0% 4.6%
American Electric Power Co. (NYSE-AEP) 4.0 5.5 4.5 10.5% 32.0% 3.4%
Avangrid (NYSE-AVG) 8.5 3.0 1.0 5.5% 30.0% 1.7%
CMS Energy Corporation (NYSE-CMS) 7.0 7.0 7.0 13.5% 38.0% 5.1%
DTE Energy Company (NYSE-DTE) 4.5 7.0 6.0 9.5% 33.0% 3.1%
Evergy (NYSE-EVRG) NMF NMF NMF 8.5% 35.0% 3.0%
Hawaiian Electric Industries (NYSE-HE) 2.5 3.0 3.5 9.0% 32.0% 2.9%
Nextera Energy, Inc. (NYSE-NEE) 10.5 10.0 7.5 12.5% 40.0% 5.0%
NorthWestern Corporation (NYSE-NWE) 2.0 4.5 3.5 9.0% 31.0% 2.8%
OGE Energy Corp. (NYSE-OGE) 6.5 6.5 4.0 11.5% 33.0% 3.8%
Otter Tail Corporation (NDQ-OTTR) 5.0 4.0 4.5 11.0% 34.0% 3.7%
Pinnacle West Capital Corp. (NYSE-PNW) 4.0 6.0 3.5 10.0% 32.0% 3.2%
PNM Resources, Inc. (NYSE-PNM) 7.0 7.0 5.0 9.0% 42.0% 3.8%
Portland General Electric Company (NYSE-POR) 4.5 6.5 3.0 9.0% 34.0% 3.1%
Southern Company (NYSE-SO) 3.5 3.0 3.5 12.5% 27.0% 3.4%
WEC Energy Group (NYSE-WEC) 6.0 6.0 3.5 12.0% 33.0% 4.0%
Xcel Energy Inc. (NYSE-XEL) 5.5 6.0 5.5 10.5% 36.0% 3.8%
Mean 5.5 5.6 4.5 10.2% 34.6% 3.5%
Median 5.3 5.8 4.3 10.0% 34.0% 3.4%
Average of Median Figures = 5.1 Median = 3.4%
* 'Est'd. '16-'17 to '22-'24' is the estimated growth rate from the base period 2016 to 2018 until the future period 2022 to 2024.

Data Source:  Value Line Investment Survey.
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Duke Energy Carolinas, LLC
DCF Equity Cost Growth Rate Measures

Analysts Projected EPS Growth Rate Estimates

Panel A
Electric Proxy Group

Company Yahoo Zacks Mean
ALLETE, Inc. (NYSE-ALE) 7.0% 7.2% 7.1%
Alliant  Energy Corporation (NYSE-LNT) 5.4% 5.5% 5.4%
Ameren Corporation (NYSE-AEE) 6.1% 5.7% 5.9%
American Electric Power Co. (NYSE-AEP) 4.6% 6.2% 5.4%
Avangrid (NYSE-AVG) 3.5% 3.4% 3.4%
Avista Corp (NYSE-AVA) 6.2% 7.4% 6.8%
CMS Energy Corporation (NYSE-CMS) 7.5% 6.4% 7.0%
Consolidated Edison, Inc. (NYSE-ED) 2.4% 2.0% 2.2%
Dominion Energy Inc. (NYSE-D) 4.4% 4.8% 4.6%
Duke Energy Corporation (NYSE-DUK) 4.4% 4.8% 4.6%
Edison International (NYSE-EIX) 3.9% 5.4% 4.7%
Entergy Corporation (NYSE-ETR) -1.5% 7.0%
Evergy (NYSE-EVRG) 6.7% 6.6% 6.6%
Eversource Energy (NYSE-ES) 5.5% 5.6% 5.5%
Exelon Corporation (NYSE-EXC) 0.5% 4.2% 2.3%
FirstEnergy Corporation (NYSE-FE) -6.6% 6.0%
Hawaiian Electric Industries (NYSE-HE) 3.4% 4.2% 3.8%
IDACORP, Inc. (NYSE-IDA) 2.5% 3.9% 3.2%
MGE Energy, Inc. (NYSE-MGEE) 4.0% N/A 4.0%
Nextera Energy, Inc. (NYSE-NEE) 8.0% 8.0% 8.0%
NorthWestern Corporation (NYSE-NWE) 3.2% 2.8% 3.0%
OGE Energy Corp. (NYSE-OGE) 3.5% 4.3% 3.9%
Pinnacle West Capital Corp. (NYSE-PNW) 4.1% 4.9% 4.5%
PNM Resources, Inc. (NYSE-PNM) 6.3% 5.4% 5.8%
Portland General Electric Company (NYSE-POR) 4.8% 4.8% 4.8%
PPL Corporation (NYSE-PPL) 0.5% N/A 0.5%
Sempra Energy (NYSE-SRE) 10.1% 7.7% 8.9%
Southern Company (NYSE-SO) 1.5% 4.5% 3.0%
WEC Energy Group (NYSE-WEC) 6.1% 6.1% 6.1%
Xcel Energy Inc. (NYSE-XEL) 6.1% 5.4% 5.8%
Mean 4.1% 5.4% 4.9%
Median 4.4% 5.4% 4.7%
Data Sources: www reuters com, www zacks com, http://quote yahoo com, January, 2020
*  Entergy and FirstEnergy were excluded  from the DCF analysis due to negative projected EPS growth rates

Panel B
Hevert Proxy Group

Company Yahoo Zacks Mean
ALLETE, Inc. (NYSE-ALE) 7.0% 7.2% 7.1%
Alliant  Energy Corporation (NYSE-LNT) 5.4% 5.5% 5.4%
Ameren Corporation (NYSE-AEE) 6.1% 5.7% 5.9%
American Electric Power Co. (NYSE-AEP) 4.6% 6.2% 5.4%
Avangrid (NYSE-AVG) 3.5% 3.4% 3.4%
CMS Energy Corporation (NYSE-CMS) 7.5% 6.4% 7.0%
DTE Energy Company (NYSE-DTE) 4.8% 6.0% 5.4%
Evergy (NYSE-EVRG) 6.7% 6.6% 6.6%
Hawaiian Electric Industries (NYSE-HE) 3.4% 4.2% 3.8%
Nextera Energy, Inc. (NYSE-NEE) 8.0% 8.0% 8.0%
NorthWestern Corporation (NYSE-NWE) 3.2% 2.8% 3.0%
OGE Energy Corp. (NYSE-OGE) 3.5% 4.3% 3.9%
Otter Tail Corporation (NDQ-OTTR) 9.0% 7.0% 8.0%
Pinnacle West Capital Corp. (NYSE-PNW) 4.1% 4.9% 4.5%
PNM Resources, Inc. (NYSE-PNM) 6.3% 5.4% 5.8%
Portland General Electric Company (NYSE-POR) 4.8% 4.8% 4.8%
Southern Company (NYSE-SO) 1.5% 4.5% 3.0%
WEC Energy Group (NYSE-WEC) 6.1% 6.1% 6.1%
Xcel Energy Inc. (NYSE-XEL) 6.1% 5.4% 5.8%
Mean 5.3% 5.5% 5.4%
Median 5.4% 5.5% 5.4%
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Duke Energy Carolinas, LLC
DCF Growth Rate Indicators

Electric and Hevert Proxy Groups
Growth Rate Indicator Electric Proxy Group Hevert Proxy Group
Historic Value Line  Growth 
in EPS, DPS, and BVPS 4.3% 4.8%
Projected Value Line  Growth 
in EPS, DPS, and BVPS 5.1% 5.1%
Sustainable Growth
ROE * Retention Rate 3.6% 3.4%
Projected EPS Growth from Yahoo, Zacks, 
and Reuters - Mean/Median 4.9%/4.7% 5.4%/5.4%
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Thirty-Year U.S. Treasury Yields
2013-2020

 Source: Federal Reserve Bank of St. Louis, FRED Database.
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Panel A
Electric Proxy Group

Company Name Beta
ALLETE, Inc. (NYSE-ALE) 0.65
Alliant  Energy Corporation (NYSE-LNT) 0.60
Ameren Corporation (NYSE-AEE) 0.55
American Electric Power Co. (NYSE-AEP) 0.55
Avangrid (NYSE-AVG) 0.40
Avista Corp (NYSE-AVA) 0.60
CMS Energy Corporation (NYSE-CMS) 0.50
Consolidated Edison, Inc. (NYSE-ED) 0.45
Dominion Energy Inc. (NYSE-D) 0.55
Duke Energy Corporation (NYSE-DUK) 0.50
Edison International (NYSE-EIX) 0.55
Entergy Corporation (NYSE-ETR) 0.60
Evergy (NYSE:EVRG) NMF
Eversource Energy (NYSE-ES) 0.55
Exelon Corporation (NYSE-EXC) 0.65
FirstEnergy Corporation (NYSE-FE) 0.65
Hawaiian Electric Industries (NYSE-HE) 0.55
IDACORP, Inc. (NYSE-IDA) 0.55
MGE Energy, Inc. (NYSE-MGEE) 0.55
NextEra Energy, Inc. (NYSE-NEE) 0.55
NorthWestern Corporation (NYSE-NWE) 0.60
OGE Energy Corp. (NYSE-OGE) 0.75
Pinnacle West Capital Corp. (NYSE-PNW) 0.50
PNM Resources, Inc. (NYSE-PNM) 0.60
Portland General Electric Company (NYSE-POR) 0.55
PPL Corporation (NYSE-PPL) 0.70
Sempra Energy (NYSE-SRE) 0.70
Southern Company (NYSE-SO) 0.50
WEC Energy Group (NYSE-WEC) 0.50
Xcel Energy Inc. (NYSE-XEL) 0.50
Mean 0.58
Median 0.55
Data Source   Value Line Investment Survey , 2019.

Panel B
Hevert Proxy Group
Company Beta

ALLETE, Inc. (NYSE-ALE) 0.65
Alliant  Energy Corporation (NYSE-LNT) 0.60
Ameren Corporation (NYSE-AEE) 0.55
American Electric Power Co. (NYSE-AEP) 0.55
Avangrid (NYSE-AVG) 0.40
CMS Energy Corporation (NYSE-CMS) 0.50
DTE Energy Company (NYSE-DTE) 0.55
Evergy (NYSE:EVRG) NMF
Hawaiian Electric Industries (NYSE-HE) 0.55
NextEra Energy, Inc. (NYSE-NEE) 0.55
NorthWestern Corporation (NYSE-NWE) 0.60
OGE Energy Corp. (NYSE-OGE) 0.80
Otter Tail Corporation (NDQ-OTTR) 0.70
Pinnacle West Capital Corp. (NYSE-PNW) 0.50
PNM Resources, Inc. (NYSE-PNM) 0.60
Portland General Electric Company (NYSE-POR) 0.55
Southern Company (NYSE-SO) 0.50
WEC Energy Group (NYSE-WEC) 0.50
Xcel Energy Inc. (NYSE-XEL) 0.50
Mean 0.56
Median 0.55
Data Source   Value Line Investment Survey , 2019.
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Capital Asset Pricing Model
Market Risk Premium

Publication Time Period Return Range Midpoint Median
Category Study Authors Date Of Study Methodology Measure Low High of Range Mean
Historical Risk Premium

Ibbotson 2016 1928-2015 Historical Stock Returns - Bond Returns Arithmetic 6.00%
Geometric 4.40%

Damodaran 2020 1928-2019 Historical Stock Returns - Bond Returns Arithmetic 6.43%
Geometric 4.83%

Dimson, Marsh, Staunton _Credit Suisse Repo 2019 1900-2018 Historical Stock Returns - Bond Returns Arithmetic 5.50%
Geometric

Bate 2008 1900-2007 Historical Stock Returns - Bond Returns Geometric 4.50%

Shiller 2006 1926-2005 Historical Stock Returns - Bond Returns Arithmetic 7.00%
Geometric 5.50%

Siegel 2005 1926-2005 Historical Stock Returns - Bond Returns Arithmetic 6.10%
Geometric 4.60%

Dimson, Marsh, and Staunton 2006 1900-2005 Historical Stock Returns - Bond Returns Arithmetic 5.50%

Goyal & Welch 2006 1872-2004 Historical Stock Returns - Bond Returns 4.77%

Median 5.50%

Ex Ante Models (Puzzle Research)
Claus Thomas 2001 1985-1998 Abnormal Earnings Model 3.00%
Arnott and Bernstein 2002 1810-2001 Fundamentals - Div Yld  Growth 2.40%
Constantinides 2002 1872-2000 Historical Returns & Fundamentals - P/D & P/E 6.90%

 Cornell 1999 1926-1997 Historical Returns & Fundamental GDP/Earnings 3.50% 5.50% 4.50% 4.50%
Easton, Taylor, et al 2002 1981-1998 Residual Income Model 5.30%
Fama French 2002 1951-2000 Fundamental DCF with EPS and DPS Growth 2.55% 4.32% 3.44%
Harris & Marston 2001 1982-1998 Fundamental DCF with Analysts' EPS Growth 7.14%
McKinsey 2002 1962-2002 Fundamental (P/E, D/P, & Earnings Growth) 3.50% 4.00% 3.75%
Siegel 2005 1802-2001 Historical Earnings Yield Geometric 2.50%
Grabowski 2006 1926-2005 Historical and Projected 3.50% 6.00% 4.75% 4.75%
Maheu & McCurdy 2006 1885-2003 Historical Excess Returns, Structural Breaks, 4.02% 5.10% 4.56% 4.56%
Bostock 2004 1960-2002 Bond Yields, Credit Risk, and Income Volatility 3.90% 1.30% 2.60% 2.60%
Bakshi & Chen 2005 1982-1998 Fundamentals - Interest Rates 7.31%
Donaldson, Kamstra, & Kramer 2006 1952-2004 Fundamental, Dividend yld., Returns,, & Volatility 3.00% 4.00% 3.50% 3.50%
Campbell 2008 1982-2007 Historical & Projections (D/P & Earnings Growth) 4.10% 5.40% 4.75%
Best & Byrne 2001 Projection Fundamentals - Div Yld  Growth 2.00%
Fernandez 2007 Projection Required Equity Risk Premium 4.00%
DeLong & Magin 2008 Projection Earnings Yield - TIPS 3.22%
Siegel - Rethink ERP 2011 Projection Real Stock Returns and Components 5.50%
Duff & Phelps 2019 Projection Normalized with 3.5% Long-Term Treasury Yield 5.50%
Mschchowski - VL - 2014 2014 Projection Fundamentals - Expected Return Minus 10-Year Treasury Rate 5.50%
American Appraisal Quarterly ERP 2015 Projection Fundamental Economic and Market Factors 6.00%
Market Risk Premia 2019 Projection Fundamental Economic and Market Factors 4.29%
KPMG 2019 Projection Fundamental Economic and Market Factors 5.75%
Damodaran - 1-1-20 2020 Projection Fundamentals - Implied from FCF to Equity Model (Trailing 12 month, with adjusted payout) 4.79%
Social Security
Office of Chief Actuary 1900-1995
John Campbell 2001 1860-2000 Historical & Projections (D/P & Earnings Growth) Arithmetic 3.00% 4.00% 3.50% 3.50%

Projected for 75 Years Geometric 1.50% 2.50% 2.00% 2.00%
Peter Diamond 2001 Projected for 75 YearsFundamentals (D/P, GDP Growth) 3.00% 4.80% 3.90% 3.90%
John Shoven 2001 Projected for 75 YearsFundamentals (D/P, P/E, GDP Growth) 3.00% 3.50% 3.25% 3.25%
Median 4.29%

Surveys
New York Fed 2015 Five-Year Survey of Wall Street Firms 5.70%
Survey of Financial Forecasters 2019 10-Year Projection About 20 Financial Forecastsers 1.85%
Duke - CFO Magazine Survey 2019 10-Year Projection Approximately 200 CFOs 4.05%
Welch - Academics 2008 30-Year Projection Random Academics 5.00% 5.74% 5.37% 5.37%
Fernandez - Academics, Analysts, and Compan 2019 Long-Term Survey of Academics, Analysts, and Companies 5.60%
Median 5.37%

Building Block
Ibbotson and Chen 2015 Projection Historical Supply Model (D/P & Earnings Growth) Arithmetic 6.22% 5.21%

Geometric 4.20%
Chen - Rethink ERP 2010 20-Year Projection Combination Supply Model (Historic and Projection) Geometric 4.00%
Ilmanen - Rethink ERP 2010 Projection Current Supply Model (D/P & Earnings Growth) Geometric 3.00%
Grinold, Kroner, Siegel - Rethink ERP 2011 Projection Current Supply Model (D/P & Earnings Growth) Arithmetic 4.63% 4.12%

Geometric 3.60%
Median 4.06%

Mean 4.80%
Median 4.83%
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Capital Asset Pricing Model
Market Risk Premium

Summary of 2010-20 Equity Risk Premium Studies
Publication Time Period Return Range Midpoint Average

Category Study Authors Date Of Study Methodology Measure Low High of Range Mean
Historical Risk Premium

Ibbotson 2016 1928-2015 Historical Stock Returns - Bond Returns Arithmetic 6 00%
Geometric 4 40%

Damodaran 2020 1928-2019 Historical Stock Returns - Bond Returns Arithmetic 6 43%
Geometric 4 83%

Dimson, Marsh, Staunton _Credit Suisse Report 2019 1900-2018 Historical Stock Returns - Bond Returns Arithmetic 5 50%
Geometric

Median 5 43%

Ex Ante Models (Puzzle Research)
Siegel - Rethink ERP 2011 Projection Real Stock Returns and Components 5 50%
Duff & Phelps 2019 Projection Normalized with 3 5% Long-Term Treasury Yield 5 50%
Mschchowski - VL - 2014 2014 Projection Fundamentals - Expected Return Minus 10-Year Treasury Rate 5 50%
American Appraisal Quarterly ERP 2015 Projection Fundamental Economic and Market Factors 6 00%
Market Risk Premia 2019 Projection Fundamental Economic and Market Factors 4 29%
KPMG 2019 Projection Fundamental Economic and Market Factors 5 75%
Damodaran - 1-1-20 2020 Projection Fundamentals - Implied from FCF to Equity Model (Trailing 12 month, with adjusted payout) 4 79%
Median 5 50%

Surveys
New York Fed 2015 Five-Year Survey of Wall Street Firms 5 70%
Survey of Financial Forecasters 2019 10-Year Projection About 20 Financial Forecastsers 1 85%
Duke - CFO Magazine Survey 2019 10-Year Projection Approximately 200 CFOs 4 05%
Fernandez - Academics, Analysts, and Companies 2019 Long-Term Survey of Academics, Analysts, and Companies 5 60%
Median 4 83%

Building Block
Ibbotson and Chen 2015 Projection Historical Supply Model (D/P & Earnings Growth) Arithmetic 6 22% 5 21%

Geometric 4 20%
Chen - Rethink ERP 2010 20-Year Projection Combination Supply Model (Historic and Projection) Geometric 4 00%
Ilmanen - Rethink ERP 2010 Projection Current Supply Model (D/P & Earnings Growth) Geometric 3 00%
Grinold, Kroner, Siegel - Rethink ERP 2011 Projection Current Supply Model (D/P & Earnings Growth) Arithmetic 4 63% 4 12%

Geometric 3 60%
Median 4 06%

Mean 4.95%
Median 5.13%

I/A
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   Duff & Phelps Risk-Free Interest Rates and Equity Risk Premium Estimates

Source: https://www.duffandphelps.com/-/media/assets/pdfs/publications/valuation/coc/erp-risk-free-rates-jan-2008-present.ashx?la=en
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CAPM Study
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Panel A
 KPMG Equity Risk Premium Recommendation

Source: https://assets.kpmg/content/dam/kpmg/nl/pdf/2019/advisory/equity-market-research-summary pdf

Panel B
 Market-Risk-Premia.com Implied Market Risk Premium

30-Nov-19

Market
Return
5 78%

Risk
Premium
4 00%

Risk-Free
Rate

1.78%

Source: http://www market-risk-premia com/us html

I/A
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Duke Energy Carolinas, LLC ROE Results
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Panel A
Mr. Hevert's DCF Results

Panel B
Mr. Hevert's CAPM Results

I/A
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Nominal GDP Growth Rates
Annual Growth Rates - 1961-2018

Data Sources: GDPA -https://fred.stlouisfed.org/series/GDPA

I/A
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Annual Real GDP Growth Rates
1961-2018

Data Sources: GDPC1 - https://fred.stlouisfed.org/series/GDPCA

I/A
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Annual Inflation Rates
1961-2018

Data Sources: CPIAUCSL - https://fred.stlouisfed.org/series/CPIAUCSL

I/A
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GDP and S&P 500 Growth Rates
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Long-Term Growth of GDP, S&P 500, S&P 500 EPS, and S&P 500 DPS

GDP S&P 500 S&P 500 EPS S&P 500 DPS
Growth Rates 6.47 6.95 6.70 5.82

I/A
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