McGuireWoods LLP 434 Fayetteville Street Suite 2600 PO Box 27507 (27611) Raleigh, NC 27601 Phone: 919.755.6600 Fax: 919.755.6699 www.mcguirewoods.com

Andrea R. Kells Direct: 919.755.6614 MCGUIREWOODS

akells@mcguirewoods.com

OFFICIAL COP

Aug 29 2019

August 29, 2019

VIA ELECTRONIC DELIVERY

Ms. Janice Fulmore, Deputy Clerk Ms. Antonia Dunston, Deputy Clerk North Carolina Utilities Commission **Dobbs Building** 430 North Salisbury Street Raleigh, North Carolina 27603

Re: **Docket No. E-100, Sub 157 2019 Integrated Resource Plan Update Filing**

Dear Ms. Fulmore and Ms. Dunston:

Pursuant to §§ 62-2 and 62-110.1 of the North Carolina General Statutes and Rule R8- 60(h)(1) of the Rules and Regulations of the North Carolina Utilities Commission (the "Commission"), Virginia Electric and Power Company (the "Company") encloses for electronic filing with the Commission the Public version of its 2019 Integrated Resource Plan Update (the "2019 Update"). The Company is filing the 2019 Update contemporaneously with the filing of its 2019 Update in its Virginia jurisdiction, pursuant to Va. Code § 56-599.

The Company is working diligently to complete the rate impact analysis of the Alternative Plans contained in this 2019 Update, and to provide the information regarding savings projections, each of which was discussed at pages 14 and 19, respectively, of the Company's Reply Comments submitted in this proceeding on July 5, 2019, but needs additional time to finalize this information. The Company will submit a supplemental filing to the Commission with this information within 60 days of this 2019 Update. The Company has discussed this approach with the Public Staff and the Public Staff does not oppose it.

Enclosed with the *electronic filing* of this 2019 Update is the public version of the NC Plan Addenda 1-3. NC Plan Addendum 1 is the public (redacted) version of the Company's 2019 Renewable Energy and Energy Efficiency Portfolio Standard ("REPS") Compliance Plan, which is being filed pursuant to Rules R8-60(h)(4) and R8-67(b).

NC Plan Addendum 2 contains pages 422, 423, 424, 425, 426, and 427 of the Company's most recently-filed Federal Energy Regulatory Commission ("FERC") Form 1 and is being provided with the 2019 Update pursuant to Rule R8-62(p)(1). Information contained in NC Plan Addendum 2 is entirely public.

Ms. Janice Fulmore, Deputy Clerk Ms. Antonia Dunston, Deputy Clerk August 29, 2019 Page 2

<u>NC Plan Addendum 3</u> contains the public (redacted) version of the Company's FERC Form 715 and all attachments and exhibits as required by the Commission in previous orders. The maps attached to FERC Form 715 are considered confidential because they contain critical energy infrastructure information, including the Company's transmission capacity and known constraints, and therefore have been redacted. In keeping with our practice in prior years, the Company is filing by hand under separate cover four (4) hard copies of the most recent FERC Form 715, with the attached maps to be maintained as *confidential filed under seal*.

In accordance with Ordering Paragraph (3) of the Commission's June 3, 2013 *Order Granting in Part and Denying in Part Motion for Disclosure* issued in Docket No. E-100, Sub 137, the Company has reviewed its 2015 REPS Compliance Plan for any redacted information that no longer qualifies as "trade secrets" under N.C. Gen. Stat. § 66-152(3), and is simultaneously filing an updated 2015 REPS Plan under separate cover letter in Docket Nos. E-100, Sub 137 and E-100, Sub 157, consistent with that requirement.

Included with this filing letter is a reference index identifying the provisions of the Commission's integrated resource planning requirements under prior Commission Orders and Rules with the corresponding sections of the 2019 Update.

Pursuant to Ordering Paragraph (5) of the Commission's July 9, 2007 Order Approving Integrated Resource Plans issued in Docket No. E-100, Sub 109, the Company will confer with the Public Staff within 30 days of the filing date to discuss detailed information concerning its transmission line inter-tie capabilities, transmission line loading constraints, and planned new construction and upgrades within their respective control areas for the planning period under consideration.

In accordance with Rule R8-60(m), the Company will notify parties of record to this proceeding as well as any non-parties that attended DENC's 2018 integrated resource planning Stakeholder Review meeting of the time and place for its 2019 integrated resource planning Stakeholder Review meeting to be held on or before November 30, 2019.

The confidential pages of this filing are being filed electronically with the Commission, and the Company respectfully requests that the Commission treat the information in that filing as *confidential filed under seal* and protect it from public disclosure pursuant to N.C. Gen. Stat. § 132-1.2 and Rule 8-60(h)(5).

Therefore, please find enclosed for electronic filing the **Public** version of the 2019 Update, including <u>NC Plan Addenda 1-3</u>, with the confidential information redacted, as appropriate.

Ms. Janice Fulmore, Deputy Clerk Ms. Antonia Dunston, Deputy Clerk August 29, 2019 Page 3

Please do not hesitate to contact me if you have any questions. Thank you for your assistance in this matter.

Very truly yours,

/s/Andrea R. Kells

ARK:kjg

Enclosures

Paul D. Koonce President & CEO – Power Generation Group

120 Tredegar Street, Richmond, VA 23219 DominionEnergy.com

August 29, 2019

Ms. Janice Fulmore, Deputy Clerk Ms. Antonia Dunston, Deputy Clerk North Carolina Utilities Commission Dobbs Building 430 North Salisbury Street Raleigh, North Carolina 27603

Re: Docket No. E-100, Sub 157

Dear Ms. Fulmore and Ms. Dunston:

Virginia Electric and Power Company ("the Company") is pleased to submit to the Virginia State Corporation Commission ("Commission") its 2019 update ("2019 Update") to its 2018 Integrated Resource Plan (the "2018 Plan"). The 2019 Update is submitted in accordance with § 56-599 of the Code of Virginia and the Commission's Integrated Resource Planning Guidelines issued on December 23, 2008. Simultaneously, the 2019 Update is also being filed with the North Carolina Utilities Commission ("NCUC") in accordance with § 62-2 of the North Carolina General Statutes and Rule R8-60 of the NCUC's Rules and Regulations.

The 2019 Update reflects the Company's belief that regulation of power station carbon dioxide ("CO₂") emissions is imminent, whether through federal or state initiatives, or both. At the federal level, the U.S. Environmental Protection Agency released the final version of the Affordable Clean Energy ("ACE") rule on June 19, 2019. The ACE rule, which supplants the Clean Power Plan, requires heat rate efficiency improvements at existing coal-fired units based on a range of candidate technologies. The ACE rule requires that each state determine which of the candidate technologies apply to each coal-fired unit based on consideration of remaining useful plant life and other factors, such as reasonableness of cost.

At the state level, the Virginia Department of Environmental Quality ("DEQ") published a final rule on May 27, 2019, that establishes a state cap-and-trade program for electric generating units in Virginia. The final regulation has removed specific references to the Regional Greenhouse Gas Initiative ("RGGI") program. However, the regulation remains structured in such a way that the Virginia program could link with a regional program such as the existing nine-state RGGI program.

The final rule includes a provision that accounts for the delayed implementation given language in the state budget bill (signed by Virginia Governor Ralph Northam on May 2, 2019). Specifically, implementation of most elements of the program, including requirements for holding and surrendering CO_2 allowances, will likely be delayed to the calendar year following authorization for funding to

implement the program. Nevertheless, the final regulation became effective on June 26, 2019. The regulation includes a starting (baseline) statewide CO_2 emissions cap of 28 million tons in 2020. The cap is reduced by about 3 percent per year through 2030, resulting in a 2030 cap of 19.6 million tons. However, the starting cap could be adjusted if initial implementation of the rule is delayed.

Because of the uncertainty regarding the final form of carbon emission regulations, the 2019 Update presents options ("Alternative Plans") representing plausible future long-term paths for meeting the energy needs of the Company's customers. The Company also offers a strategic plan for the next five years in its Short-Term Action Plan.

The Update Reflects the Transition to a Lower Emission Rate Future

The Company has been a leader in reducing carbon emissions, having begun its transition to a lower carbon emissions generating fleet well before the proposed federal and state carbon regulations discussed in the 2019 Update. Between 2000 and 2018, the carbon emissions of the Company's units serving Virginia declined by 32% while power production from these units increased 12%. On March 25, 2019, the Company committed to an 80% reduction in greenhouse gas emissions by 2050. Simultaneous to that announcement, the Company also put forth a five-year plan that includes development of offshore wind, a new pumped hydroelectric storage facility, additional solar photovoltaic ("PV") resources, and distribution system modernization.

Carbon regulations are not the only driver for clean energy. Support for carbon reduction is reflected in feedback the Company has received from customers seeking clean energy. Indeed, many of the Company's customer segments, including data center customers, colleges, universities, financial institutions, retail chains, and commercial customers are seeking renewable energy solutions. Increased interest in clean energy is also reflected by participation in the Company's Green Power Program, which has experienced a customer compound annual growth rate ("CAGR") of approximately 20% for the years 2009 through 2018.

Renewable resources are becoming a more cost-effective means of meeting the growing energy demands of customers. This is particularly true of solar power. The continuing development of solar PV technology has made this type of generation cost-competitive with other, more traditional forms of generation. Supplemented by units using lower-emitting natural gas, solar PV will play an increasingly important role in the Company's generation fleet serving customers in Virginia and North Carolina. In fact, all three of the Alternative Plans presented in the 2019 Update, including the least-cost plan, call for the potential development of 840 megawatts ("MW") of additional solar capacity by 2022. By 2044, Alternative Plans A, B, and C would expand the Company's solar fleet by 5,400 MW, 7,080 MW and 5,640 MW respectively.

The Virginia General Assembly affirmed the growing importance of renewable energy generation in passing the Grid Transformation and Security Act of 2018 (the "GTSA"), which was signed into law by Governor Ralph Northam on March 9, 2018. The law found that up to 5,000 MW of utility-scale electric generating facilities powered by solar and wind energy statewide is in the public interest, along with up to an additional 500 MW of non-utility scale solar or wind generating facilities, including rooftop solar

installations. The GTSA also encouraged electric distribution grid transformation projects, in part to facilitate the integration of renewable generation resources into the Company's system.

While acknowledging the rapidly increasing role of renewable resources, the 2019 Update identifies an economical blend of resources capable of meeting the future energy needs of the Company's customers under a variety of scenarios. The 2019 Update recognizes the continued importance of lower-emissions natural gas as a significant source of electric generation, with all three Alternative Plans including potential development of 2,425 MW of additional combustion turbine ("CT") capacity by 2044.

The 2019 Update includes more detail on the Company's plans for energy storage and offshore wind. As part of the Short-Term Action Plan, over the next five years, the Company expects to continue development of energy storage alternatives, including battery storage and a new pumped hydroelectric storage facility in western Virginia. On August 2, 2019, the Company submitted its first application to participate in the Virginia pilot program for electric power storage batteries established by the Commission pursuant to the GTSA. The application presents three projects with an aggregate capacity of 16 MW. The Company may seek approval of additional projects in future applications up to the 30 MW authorized under the pilot program. Meanwhile, the Company continues to evaluate the potential for construction of a pumped hydroelectric storage facility at a site in Tazewell County and will spend the remainder of 2019 and part of 2020 conducting more extensive surveys of the proposed site. The project could generate thousands of construction jobs as well as provide a major new source of local taxes for the region. With regard to offshore wind, the Company is constructing the Coastal Virginia Offshore Wind demonstration project and will continue development of the first tranche (852 MW) of utility-scale offshore wind generation.

The 2019 Update also continues to recognize that nuclear power must continue to play a major role in power generation in a lower-carbon, lower-emissions future. Each of the Alternative Plans assumes that the Company's nuclear generation fleet in Virginia, which includes two reactors at Surry Power Station and two at North Anna Power Station, will receive 20-year operating license extensions from the U.S. Nuclear Regulatory Commission. Relicensing the units will ensure that these reactors continue their zero-carbon production of electricity into the second half of the 21st century. The Surry and North Anna nuclear units continue to be by far the largest source of zero-emissions generation for the Company. Their operation avoids the release of approximately 22 million tons of CO₂ per year. Approximately 12,500 MW of solar PV facilities covering about 100,000 acres would be needed to match the nuclear units' annual power output.

In addition to new and relicensed generation, the 2019 Update also evaluates demand-side management ("DSM") programs to help customers conserve energy or reduce system peak loads. In this 2019 Update, the Company includes DSM programs that received Commission approval. On July 12, 2019, in North Carolina, the Company filed for approval of additional DSM programs. The Company is currently awaiting the Final Order for these program applications. Like the 2018 Compliance Filing, the 2019 Update Plan includes a generic energy efficiency program designed to achieve the target of \$870 million of energy efficiency expenditures by 2028.

Alternative Plans Examined by the Company

The 2019 Update presents the three Alternative Plans described below.

- Plan A: No CO₂ Tax Plan A is based on the No CO₂ tax pricing scenario and is designed using least cost modeling methodology with no consideration of CO₂ emissions. Plan A represents the least cost plan consistent with the guidelines in prior Commission Orders.
- Plan B: RGGI Plan B assumes a pricing scenario where Virginia joins RGGI in 2021 and a Federal CO₂ Program is implemented in 2026. Plan B is designed such that the Company's generation expansion plan meets the objectives of the GTSA in terms of new solar and wind generation and the battery pilot program.
- Plan C: Sustainable Investment Plan C assumes a pricing scenario where a Federal CO₂ Program is implemented in 2026. Plan C is designed such that the Company's generation expansion plan meets the objectives of both the GTSA and Senate Bill 1418 (legislation enacted in 2017 that supports construction of pumped hydroelectric generation and storage facilities utilizing on-site and off-site renewable energy resources) in terms of new solar and wind generation, the battery pilot program, and pumped hydroelectric storage facility development.

Common Elements of the Alternative Plans

Major common elements of the three Alternative Plans within the study period 2020 through 2044 include:

- Solar (Utility and Non-Utility Generators): Development of 5,400 MW of solar PV generation by 2044.
- Wind: Construction and operation of the Coastal Virginia Offshore Wind demonstration project. The project is due to be operational in 2020.
- Nuclear: 20-year license extensions for the four Company-owned nuclear units at Surry and North Anna Power Stations. The Surry units would be relicensed by 2032 and 2033, and the North Anna units by 2038 and 2040.
- Natural Gas: The Alternative Plans call for the addition of 10 natural gas-powered CT units with a combined capacity of approximately 2,425 MW by 2044. They would operate in pairs, each representing 485 MW of capacity.
- Demand-Side Management: Implementation of approved DSM programs, capable of reducing overall system peak demand by 265 MW by 2034.
- Potential Retirements (Fossil Fuels & Biomass): All plans retire Possum Point 5 in 2021 and Yorktown 3 in 2023.

Additional Generation and Retirements in Alternative Plans

In addition to the common elements listed above, the various Alternative Plans contain additional resources and potential retirements by 2044, the end of the 25-year study period.

- Plan B (RGGI) includes 1,680 MW of additional solar and one additional pair of CT units totaling 485 MW.
- Plan C (Sustainable Investment) includes 240 MW of additional solar; two pairs of CT units at 970 MW; the first tranche (852 MW) of utility-scale offshore wind generation; and the 300 MW proposed pumped hydroelectric storage facility.
- Plans B and C both include the 30 MW of battery storage authorized under the Virginia pilot program for electric power storage batteries established by the Commission pursuant to the GTSA.
- Plans B and C both include the potential retirement of 1,453 MW of coal units: Chesterfield 5 & 6 (1,014 MW) and Clover 1 and 2 (439 MW).

Cost of Alternative Plans

Plans B and C, both of which envision compliance with state and federal carbon regulations would impose higher costs on customers. The net present value ("NPV") of costs associated with the two plans including carbon regulations are greater than the NPV of the No CO_2 Tax plan by \$6.52 billion for Plan B (RGGI) and \$7.48 billion for Plan C (Sustainable Investment).

Dominion Energy Virginia's Commitment

Dominion Energy Virginia remains committed to its longstanding goals of operating responsibly; maintaining a diverse, balanced generation fleet that avoids over-reliance on a single fuel type or technology; and providing reliable and affordable energy to its customers. These goals guided the development of the 2019 Update and will guide the Company in the future.

Sincerely,

uh. Voon

Paul D. Koonce

Virginia Electric and Power Company Docket No. E-100, Sub 157 2019 Integrated Resource Plan Update – Reference Index

Order / Guideline	2019 Update Section
(1) E-100, Sub 109, OP4	Filing Letter
(2) E-100, Subs 118, 124, OP5	NC Plan Addendum 3
(3) E-100, Sub 128, OP5	FERC Form 715
(4) E-100, Sub 128, OP5	
(5) E-100, Sub 137, OP5	
(6) E-100, Sub 141, OP 5	
(8) E-100, Sub 84, OP 4	
(10) E-100 Sub 137. OP6	
(1) E-100, Sub 109, OP5	Addressed in Filing Letter
(1) E-100, Sub 109, OP6	Appendix 3B
	Other Generation Units
(1) E-100, Sub 109, OP7	Section 5.b
	Busbar Analysis
(1) E-100, Sub 109, OP8	Appendix 3L
	Wholesale Power Contracts
(1) E-100, Sub 109, OP9	Section 7.e
	Demand-Side Management
(8) E-100, Sub 84, OP5	Section 4.a
	Economic Development Rates
(10) E-100, Sub 137, OP14	Section 5
(10) E-100 Sub 137, pp. 35-36	Future Supply-Side Resources
(/) E-100, Sub 14/, pp. 60-61	Section 5.c
	Energy Storage Technologies
Rule R8-60 (c) (1)	Section 4
	Load Forecast
Rule R8-60 (c) (2)	Section 5.c
	Energy Storage Technologies
Rule R8-60 (h) (3)	Section 7
	Short-Term Action Plan
Rule R8-60 (h) (4)	NC Plan Addendum 1
	NC REPS Compliance Plan

OFFICIAL COPY

Rule $R_{-60}(i)(1)$	Section 4
	Load Forecast
	Loud Torecust
Rule R8-60 (i) (1) (i)	Appendix 2A
	Total Sales by Customer Class
	Appendix 2B
	Virginia Sales by Customer Class
	Appendix 2C
	North Carolina Sales by Customer Class
	Appendix 2D
	Total Customer Count
	Annendix 2E
	Virginia Customer Count
	Annondiy 2F
	North Carolina Customer Count
	A mondia 2C
	Appendix 2G
	A mandin 211
	Appendix 2H
	Summer & Winter Peaks for Plan E
	Appendix 21
	Projected Summer & Winter Peak Load
	& Energy for Plan E
Rule R8-60 (i) (1) (ii)	Section 4
	Load Forecast
Rule R8-60 (i) (1) (iii)	Section 3
	The 2019 Update
Rule R8-60 (i) (2) (i)	Annondiy 3A
Kulc Ko-00(1)(2)(1)	Existing Concretion Units in Service
	A nondiv 21
	Appendix 31 Diamod Changes to Evicting Unit
	Convertion
	Generation
	Appendix 3J
	Potential Unit Retirements
Rule R8-60 (i) (2) (ii)	Appendix 3K
	Generation Under Construction
	Appendix 5C
	Planned Generation Under Development
$Rule R_{8-60}(i)(2)(iii)$	Appendix 3R
Kulc Ko-00 (1) (2) (11)	Appendix 3D Other Constant Units
Rule R8-60 (j)	Section 3
	The 2019 Update
	Section 4
	Load Forecast

1	Ø	
	ž	
	2	
	2	

Rule R8-60 (m)	Filing Letter
Rule R8-62 (p) (1)	NC Plan Addendum 2 FERC Form 1
Rule R8-62 (p) (2)	Section 7.c Transmission
Rule R8-62 (p) (3)	Section 7.c Transmission

- (1) Order Approving Integrated Resource Plans, Docket No. E-100, Sub 109 (July 9, 2007).
- (2) Order Approving 2008 and 2009 Integrated Resource Plans and REPS Compliance Plans, Docket No. E-100, Subs 118, 124 (August 10, 2010).
- (3) Order Approving 2010 Integrated Resource Plans and REPS Compliance Plans, Docket No. E-100, Sub 128 (October 26, 2011).
- (4) Order Approving 2011 Annual Updates to 2010 Integrated Resource Plans and 2011 REPS Compliance Plans, Docket No. E-100, Sub 128 (May 30, 2012).
- (5) Order Approving Integrated Resource Plan Annual Update Reports and REPS Compliance Plans, Docket No. E-100, Sub 137 (June 30, 2014).
- (6) Order Approving Integrated Resource Plans and REPS Compliance Plans, Docket No. E-100 Sub 141 (June 26, 2015).
- (7) Order Accepting Integrated Resource Plans and Accepting REPS Compliance Plans, Docket No. E-100, Sub 147 (June 27, 2017).
- (8) Order Adopting Integrated Resource Plans, Docket No. E-100, Sub 84 (June 21, 2000).
- (9) Order Denying Rulemaking Petition, Docket No. E-100, Sub 133 (October 30, 2012)
- .(10) Order Approving Integrated Resource Plans and REPS Compliance Plans, Docket No. E-100, Sub 137 (October 14, 2013).
- (11) Order Granting in Part and Denying in Part Motion for Disclosure, Docket No. E-100, Sub 137 (June 3, 2013).
- (12) Order Amending Commission Rule R8-60 and Adopting Commission Rule R8-60.1, Docket No. E-100, Sub 126 (April 11, 2012).

Virginia Electric and Power Company's 2019 Update to 2018 Integrated Resource Plan

Before the Virginia State Corporation Commission and North Carolina Utilities Commission

PUBLIC VERSION

Case No. PUR-2019-00141 Docket No. E-100, Sub 157

Filed: August 29, 2019

TABLE OF CONTENTS

	Page
SECTION 1. INTEGRATED RESOURCE PLAN UPDATE OVERVIEW	1
a. Introduction to the 2019 Update	1
b. The 2018 Plan	2
SECTION 2. DISCUSSION OF SIGNIFICANT EVENTS	3
a. Environmental Regulations	4
b. Generation Retirements	6
c. Nuclear Relicensing	7
d. Other Events	7
i. Investor Day Presentation	7
ii. New Legislation	8
iii. Capacity Auction	8
SECTION 3. THE 2019 UPDATE	9
a. Analytical Tools and Processes	9
b. Capacity and Energy Positions	9
c. Alternative Plans	11
d. Net Present Value Comparison	13
SECTION 4. LOAD FORECAST	13
a. Economic Development Rates	17
SECTION 5. FUTURE SUPPLY-SIDE RESOURCES	17
a. Alternative Supply-Side Resources	17
b. Busbar Analysis	18
c. Energy Storage Technologies	20
i. Pumped Storage	20

(C)
$\mathbf{\Sigma}$
ដ
2
9
₹

ii. Battery Storage21
SECTION 6. PLANNING ASSUMPTIONS
a. PJM Capacity Value for Renewable Resources
b. Commodity Price Forecast
i. Forecasting of Long-Term Capacity Prices23
SECTION 7. SHORT-TERM ACTION PLAN
a. Generation Resources
b. Renewable Energy Resources
c. Transmission
d. Energy Storage Technologies
e. Demand-Side Management
i. Approved DSM Programs28
ii. Cost/Benefit Analysis29
f. Grid Transformation Plan29
SECTION 8. APPENDIX

VIRGINIA ELECTRIC AND POWER COMPANY 2019 UPDATE TO 2018 INTEGRATED RESOURCE PLAN

1. INTEGRATED RESOURCE PLAN UPDATE OVERVIEW

a. Introduction to the 2019 Update

Virginia Electric and Power Company (the "Company") hereby files its 2019 update ("2019 Update") to its 2018 Integrated Resource Plan (the "2018 Plan") with the State Corporation Commission of Virginia ("SCC") in accordance with § 56-599 of the Code of Virginia ("Va. Code") and the SCC's Integrated Resource Planning Guidelines issued on December 23, 2008 ("SCC Guidelines").¹ The Company also files this 2019 Update with the North Carolina Utilities Commission ("NCUC") in accordance with § 62-2 of the North Carolina General Statutes ("NCGS") and Rule R8-60 of the NCUC's Rules and Regulations ("NCUC Rules").

The 2019 Update was prepared for the Dominion Energy Load Serving Entity ("DOM LSE") and represents the Company's service territories in the Commonwealth of Virginia and the State of North Carolina, which are part of the PJM Interconnection, L.L.C. ("PJM") Regional Transmission Organization ("RTO").

Since the Company first began filing integrated resource plans (generally referred to as "Plans") with both the SCC and NCUC in 2009, this is the first year that an update to the most recently filed Plan (generally referred to as "Updates") was permitted for filing in both jurisdictions. Accordingly, the Company submits this 2019 Update in compliance with Section (E) of the SCC Guidelines and Rule R8-60(h)(2) of the NCUC Rules, and consistent with any requirements identified in prior relevant orders that continue to be applicable to Update filings.

As required by both the SCC Guidelines and the NCUC Rules, the Company's objective in this 2019 Update is to provide a discussion of significant events requiring a major revision to the most recently filed Plan—here, the 2018 Plan along with the 2018 Compliance Filing filed on March 7, 2019. The regulation of electric sector carbon dioxide ("CO₂") emissions remains the most significant uncertainty. From a public policy perspective, the passage of the Grid Transformation and Security Act of 2018 (the "GTSA")² by the Virginia General Assembly established policy objectives for the Commonwealth, including the development of 5,000 megawatts ("MW") of solar, onshore wind, and offshore wind generation facilities by 2028 on a statewide basis. These policy objectives coupled with the 2017 Virginia General Assembly passage of Senate Bill ("SB") 1418 supporting construction of pumped hydroelectric generation and storage facilities utilizing on-site and off-site renewable energy resources, underscore the larger role that renewable energy will have in Virginia's future.

Support for these overall public policy goals is reflected in feedback the Company has received from customers opting for clean energy. Indeed, many of the Company's customer segments, including data center customers, colleges, universities, financial institutions, retail chains, and commercial customers are all seeking renewable energy solutions. Other

¹ Commonwealth of Virginia, ex rel. State Corporation Commission, Concerning Electric Utility Integrated Resource Planning Pursuant to §§ 56-597 et seq. Code of Virginia, Case No. PUE-2008-00099, Order Establishing Guidelines for Developing Integrated Resource Plans (Dec. 23, 2008) ("SCC Order Establishing Guidelines").

² 2018 Virginia Acts of Assembly, Chapter 296 (effective July 1, 2018).

customers are opting for clean energy as well, as reflected by participation in the Company's Green Power Program, which has experienced a customer compound annual growth rate ("CAGR") of approximately 20% for the years 2009 through 2018. In addition, net metering customers have increased at an approximately 30% CAGR for the years 2014 through 2018 (approximately 40% CAGR in terms of kilowatts ("kW")). Moreover, Virginia cities including Charlottesville, Alexandria, Richmond, and Norfolk are all developing climate action initiatives with the intent of lowering each area's overall carbon footprint.

The Company is keenly aware of the societal trends identified above and, therefore, continues to steadily transition its generation fleet and transmission and distribution systems to meet a green future. Examples of this transition include:

- 1. The retirement of over 2,300 MW of coal-fired and high heat rate oil- and natural gasfired generation over the past 10-year period;
- 2. The development of the Coastal Virginia Offshore Wind Project ("CVOW") along with the first tranche of offshore wind generation off the coast of Virginia;
- 3. The development of approximately 3,000 MW of solar photovoltaic ("PV") generation by the end of 2022;
- 4. The procurement of approximately 770 MW of solar PV non-utility generation ("NUG") over the past 10 years, most of which is in the Company's North Carolina service territory;
- 5. Continued work to extend the licenses of the Company's nuclear units at both Surry and North Anna;
- The continued progress towards transformation of the Company's distribution system (the "Grid Transformation Plan" or "GT Plan") to provide an enhanced platform for distributed energy resources ("DERs"), which will in turn permit more efficient deployment of demand-side management ("DSM") measures;
- 7. The continued developmental work associated with energy storage technology, which includes a new pumped storage hydroelectric facility in Virginia and the proposed deployment of three battery energy storage system ("BESS") pilot programs; and
- 8. The future development of efficient and reliable combustion turbine ("CT") natural gas-fired generation as a backstop to intermittent renewable resources at a system level.

The Company's gradual yet deliberate transitional approach provides customers a path to green energy while maintaining the standard of reliability necessary to fuel Virginia's modern economy.

b. The 2018 Plan

In 2018, a full Plan filing was required by provisions of Virginia and North Carolina law. Accordingly, on May 1, 2018, the Company filed its 2018 Plan with the SCC (Case No. PUR-2018-00065) and with the NCUC (Docket No. E-100, Sub 157).

The SCC held a hearing on the 2018 Plan beginning on September 24, 2018. On December 7, 2018, the SCC issued an Order ("SCC Dec. 2018 Order") directing the Company to "correct and refile its 2018 [Plan]" subject to provisions specifically set forth in the SCC Dec. 2018 Order. On March 7, 2019, the Company submitted the required filing in compliance with the SCC Dec. 2018 Order (*i.e.*, the 2018 Compliance Filing)³ and requested that the

³ The Company contemporaneously filed the 2018 Compliance Filing in the 2018 Plan NCUC docket (Docket No. E-100, Sub 157).

SCC issue a determination finding the Company's 2018 Plan, together with the submission of the 2018 Compliance Filing, reasonable and in the public interest pursuant to Va. Code § 56-599 E. The SCC held a hearing on the 2018 Compliance Filing on May 8, 2018.

On June 27, 2019, the SCC issued its Final Order on the 2018 Plan ("SCC Final Order"), finding, among other things, that the "2018 [Plan], as originally filed on May 1, 2018, and amended on March 7, 2019: (1) complies with the directives in the [SCC Dec. 2018 Order]; and (2) is reasonable and in the public interest for the specific and limited purpose of filing the planning document as mandated by § 56-597 et seq. of the Code."⁴

The NCUC held a hearing on the 2018 Plan on February 4, 2019. The NCUC issued a final order on the 2018 Plan on August 27, 2019 ("NCUC Final Order"), and stated that the "[NCUC] finds and concludes that [Dominion Energy North Carolina's ("DENC's")] 2018 [Plan] is adequate for planning purposes, and should be accepted, subject to DENC's 2019 IRP Update."⁵

2. DISCUSSION OF SIGNIFICANT EVENTS

As noted above, both the SCC Guidelines and the NCUC Rules require Updates to include a discussion of significant events requiring a major revision to the most recently filed Plan—here, the 2018 Plan. Specifically, Section (E) of the SCC Guidelines requires:

Additionally, by September 1 of each year in which a plan is not required, each utility shall file a narrative summary describing any significant event necessitating a major revision to the most recently filed IRP, including adjustments to the type and size of resources identified. If the utility provides a total system IRP in another jurisdiction by September 1 of the year in which a plan is not required, filing the total system IRP from the other jurisdiction will suffice for purposes of this section.⁶

Similarly, the Rule R8-60(h)(2) of the NCUC Rules requires:

By September 1 of each year in which a biennial report is not required to be filed, an update report shall be filed with the Commission containing an updated 15-year forecast of the items described in subparagraph (c)(1), as well as a summary of any significant amendments or revisions to the most recently filed biennial report, including amendments or revisions to the type and size of resources identified, as applicable.⁷

Both the term "significant" and "major" require judgment on the part of the Company to interpret. Therefore, the Company is including a discussion of significant external events that, in its opinion, have required revision to the 2018 Plan in this 2019 Update.

⁴ SCC Final Order at 3 (internal footnote omitted).

⁵ NCUC Final Order at 86.

⁶ SCC Order Establishing Guidelines, Attachment B, Section (E) at p. 5.

⁷ NCUC Rule R8-60(h)(2).

a. Environmental Regulations

As with prior Plan filings, the area of greatest uncertainty remains federal and/or state regulation of electric sector CO_2 emissions. The Company maintains that some form of future CO_2 regulation is imminent.

On the federal level, the U.S. Environmental Protective Agency ("EPA") released the final version of the Affordable Clean Energy ("ACE") rule, the replacement for the Clean Power Plan ("CPP") on June 19, 2019. The final ACE rule combines three distinct EPA actions.

First, through the ACE rule, the EPA finalized the repeal of the CPP. It also asserted that the repeal is intended to be severable, such that it will survive even if the remainder of the ACE rule is invalidated.

Second, through this action, the EPA finalized the ACE rule, which comprises EPA's determination of the Best System of Emissions Reduction ("BSER") for existing coal-fired power plants and establishment of the procedures that will govern states' promulgation of standards of performance for existing electric generating units ("EGUs") within their borders. The EPA sets the final BSER as heat rate efficiency improvements based on a range of candidate technologies that can be applied inside the fence-line of an EGU. Rather than setting a specific numerical standard of performance for these units, the EPA's rule requires that each state determine which of the candidate technologies apply to each coal-fired unit based on consideration of remaining useful plant life and other factors, such as reasonableness of cost. Each state must then establish standards of performance based on the degree of emission reduction achievable with the application of the applicable elements of BSER.

Third, through the ACE rule, the EPA finalized a number of changes to the implementing regulations for the timing of state plans for this and future Section 111(d) rulemakings of the Clean Air Act. Based on the changes, states will have three years from when the rule is finalized to submit a plan to the EPA, at which point the EPA has one year to determine whether the plan is acceptable. If states do not submit a plan or if their submitted plan is not acceptable, the EPA will have two years to develop a federal plan.

At the state level, on May 27, 2019, the Virginia Department of Environmental Quality ("VDEQ") published a final rule that established a state cap-and-trade program for EGUs in Virginia. The final rule included a section that allowed for delayed VDEQ implementation of the rule to address amendments to the state budget bill (signed by the Virginia Governor) that prohibited VDEQ from continued work on the rule. Specifically, implementation of most elements of the program, including requirements for holding and surrendering CO₂ allowances, likely will be delayed to the calendar year following Virginia General Assembly or Virginia Governor authorization for appropriating funding to implement the program. The earliest date for this action would be January 1, 2021.

Nevertheless, the final regulation became effective on June 26, 2019, and included specific near-term requirements for affected entities under the program. These include:

 A requirement to submit to the VDEQ by August 25, 2019, the annual net-electric output (megawatt-hours or "MWh") for calendar years 2016, 2017, and 2018 for each EGU subject to the rule. This information will be used by the VDEQ to determine the CO₂ allowance allocations for the initial control period; and • A requirement to submit to the VDEQ by January 1, 2020, a complete CO₂ budget permit application for each source with an applicable electric generating unit subject to the program.

In addition, the final VDEQ regulation has removed specific references to the Regional Greenhouse Gas Initiative ("RGGI") program. However, the regulation remains structured in a way that would allow for the Virginia program to link with a regional program such as the existing nine-state RGGI program.

Other key elements of the regulation as finalized are:

- The regulation includes a starting (baseline) statewide CO₂ emissions cap of 28 million tons in 2020. The cap is reduced by about 3 percent per year through 2030, resulting in a 2030 cap of 19.6 million tons. However, as noted above, the starting cap could be adjusted if initial implementation of the rule is delayed.
- The regulation no longer contains any references to continued cap reductions after 2030 that the VDEQ had included in prior versions of the rule.
- The regulation has reinstated language to clarify that affected units under the rule would only have to hold allowances for emissions associated with fossil fuel combustion. The added language assures that the Company's Virginia City Hybrid Energy Center ("VCHEC") will not have to hold allowances for emissions related to biomass co-firing.
- Although the regulation includes a new provision that would recognize eligible emissions offsets from other participating states in a regional trading program, it does not provide the opportunity to generate offsets from projects in Virginia. The VDEQ has indicated it may re-evaluate offset provisions during the next program review.

The Company continues to oppose Virginia's entry into a regional CO₂ cap-and-trade program such as that proposed by the VDEQ. The Company maintains that:

- Virginia's linkage to a RGGI-like program will encourage electricity imports from outof-state sources that are more carbon intensive. This will result in highly efficient and lower emitting natural gas combined-cycle ("NGCC") facilities in Virginia operating less;
- Reductions in carbon emissions in Virginia as a result of the increased use of imported power will be offset by emission increases elsewhere within the North American Electric Reliability Corporation ("NERC") Eastern Interconnect, which includes all of PJM and the RGGI region;
- Increased imports of more carbon-intensive power will result in the carbon footprint per customer in Virginia increasing; and
- Virginia's participation in a regional program such as RGGI will result in additional cost to Virginia electricity consumers and make Virginia less competitive with neighboring non-RGGI states.

In North Carolina, the North Carolina Department of Environmental Quality ("NCDEQ") issued on August 16, 2019, a draft Clean Energy Plan for comment. This plan was required by North Carolina Governor Cooper's Executive Order No. 80 issued in the fall of 2018. A

primary objective of NCDEQ's Plan is to recommend prospective strategies to achieve deep cuts to electric power sector carbon emissions in the state by 2030 (60-70% reduction goal below 2005 levels) with a goal of zero power sector carbon emissions by 2050. Section 4.1 of the NCDEQ Plan⁸ presents a list of potential policy goals, which can generally be summarized into three major categories: 1) modernizing utility incentives; 2) requiring more comprehensive integrated utility system operations planning; and 3) modernizing the grid to support clean energy. The comment period on the NCDEQ Plan extends through September 9, 2019, and the Company plans to file comments.

b. Generation Retirements

In the PJM market, there are 44,684 MW of generation that have been or are planned to be retired between 2011 and 2022, of which 31,621 MW (71%) are coal-fired steam units and 4,673 MW (11%) are natural gas-fired units.⁹ Coal unit retirements are primarily a result of the inability of coal units to compete with efficient combined-cycle ("CC") units burning low cost natural gas. These coal-fired steam units have an average age of 52.9 years and an average size of 195 MW.¹⁰ The natural gas-fired units have an average age of 48.4 years and an average size of 87 MW.¹¹ Retirements have generally consisted of smaller subcritical coal-fired steam units and those without adequate environmental controls to remain viable in the future.

MW	Fuel	Name	Retirement Date
261	Coal	Chesterfield Units 3 & 4	2019
138	Coal	Mecklenburg Units 1 & 2	2019
267	Gas	Bellemeade	2019
227	Gas	Bremo Units 3 & 4	2019
316	Gas	Possum Point Units 3 & 4	2019
83	Biomass	Pittsylvania	2019
786	Oil	Possum Point Unit 5	2021

In March 2019, the Company announced the retirement of eleven units:

In making the decision to retire these units, the Company considered the effects on the power system, including reliability, system diversity, environmental issues, and minimizing long-term power costs to customers. These units were not economical and were not expected to be economical in the future.

Looking forward, based on current market conditions, the following table identifies existing Company coal- and oil-generating resources that may be at risk for retiring. The generators listed below should be considered as tentative for retirement only. The Company's final decisions regarding any unit retirement will be made at a future date.

⁸ See, https://deq.nc.gov/energy-climate/climate-change/nc-climate-change-interagency-council/climate-change-clean-energy-16.

⁹ 2018 State of the Market Report for PJM, at p. 572, Monitoring Analytics, LLC. See,

http://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2018/2018-som-pjm-sec12.pdf. ¹⁰ *Id*.

¹¹ *Id*.

(C)
$\mathbf{\Sigma}$
ដ
2
q

MW	Fuel	Name		
1,014	Coal	Chesterfield Units 5 & 6		
439	Coal	Clover Units 1 & 2		
790	Oil	Yorktown Unit 3		

The Company will continue to study these units and other existing generating resources for possible retirement. As part of this process, the Company evaluates large capital expenditures required to keep units in compliance with environmental regulations to the extent that the units are not retired. One current example is the capital required for Chesterfield Units 5 and 6 to meet the effluent limitation guidelines ("ELG").

c. Nuclear Relicensing

An application for a subsequent or second license renewal ("SLR") is allowed during a nuclear plant's first period of extended operation—that is, in the 40 to 60 years range of its service life. Surry Units 1 and 2 entered into that period in 2012 (Unit 1) and 2013 (Unit 2). North Anna Unit 1 entered into that period in 2018, and North Anna Unit 2 will enter into that period in 2020.

In November 2015, the Company notified the Nuclear Regulatory Commission ("NRC") of its intent to file for SLR for its two nuclear units (1,676 MW total) at Surry in order to operate an additional 20 years, from 60 to 80 years. As with other nuclear units, Surry was originally licensed to operate for 40 years and then renewed for an additional 20 years. The licenses for Surry's two units will expire in 2032 and 2033, respectively. In support of the application development, the NRC finalized guidance documents in early July 2017, related to developing and reviewing SLR applications. The Surry SLR application was submitted to the NRC on October 15, 2018, in accordance with Title 10 of the Code of Federal Regulations ("CFR") Part 54. In early December 2018, the application was accepted for review by the NRC. This is an important milestone in that the application met the NRC requirements to move forward with both the technical and environmental review processes, which are underway. The issuance of the renewed license is expected to take 18 months from the date when the application was accepted for review (*i.e.*, by June 2020). This will preserve the option to continue operation of Surry Units 1 and 2 until 2052 and 2053, respectively.

The Company also notified the NRC in November 2017, of its plans to file a SLR application for its two North Anna units in accordance with 10 CFR Part 54 in late 2020. The existing licenses for the two units will expire in 2038 and 2040, respectively. The issuance of the renewed licenses would follow successful NRC safety and environmental reviews tentatively in the 2022 timeframe.

d. Other Events

i. Investor Day Presentation

As discussed earlier in this 2019 Update, there is a strong societal movement toward the development of clean energy. On March 25, 2019, the Company announced that it is committed to an 80% reduction in greenhouse gas ("GHG") emissions by 2050. Simultaneous to that announcement, the Company also put forth a five-year plan that continues the Company's progress toward achieving this goal, including the development of offshore wind, a new pumped storage hydroelectric facility, continued solar PV development and a distribution system modernization program.

ii. New Legislation

In its 2019 Session, the Virginia General Assembly passed various legislation related to regulated utilities in the Commonwealth. Relevant to the integrated resource planning ("IRP") process were SB 1355¹² and House Bill ("HB") 2547.¹³ SB 1355 requires that any closure plan for the coal ash impoundments at the Company's Bremo Power Station, Chesapeake Energy Center, Chesterfield Power Station, and Possum Point Power Station include either (i) recycling the ash, or (ii) containing the ash in a lined landfill facility. HB 2447 requires the Company to convene a stakeholder process to receive input on the development of time-varying rates, peak shaving programs, and renewable distributed energy resources. To date, the Company has developed a stakeholder group, hired a facilitator (Navigant Consulting, Inc.), and conducted several stakeholder meetings.

iii. Capacity Auction

In a June 2018 Order, the Federal Energy Regulatory Commission ("FERC") found PJM's Tariff to be unjust, unreasonable, and unduly discriminatory because it fails to protect the capacity market from the price suppressive impacts of out-of-market support to new and existing resources.¹⁴ FERC also instituted a paper hearing under Section 206 of the Federal Power Act to determine the just and reasonable replacement rate proposed by PJM. Testimony was submitted in late 2018, and FERC action on the paper hearing remains pending.

Subsequently, FERC granted PJM's request to waive the auction timing requirements of its Tariff to allow for a delay of the 2019 Base Residual Auction ("BRA") for the 2022-2023 delivery year from May 2019 to August 2019. PJM sought to move the BRA, in part, to ensure that it had sufficient time to conduct the auction based on the just and reasonable replacement rate established in this proceeding.

In April 2019, with action on the replacement rate still pending, PJM notified FERC of its intention to run the auction under existing rules unless FERC directed otherwise. On July 25, 2019, FERC issued an order directing PJM not to run the BRA in August 2019.¹⁵

The Company agrees that a delay of the 2022-2023 BRA will permit FERC the time it needs to carefully consider the number of proposed capacity reforms and allow market participants additional time to prepare for any rule changes that will impact the future capacity auctions.

¹² 2019 Virginia Acts of Assembly, Chapter 651 (effective July 1, 2019).

¹³ 2019 Virginia Acts of Assembly, Chapter 742 (effective July 1, 2019).

¹⁴ See, Calpine Corporation, Dynegy Inc., Eastern Generation, LLC, Homer City Generation, L.P., NRG Power Marketing LLC, GenOn Energy Management, LLC, Carroll County Energy LLC, C.P. Crane LLC, Essential Power, LLC, Essential Power OPP, LLC, Essential Power Rock Springs, LLC, Lakewood Cogeneration, L.P., GDF SUEZ Energy Marketing NA, Inc., Oregon Clean Energy, LLC and Panda Power Generation Infrastructure Fund, LLC v. PJM Interconnection, L.L.C., 163 FERC ¶ 61,236 (June 29, 2018) (Order Rejecting Proposed Tariff Revisions, Granting in Part and Denying in Part Complaint, and Instituting Proceeding Under Section 206 of the Federal Power Act) reh'g pending.

¹⁵ See, *Calpine Corp. v. PJM Interconnection, L.L.C.*, 168 FERC ¶ 61,051 (July 25, 2019) (Order on Motion for Supplemental Clarification).

3. THE 2019 UPDATE

As discussed above, the Company's objective in this 2019 Update is to provide a discussion of significant events requiring a revision to the most recently filed Plan. Based on these events, the Company has made adjustments to the type and size of resources identified in the 2018 Plan. As always, the Company's options for meeting these future needs are: (i) supply-side resources, (ii) demand-side resources, and (iii) market purchases. A balanced approach—which includes the consideration of options for maintaining and enhancing rate stability, increasing energy independence, promoting economic development, and incorporating input from stakeholders—will help the Company meet growing demand while protecting customers from a variety of potential challenges and negative impacts.

a. Analytical Tools and Processes

The Company primarily used the PLEXOS model ("PLEXOS"), a utility modeling and resource optimization tool, to develop this 2019 Update over the 25-year period beginning in 2020 and continuing through 2044 (the "Study Period"), using 2019 as the base year. The 2019 Update is based on the Company's current assumptions regarding commodity prices, environmental regulations, construction and equipment costs, DSM programs, and many other regulatory and market developments that may occur during the Study Period. The Company used an adjusted PJM load forecast, as described below.

b. Capacity and Energy Positions

Based on the PJM load forecast and the Company's approved future resources, and assuming no new builds, Figures 1 and 2 represent the Company's current capacity and energy positions.

Figure 1: Capacity Position

Note: 1) Accounts for potential unit retirements and rating changes to existing units in the Plan, and reflects summer ratings.

c. Alternative Plans

The 2019 Update presents three alternative plans ("Alternative Plans") described below.

- Plan A: No CO₂ Tax Plan A is based on the No CO₂ tax pricing scenario and is designed using least cost modeling methodology with no consideration of CO₂ emissions. Plan A represents the least cost plan consistent with the guidelines in prior SCC Orders.¹⁶
- Plan B: RGGI Plan B assumes a pricing scenario where Virginia joins RGGI in 2021 and a Federal CO₂ Program is implemented in 2026. Plan B is designed such that the Company's generation expansion plan meets the objectives of the GTSA, in terms of solar and wind build and the battery pilot program. For clarity, Plan B assumes a scenario where Virginia joins RGGI through legislative action. Plan B is not based on linking to RGGI through the VDEQ action discussed in Section 2(a).
- Plan C: Sustainable Investment Plan C assumes a pricing scenario where a Federal CO₂ Program is implemented in 2026. Plan C is designed such that the Company's generation expansion plan that meets the objectives of both the GTSA and SB 1418 in terms of solar and wind build, the battery pilot program, and pumped storage hydroelectric generation development.

¹⁶ Commonwealth of Virginia, ex rel. State Corporation Commission, In re: Virginia Electric and Power Company's Integrated Resource Plan filing pursuant to Va. Code § 56-597 et seq., Case No. PUE-2016-00049, Final Order (Dec. 14, 2016) at 4-5. See also, generally, Commonwealth of Virginia, ex rel. State Corporation Commission, In re: Virginia Electric and Power Company's Integrated Resource Plan filing pursuant to Va. Code § 56-597 et seq., Case No. PUE-2016-00049, Final Order (Dec. 14, 2016) at 4-5. See also, generally, Commonwealth of Virginia, ex rel. State Corporation Commission, In re: Virginia Electric and Power Company's Integrated Resource Plan filing pursuant to Va. Code § 56-597 et seq., Case No. PUR-2018-00065, Order (Dec. 7, 2018) and Order on Reconsideration (July 19, 2019).

Figure 3: Alternative Plans

Year	Plan A: No CO₂ Tax	Plan A: Plan B: No CO ₂ Tax RGGI		
	Approved an	d Generic DSM: 265 MW	I	
2020	US-3 Solar 1 (142 MW)	US-3 Solar 1 (142 MW)	US-3 Solar 1 (142 MW)	
2021	CVOW US-3 Solar 2 (98 MW) US-4 Solar (100 MW) SLR NUG (20 MW) PP5	CVOW US-3 Solar 2 (98 MW) US-4 Solar (100 MW) SLR NUG (20 MW) BESS (12 MW) ¹ PP5	CVOW US-3 Solar 2 (98 MW) US-4 Solar (100 MW) SLR NUG (20 MW) BESS (12 MW) ¹ PP5	
2022	CT GSLR (480 MW)	CT GSLR (480 MW)	CT GSLR (480 MW)	
2023	CT YT3	BESS (14 MW) ¹ CT GSLR (480 MW) CH 5-6 YT3	BESS (14 MW) ¹ CT GSLR (480 MW) CH 5-6 YT3	
2024	СТ	CT GSLR (480 MW)	CT GSLR (480 MW)	
2025		CT GSLR (480 MW) CL 1-2	CT OFF WIND (852 MW) CL 1-2	
2026		CT GSLR (480 MW)	CT GSLR (480 MW)	
2027		GSLR (480 MW)		
2028	GSLR (60 MW)			
2029	GSLR (240 MW)			
2030	GSLR (480 MW)		PMP STG (300 MW)	
2031	GSLR (480 MW)	GSLR (360 MW)	GSLR (120 MW)	
2032	GSLR (480 MW)	GSLR (480 MW)	GSLR (480 MW)	
2033	GSLR (420 MW)	GSLR (240 MW)	GSLR (180 MW)	
2034	GSLR (480 MW)	GSLR (480 MW)	GSLR (480 MW)	

Key: BESS: Battery Energy Storage System; CH: Chesterfield Power Station; CL: Clover Power Station; CT: Combustion Turbine (2 units); CVOW: Coastal Virginia Offshore Wind Technology Advancement Project; GSLR: Generic Solar; PMP STG: Pump Storage; PP: Possum Point Power Station; SLR NUG: Solar NUG; US-3 Solar 1: US-3 Solar 1 Unit; US-3 Solar 2: US-3 2 Solar Unit; US-4 Solar: US-4 Solar: US-4 Solar Unit; YT: Yorktown Power Station;

Note: All references regarding new CT units throughout this document refer to a bank of 2 CT units (485 MW). CVOW was approved at 12 MW (nameplate).

 The 12 MW BESS in Plans B and C represent the proposed BESS to be installed as a generation asset as part of the pilot program for the battery energy storage systems. The costs for Plans B and C also include the two additional 2 MW BESS proposed to be installed on the distribution system as part of the pilot program.

d. Net Present Value Comparison

The Company evaluated the Alternative Plans to compare and contrast the net present value ("NPV") utility costs over the Study Period. The Alternative Plans focus on the generation expansion plans to meet customers' demand. Figure 4 presents these NPV results as well as the estimated NPV of proposed investments in the Company's transmission and distribution systems, broken down by specific line item.

2019 \$B	N	Plan A: o CO₂ Tax	Plan B: RGGI	Plan C: Sustainable Investment
Total System Costs ¹	\$	27.2	\$ 31.1	\$ 32.0
GT Plan ²	\$	-	\$ 2.3	\$ 2.3
SUP ²	\$	-	\$ 1.5	\$ 1.5
UG Pilot ²	\$	-	\$ 0.4	\$ 0.4
Transmission	\$	4.3	\$ 4.3	\$ 4.3
Customer Growth ³	\$	1.7	\$ 1.7	\$ 1.7
Total Plan NPV	\$	33.21	\$ 41.22	\$ 42.18
Plan Delta vs. Plan A			\$ 8.01	\$ 8.97
Less Benefits of GT Plan ²	\$	-	\$ (1.5)	\$ (1.5)
Total Plan NPV	\$	33.21	\$ 39.73	\$ 40.69
Plan Delta vs. Plan A			\$ 6.52	\$ 7.48

Figure 4: NPV Results

Note: 1) Plan B forced in 3,000 MW (nameplate) solar and BESS. Plan C forced in everything included in Plan B, plus 300 MW (nameplate) pumped storage and 852 MW (nameplate) offshore wind. These total system costs include approved and generic DSM.

2) Costs for the GT Plan, Strategic Underground Program ("SUP"), and the Transmission Line Underground Pilot ("UG Pilot"), and benefits for the GT Plan, remain unchanged since the 2018 Compliance Filing, but were adjusted to 2019 dollars and an updated discount rate.

3) Customer growth includes distribution infrastructure and growth of future customer spend for 2019-2023.

4. LOAD FORECAST

For the 2019 Update, the Company followed the method used in the 2018 Compliance Filing for load forecasting.¹⁷ Specifically, the Company utilized the PJM coincident peak demand and energy forecast for the Dominion Energy Zone ("DOM Zone") as published in PJM's January 2019 Load Forecast Report. Given that PJM does not provide a forecast for the DOM LSE, the DOM Zone forecast as published by PJM was scaled down. The DOM LSE percent of the DOM Zone was determined using a regression technique that utilizes historical peak and energy data over the preceding 10-year period.

Next, because the PJM forecast only provides a 15-year forecast, PJM's 15-year CAGR of 0.8% and 0.9% was used to extend the peak demand and energy forecasts, respectively, for years 2035 through 2044.

The Company standard for calculating reserve margins is based on peak load forecasts that net out peak load reductions resulting from energy efficiency ("EE") measures. Therefore, the next step in the process was to reduce the PJM coincident peak demand by the forecasted savings achieved at

¹⁷ See SCC Dec. 2018 Order at 8.

peak from the approved EE programs, plus the generic EE program that is necessary to meet the objectives of the GTSA.

Figure 5 presents this scaled-down forecast, the forecast extensions, and the EE impacts on peak demand.

PJM	2019 - Dom Zone			PJM 2019 -	PJM 2019 - LSE Equivalent			
Year	Coincident Peak (MW)	Energy (GWh)	Year	Coincident Peak (MW)	EE Approved + Generic Peak Reduction (MW)	EE Adjusted Coincident Peak (MW)	Energy (GWh)	
2019	18,717	97,827	2019	16,276	271	16,006	85,325	
2020	18,888	99,082	2020	16,425	276	16,149	86,419	
2021	19,184	100,282	2021	16,682	346	16,336	87,466	
2022	19,457	101,930	2022	16,920	299	16,621	88,903	
2023	19,744	103,319	2023	17,169	302	16,867	90,115	
2024	19,872	104,566	2024	17,281	266	17,015	91,202	
2025	20,013	105,134	2025	17,403	259	17,144	91,698	
2026	20,081	105,848	2026	17,462	246	17,216	92,321	
2027	20,185	106,643	2027	17,553	278	17,275	93,014	
2028	20,362	107,898	2028	17,707	277	17,430	94,109	
2029	20,541	108,719	2029	17,862	165	17,697	94,825	
2030	20,603	109,267	2030	17,916	164	17,753	95,303	
2031	20,735	109,999	2031	18,031	161	17,870	95,941	
2032	20,799	111,072	2032	18,087	204	17,883	96,877	
2033	20,886	111,491	2033	18,162	210	17,953	97,242	
2034	21,061	112,341	2034	18,315	210	18,105	97,984	
2035	21,227	113,382	2035	18,459	232	18,227	98,892	
2036	21,395	114,432	2036	18,605	145	18,460	99,808	
2037	21,564	115,493	2037	18,752	205	18,547	100,733	
2038	21,734	116,563	2038	18,900	206	18,694	101,666	
2039	21,906	117,643	2039	19,049	236	18,814	102,608	
2040	22,079	118,733	2040	19,200	231	18,969	103,559	
2041	22,253	119,833	2041	19,351	150	19,202	104,518	
2042	22,429	120,943	2042	19,504	204	19,300	105,486	
2043	22,606	122,064	2043	19,658	206	19,452	106,464	
2044	22,785	123,194	2044	19,813	234	19,579	107,450	
2045	22,965	124,336	2045	19,970	239	19,731	108,446	
2046	23,146	125,488	2046	20,128	239	19,889	109,451	
CAGR 15-Yr =>	0.8%	0.9%	Average 10-Yr Reg =>	86.96%			87.22%	

Figure	5 –	PJM	Coincident	Peak	Load	Forecast
J	-	-				

Next, the Company needed to determine how to incorporate this forecast into its model, PLEXOS. Planning models, including PLEXOS, require 8,760 hour (*i.e.*, the total hours in a year) load shapes ("8,760 load shapes") as a necessary input. PJM does not provide forecasted 8,760 load shapes. To solve this issue the Company used the following steps to come to a reasonable approximation of the scaled-down PJM coincident peak forecast:

- The Company utilized the non-coincident peak demand and energy forecast for the DOM Zone that was published by PJM in its January 2019 Load Forecast Report, scaled down to the DOM LSE level based on the Company's load ratio share of the DOM Zone and further adjusted by EE as described above.
- As a proxy to account for the magnitude of difference in PJM's coincident and non-coincident peak demand forecast, the Company adjusted the approximate 15.7% PJM planning reserve

figure to lower the overall DOM Zone capacity needs consistent with PJM's coincident/noncoincident peak demand differences. This was done by calculating the average of the DOM Zone coincident/non-coincident peak ratio for the years 2019 through 2022, as published in PJM's 2019 Load Forecast Report. This calculation resulted in a diversification factor of approximately 96.60%.

• Using this diversification factor, the Company then adjusted PJM's full planning reserve figure of 15.7% using the following formula:

Adjusted Planning Reserves = [(1 + Full Planning Reserves) * Diversification Factor] - 1

Applying the above equation results in the Adjusted Planning Reserves equal to approximately 11.77%.

• This Adjusted Planning Reserve figure of 11.77% was then applied to PJM's 2019 DOM Zone non-coincident peak demand forecast adjusted for EE savings. This is in contrast to applying the full reserve figure of 15.7% to PJM's 2019 DOM Zone coincident peak forecast.

These adjustments result in a forecast that can be input into PLEXOS, and that reasonably approximates the PJM coincident peak plus full planning reserves of 15.7%, scaled down for the DOM LSE. Figure 6 presents the results of these adjustments.

Figure 6 – PJM 2019 Peak Demand Forecast – DOM LSE

As shown in Figure 6, the green line, which reflects the adjustments described above (*i.e.*, PJM DOM LSE non-coincident peak plus adjusted reserves), overlaps with the purple line, which reflects the PJM DOM LSE coincident peak plus full reserves. Figures 7 and 8 present the data supporting Figure 6.

	ō
	6
	ž
	3
•	2
	9
	1

Total Res

irce

Figure 7 –	PJM 2019	Peak Demand	Forecast –	Coincident	Peak

EE Adjusted

Reserve Calculations

2019 16,276 271 16,006 85,325 15.9% N/A N/A 2,545 18,551 2020 16,425 276 16,149 86,419 15.8% N/A N/A 2,545 18,971 2021 16,682 346 16,336 87,469 15.8% N/A N/A 2,545 18,917 2022 16,692 299 16,621 88,903 15.7% N/A N/A 2,648 19,515 2024 17,281 266 17,015 91,202 15.7% N/A N/A 2,642 19,836 2025 17,403 259 17,144 91,668 15.7% N/A N/A 2,642 19,836 2026 17,462 246 17,275 93,014 15.7% N/A N/A 2,736 2,0166 2028 17,707 277 17,430 94,109 15.7% N/A N/A 2,806 20,676 2030 17,862 165	Year	Coincident Peak (MW)	Generic Peak Reduction (MW)	Coincident Peak (MW)	Energy (GWh)	PJM Planning Reserves	Diversification Factor	Reserves (MW)	Requirement (MW)	Requirement (MW)
2020 16,425 276 16,149 86,419 15,8% N/A N/A 2,552 18,011 2021 16,682 346 16,336 87,466 15,8% N/A N/A 2,552 18,011 2022 16,920 299 16,621 88,03 15,7% N/A N/A 2,610 19,231 2023 17,169 302 16,867 90,115 15,7% N/A N/A 2,648 19,515 2024 17,261 2259 17,144 91,698 15,7% N/A N/A 2,642 19,816 2026 17,462 246 17,216 92,321 15,7% N/A N/A 2,712 19,997 2026 17,707 277 17,430 94,109 15,7% N/A N/A 2,712 19,997 2028 17,707 277 17,430 94,109 15,7% N/A N/A 2,787 20,476 2030 17,916 165	2019	16,276	271	16,006	85,325	15.9%	N/A	N/A	2,545	18,551
2021 16,682 346 16,336 87,466 15.8% N/A NA 2,581 18,917 2022 16,920 299 16,621 88,903 15,7% N/A N/A 2,610 19,231 2023 17,169 302 16,627 91,102 15,7% N/A N/A 2,643 19,515 2024 17,281 266 17,015 91,202 15,7% N/A N/A 2,671 19,686 2025 17,403 259 17,144 91,692 15,7% N/A N/A 2,692 19,386 2026 17,673 278 17,275 93,014 15,7% N/A N/A 2,703 19,919 2028 17,707 277 17,430 94,109 15,7% N/A N/A 2,778 20,166 2030 17,862 166 17,697 94,825 15,7% N/A N/A 2,806 20,676 2032 18,037 161	2020	16,425	276	16,149	86,419	15.8%	N/A	N/A	2,552	18,701
2022 16,820 299 16,621 88,903 15.7% N/A N/A 2,610 19,231 2023 17,169 302 16,867 90,115 15.7% N/A N/A 2,648 19,515 2024 17,281 266 17,015 91,202 15.7% N/A N/A 2,648 19,515 2025 17,462 246 17,216 92,321 15.7% N/A N/A 2,692 19,396 2026 17,462 246 17,216 92,321 15.7% N/A N/A 2,703 19,919 2027 17,553 278 17,275 93,014 15.7% N/A N/A 2,712 19,987 2028 17,707 277 17,430 94,109 15.7% N/A N/A 2,763 20,166 2030 17,916 164 17,753 95,303 15.7% N/A N/A 2,806 20,671 2031 18,031 161	2021	16,682	346	16,336	87,466	15.8%	N/A	N/A	2,581	18,917
202317,16930216,86790,11515,7%N/AN/A2,64819,515202417,28126617,01591,0215,7%N/AN/A2,67119,886202517,40325917,14491,69815,7%N/AN/A2,69219,836202617,46224617,21592,32115,7%N/AN/A2,70319,919202717,55327817,27593,01415,7%N/AN/A2,71219,987202817,70727717,43094,10915,7%N/AN/A2,73620,166202917,86216517,69794,82515,7%N/AN/A2,77820,476203017,91616417,75395,30315,7%N/AN/A2,80620,676203118,03116117,87095,94115,7%N/AN/A2,80820,671203218,08720417,88396,87715,7%N/AN/A2,80820,671203318,16221017,95397,94215,7%N/AN/A2,80220,747203518,45923218,22798,89215,7%N/AN/A2,86221,088203618,60514518,46099,80815,7%N/AN/A2,91221,459203718,75220518,547100,73315,7%N/AN/A2,91221,69	2022	16,920	299	16,621	88,903	15.7%	N/A	N/A	2,610	19,231
2024 17,281 266 17,015 91,202 15,7% N/A N/A 2,671 19,686 2025 17,403 259 17,144 91,698 15,7% N/A N/A 2,692 19,336 2026 17,462 246 17,216 92,321 15,7% N/A N/A 2,703 19,919 2027 17,553 278 17,275 93,014 15,7% N/A N/A 2,712 19,997 2028 17,707 277 17,430 94,109 15,7% N/A N/A 2,712 19,997 2030 17,916 164 17,753 95,833 15,7% N/A N/A 2,806 20,676 2031 18,087 204 17,883 96,877 15,7% N/A N/A 2,806 20,691 2033 18,162 210 17,853 97,242 15,7% N/A N/A 2,862 20,947 2034 18,815 210	2023	17,169	302	16,867	90,115	15.7%	N/A	N/A	2,648	19,515
202517,40325917,14491,69815,7%N/AN/A2,69219,836202617,46224617,21692,32115,7%N/AN/A2,70319,919202717,55327817,27593,01415,7%N/AN/A2,70319,919202817,70727717,43094,10915,7%N/AN/A2,73620,166202917,86216517,69794,82515,7%N/AN/A2,78720,476203017,91616417,75395,30315,7%N/AN/A2,78720,540203118,03116117,87095,94115,7%N/AN/A2,80620,676203218,08720417,88396,87715,7%N/AN/A2,80820,691203318,16221017,95397,94415,7%N/AN/A2,80820,691203418,31521018,10597,98415,7%N/AN/A2,86221,088203618,60514518,46099,80815,7%N/AN/A2,86221,689203718,75220518,547100,73315,7%N/AN/A2,91221,659203818,90020618,694101,66615,7%N/AN/A2,95421,676203919,04923618,899103,55915,7%N/AN/A2,95421,676<	2024	17,281	266	17,015	91,202	15.7%	N/A	N/A	2,671	19,686
202617,46224617,21692,32115.7%N/AN/A2,70319,919202717,55327817,27593,01415.7%N/AN/A2,71219,987202817,70727717,43094,10915.7%N/AN/A2,73620,166202917,66216517,69794,82515.7%N/AN/A2,77820,476203017,91616417,75395,30315.7%N/AN/A2,78720,540203118,03116117,87095,94115.7%N/AN/A2,80620,676203218,08720417,88396,87715.7%N/AN/A2,80820,691203318,16221017,95397,24215.7%N/AN/A2,80820,691203418,31521018,10597,98415.7%N/AN/A2,80221,088203518,45923218,22798,98215.7%N/AN/A2,86221,088203618,65514518,60999,80815.7%N/AN/A2,86221,089203718,75220518,547100,73315.7%N/AN/A2,91221,459203818,90020618,694101,66615.7%N/AN/A2,95421,676204019,02023118,969103,55915.7%N/AN/A2,95421,676<	2025	17,403	259	17,144	91,698	15.7%	N/A	N/A	2,692	19,836
202717,55327817,27593,01415.7%N/AN/A2,71219,987202817,70727717,43094,10915.7%N/AN/A2,73620,166202917,86216517,69794,82515.7%N/AN/A2,77820,476203017,91616417,75395,30315.7%N/AN/A2,78720,540203118,03116117,87095,94115.7%N/AN/A2,80620,676203218,08720417,88396,87715.7%N/AN/A2,80820,691203318,16221017,95397,24215.7%N/AN/A2,81920,711203418,31521018,10597,84415.7%N/AN/A2,84220,947203518,65913218,22798,89215.7%N/AN/A2,86221,088203618,60514518,46099,80815.7%N/AN/A2,89221,589203718,75220518,547100,73315.7%N/AN/A2,91221,459203818,90020618,69410,66615.7%N/AN/A2,97821,679204019,20023118,899103,55915.7%N/AN/A2,97821,947204119,50420419,300105,48615.7%N/AN/A3,01522,166<	2026	17,462	246	17,216	92,321	15.7%	N/A	N/A	2,703	19,919
202817,70727717,43094,10915.7%N/AN/A2,73620,166202917,86216517,69794,82515.7%N/AN/A2,77820,476203017,91616417,75395,30315.7%N/AN/A2,78720,540203118,03116117,87095,94115.7%N/AN/A2,80620,676203218,08720417,83396,87715.7%N/AN/A2,80820,691203318,162211017,95397,24215.7%N/AN/A2,80820,947203418,31521018,10597,94415.7%N/AN/A2,81920,741203518,45923218,22798,89215.7%N/AN/A2,84220,947203618,60514518,46099,80815.7%N/AN/A2,80821,559203718,75220518,547100,73315.7%N/AN/A2,91221,459203818,90020618,694101,66615.7%N/AN/A2,93521,629203919,04923618,814102,60815.7%N/AN/A2,97821,947204119,35115019,202104,51815.7%N/AN/A3,01522,216204219,50420419,300105,46615.7%N/AN/A3,03122,3	2027	17,553	278	17,275	93,014	15.7%	N/A	N/A	2,712	19,987
202917,86216517,69794,82515.7%N/AN/A2,77820,476203017,91616417,75395,30315.7%N/AN/A2,78720,540203118,03116117,87095,94115.7%N/AN/A2,80620,676203218,08720417,88396,87715.7%N/AN/A2,80820,691203318,16221017,95397,24215.7%N/AN/A2,80820,691203418,31521018,10597,98415.7%N/AN/A2,86221,088203518,45923218,22798,89215.7%N/AN/A2,86221,088203618,60514518,46099,80815.7%N/AN/A2,89821,359203718,75220518,547100,73315.7%N/AN/A2,91221,459203818,90020618,694101,66615.7%N/AN/A2,95421,677204019,04923618,814102,60815.7%N/AN/A2,97821,947204119,35115019,202104,51815.7%N/AN/A3,01522,216204219,50420419,300105,48615.7%N/AN/A3,03422,506204319,65820619,452106,46415.7%N/AN/A3,03422,5	2028	17,707	277	17,430	94,109	15.7%	N/A	N/A	2,736	20,166
203017,91616417,75395,30315.7%N/AN/A2,78720,540203118,03116117,87095,94115.7%N/AN/A2,80620,676203218,08720417,88396,87715.7%N/AN/A2,80820,691203318,16221017,95397,24215.7%N/AN/A2,80820,691203418,31521018,10597,98415.7%N/AN/A2,84220,947203518,45923218,22798,89215.7%N/AN/A2,84220,947203618,60514518,46099,80815.7%N/AN/A2,89821,059203718,75220518,547100,73315.7%N/AN/A2,91221,459203818,90020618,694101,66615.7%N/AN/A2,93521,629203919,04923618,814102,60815.7%N/AN/A2,95421,767204019,30115,00105,48615.7%N/AN/A3,01522,216204119,3515019,020105,48615.7%N/AN/A3,03022,330204319,65820619,452106,46415.7%N/AN/A3,05422,506204419,81323419,579107,45015.7%N/AN/A3,09822,829<	2029	17,862	165	17,697	94,825	15.7%	N/A	N/A	2,778	20,476
203118,03116117,87095,94115.7%N/AN/A2,80620,676203218,08720417,88396,87715.7%N/AN/A2,80820,671203318,16221017,95397,24215.7%N/AN/A2,80820,671203418,15221018,10597,98415.7%N/AN/A2,84220,947203518,45923218,22798,89215.7%N/AN/A2,86221,088203618,60514518,46099,80815.7%N/AN/A2,86221,088203718,75220518,547100,73315.7%N/AN/A2,91221,459203818,90020618,694101,66615.7%N/AN/A2,93521,629203919,04923618,814102,60815.7%N/AN/A2,95421,767204019,20023118,969103,55915.7%N/AN/A2,97822,198204219,50420419,300105,48615.7%N/AN/A3,03022,330204319,65820619,452106,64415.7%N/AN/A3,07422,656204419,81323419,579107,45015.7%N/AN/A3,09822,856204519,97023919,731108,46615.7%N/AN/A3,09822	2030	17,916	164	17,753	95,303	15.7%	N/A	N/A	2,787	20,540
203218,08720417,88396,87715.7%N/AN/A2,80820,691203318,16221017,95397,24215.7%N/AN/A2,81920,771203418,31521018,10597,98415.7%N/AN/A2,84220,947203518,45923218,22798,89215.7%N/AN/A2,86221,088203618,60514518,46099,80815.7%N/AN/A2,96221,689203718,75220518,547100,73315.7%N/AN/A2,91221,459203818,90020618,694101,66615.7%N/AN/A2,93521,629203919,04923618,814102,60815.7%N/AN/A2,95421,947204019,20023118,969103,55915.7%N/AN/A2,97821,947204119,35115019,202104,51815.7%N/AN/A3,01522,216204319,65820619,452106,46415.7%N/AN/A3,03022,330204419,81323419,579107,45015.7%N/AN/A3,07422,653204519,97023919,731108,46615.7%N/AN/A3,09822,829	2031	18,031	161	17,870	95,941	15.7%	N/A	N/A	2,806	20,676
2033 18,162 210 17,953 97,242 15.7% N/A N/A 2,819 20,771 2034 18,315 210 18,105 97,944 15.7% N/A N/A 2,842 20,947 2035 18,459 232 18,227 98,892 15.7% N/A N/A 2,862 21,088 2036 18,605 145 18,469 99,808 15.7% N/A N/A 2,862 21,088 2037 18,752 205 18,547 100,733 15.7% N/A N/A 2,912 21,459 2038 18,900 206 18,694 101,666 15.7% N/A N/A 2,912 21,459 2039 19,049 236 18,814 102,608 15.7% N/A N/A 2,954 21,767 2040 19,200 231 18,969 103,559 15.7% N/A N/A 2,954 21,967 2041 19,351 150 </td <td>2032</td> <td>18,087</td> <td>204</td> <td>17,883</td> <td>96,877</td> <td>15.7%</td> <td>N/A</td> <td>N/A</td> <td>2,808</td> <td>20,691</td>	2032	18,087	204	17,883	96,877	15.7%	N/A	N/A	2,808	20,691
2034 18,315 210 18,105 97,984 15.7% N/A N/A 2,842 20,947 2035 18,459 232 18,227 98,892 15.7% N/A N/A 2,842 20,947 2036 18,605 145 18,460 99,808 15.7% N/A N/A 2,862 21,088 2037 18,752 205 18,547 100,733 15.7% N/A N/A 2,912 21,459 2038 18,900 206 18,694 101,666 15.7% N/A N/A 2,935 21,629 2039 19,049 236 18,814 102,608 15.7% N/A N/A 2,935 21,629 2040 19,200 231 18,969 103,559 15.7% N/A N/A 2,936 21,947 2041 19,351 150 19,202 104,518 15.7% N/A N/A 3,015 22,216 2042 19,504 204<	2033	18,162	210	17,953	97,242	15.7%	N/A	N/A	2,819	20,771
2035 18,459 232 18,227 98,892 15.7% N/A N/A 2,862 21,088 2036 18,605 145 18,460 99,808 15.7% N/A N/A 2,862 21,088 2037 18,752 205 18,547 100,733 15.7% N/A N/A 2,912 21,459 2038 18,900 206 18,694 101,666 15.7% N/A N/A 2,935 21,629 2039 19,049 236 18,814 102,608 15.7% N/A N/A 2,935 21,629 2040 19,200 231 18,869 103,559 15.7% N/A N/A 2,936 21,947 2041 19,351 150 19,202 104,518 15.7% N/A N/A 2,936 22,216 2042 19,504 204 19,300 105,486 15.7% N/A N/A 3,030 22,330 2043 19,658 206	2034	18,315	210	18,105	97,984	15.7%	N/A	N/A	2,842	20,947
2036 18,605 145 18,460 99,808 15.7% N/A N/A 2,898 21,359 2037 18,752 205 18,547 100,733 15.7% N/A N/A 2,912 21,459 2038 18,900 206 18,694 101,666 15.7% N/A N/A 2,935 21,629 2039 19,049 236 18,814 102,608 15.7% N/A N/A 2,954 21,767 2040 19,049 236 18,814 102,608 15.7% N/A N/A 2,954 21,767 2040 19,200 231 18,969 103,559 15.7% N/A N/A 2,978 21,947 2041 19,351 150 19,202 104,518 15.7% N/A N/A 3,030 22,216 2042 19,504 204 19,300 105,486 15.7% N/A N/A 3,030 22,506 2043 19,658 20	2035	18,459	232	18,227	98,892	15.7%	N/A	N/A	2,862	21,088
2037 18,752 205 18,547 100,733 15.7% N/A N/A 2,912 21,459 2038 18,900 206 18,694 101,666 15.7% N/A N/A 2,935 21,629 2039 19,049 236 18,814 102,608 15.7% N/A N/A 2,935 21,629 2040 19,049 236 18,814 102,608 15.7% N/A N/A 2,935 21,629 2040 19,049 231 18,969 103,559 15.7% N/A N/A 2,978 21,947 2041 19,351 19,202 104,518 15.7% N/A N/A 3,030 22,316 2042 19,504 204 19,300 105,486 15.7% N/A N/A 3,030 22,330 2043 19,658 206 19,452 106,464 15.7% N/A N/A 3,054 22,506 2044 19,813 234 1	2036	18,605	145	18,460	99,808	15.7%	N/A	N/A	2,898	21,359
2038 18,900 206 18,694 101,666 15.7% N/A N/A 2,935 21,629 2039 19,049 236 18,814 102,608 15.7% N/A N/A 2,935 21,629 2040 19,200 231 18,869 103,559 15.7% N/A N/A 2,935 21,629 2041 19,200 231 18,969 103,559 15.7% N/A N/A 2,978 21,947 2041 19,351 150 19,202 104,518 15.7% N/A N/A 3,015 22,216 2042 19,504 204 19,300 105,486 15.7% N/A N/A 3,030 22,330 2043 19,658 206 19,452 106,464 15.7% N/A N/A 3,04 22,506 2044 19,813 234 19,579 107,450 15.7% N/A N/A 3,098 22,656 2045 19,970 23	2037	18,752	205	18,547	100,733	15.7%	N/A	N/A	2,912	21,459
2039 19,049 236 18,814 102,608 15.7% N/A N/A 2,954 21,767 2040 19,200 231 18,969 103,559 15.7% N/A N/A 2,954 21,767 2040 19,200 231 18,969 103,559 15.7% N/A N/A 2,978 21,947 2041 19,351 150 19,202 104,518 15.7% N/A N/A 3,015 22,216 2042 19,504 204 19,300 105,486 15.7% N/A N/A 3,030 22,330 2043 19,658 206 19,452 106,464 15.7% N/A N/A 3,054 22,566 2044 19,813 234 19,579 107,450 15.7% N/A N/A 3,074 22,653 2045 19,970 239 19,731 108,446 15.7% N/A N/A 3,098 22,629	2038	18,900	206	18,694	101,666	15.7%	N/A	N/A	2,935	21,629
2040 19,200 231 18,969 103,559 15.7% N/A N/A 2,978 21,947 2041 19,351 150 19,202 104,518 15.7% N/A N/A 3,015 22,216 2042 19,504 204 19,300 105,486 15.7% N/A N/A 3,030 22,330 2043 19,658 206 19,452 106,464 15.7% N/A N/A 3,054 22,506 2044 19,813 234 19,579 107,450 15.7% N/A N/A 3,074 22,653 2045 19,970 239 19,731 108,446 15.7% N/A N/A 3,098 22,659	2039	19,049	236	18,814	102,608	15.7%	N/A	N/A	2,954	21,767
2041 19,351 150 19,202 104,518 15.7% N/A N/A 3,015 22,216 2042 19,504 204 19,300 105,486 15.7% N/A N/A 3,030 22,330 2043 19,658 206 19,452 106,464 15.7% N/A N/A 3,030 22,330 2044 19,813 234 19,579 107,450 15.7% N/A N/A 3,044 22,563 2045 19,970 239 19,731 108,446 15.7% N/A N/A 3,098 22,629	2040	19,200	231	18,969	103,559	15.7%	N/A	N/A	2,978	21,947
2042 19,504 204 19,300 105,486 15.7% N/A N/A 3,030 22,330 2043 19,658 206 19,452 106,464 15.7% N/A N/A 3,030 22,330 2044 19,813 234 19,579 107,450 15.7% N/A N/A 3,074 22,653 2045 19,970 239 19,731 108,446 15.7% N/A N/A 3,098 22,629	2041	19,351	150	19,202	104,518	15.7%	N/A	N/A	3,015	22,216
2043 19,658 206 19,452 106,464 15.7% N/A N/A 3,054 22,506 2044 19,813 234 19,579 107,450 15.7% N/A N/A 3,074 22,653 2045 19,970 239 19,731 108,446 15.7% N/A N/A 3,098 22,629	2042	19,504	204	19,300	105,486	15.7%	N/A	N/A	3,030	22,330
2044 19,813 234 19,579 107,450 15.7% N/A N/A 3,074 22,653 2045 19,970 239 19,731 108,446 15.7% N/A N/A 3,098 22,859	2043	19,658	206	19,452	106,464	15.7%	N/A	N/A	3,054	22,506
2045 19,970 239 19,731 108,446 15.7% N/A N/A 3,098 22,829	2044	19,813	234	19,579	107,450	15.7%	N/A	N/A	3,074	22,653
	2045	19,970	239	19,731	108,446	15.7%	N/A	N/A	3,098	22,829
2046 20,128 239 19,889 109,451 15.7% N/A N/A 3,123 23,011	2046	20,128	239	19,889	109,451	15.7%	N/A	N/A	3,123	23,011

Average 10-Yr Reg => 86.96% 87.22%

PJM 2019 - LSE Equivalent EE Approved +

	PJM 2019 - L	SE Equivalent				Re	serve Calcula	tions	
Year	Non-Coincident Peak (MW)	EE Approved + Generic Peak Reduction (MW)	EE Adjusted Non- Coincident Peak (MW)	Energy (GWh)	PJM Planning Reserves	Diversification Factor	Adjusted Reserves	Reserve Requirement (MW)	Total Resource Requirement (MW)
2019	16,862	271	16,592	85,325	15.9%	96.60%	11.96%	1,984	18,576
2020	17,002	276	16,727	86,419	15.8%	96.60%	11.86%	1,984	18,711
2021	17,260	346	16,914	87,466	15.8%	96.60%	11.86%	2,006	18,920
2022	17,511	299	17,213	88,903	15.7%	96.60%	11.77%	2,025	19,238
2023	17,739	302	17,437	90,115	15.7%	96.60%	11.77%	2,052	19,488
2024	17,887	266	17,621	91,202	15.7%	96.60%	11.77%	2,073	19,694
2025	18,013	259	17,754	91,698	15.7%	96.60%	11.77%	2,089	19,843
2026	18,077	246	17,831	92,321	15.7%	96.60%	11.77%	2,098	19,929
2027	18,168	278	17,890	93,014	15.7%	96.60%	11.77%	2,105	19,995
2028	18,319	277	18,042	94,109	15.7%	96.60%	11.77%	2,123	20,165
2029	18,469	165	18,303	94,825	15.7%	96.60%	11.77%	2,154	20,457
2030	18,563	164	18,400	95,303	15.7%	96.60%	11.77%	2,165	20,565
2031	18,693	161	18,532	95,941	15.7%	96.60%	11.77%	2,180	20,712
2032	18,748	204	18,544	96,877	15.7%	96.60%	11.77%	2,182	20,726
2033	18,849	210	18,640	97,242	15.7%	96.60%	11.77%	2,193	20,833
2034	18,977	210	18,767	97,984	15.7%	96.60%	11.77%	2,208	20,976
2035	19,127	232	18,895	98,892	15.7%	96.60%	11.77%	2,223	21,118
2036	19,279	145	19,134	99,808	15.7%	96.60%	11.77%	2,251	21,385
2037	19,431	205	19,226	100,733	15.7%	96.60%	11.77%	2,262	21,488
2038	19,585	206	19,379	101,666	15.7%	96.60%	11.77%	2,280	21,659
2039	19,740	236	19,504	102,608	15.7%	96.60%	11.77%	2,295	21,799
2040	19,896	231	19,665	103,559	15.7%	96.60%	11.77%	2,314	21,979
2041	20,053	150	19,903	104,518	15.7%	96.60%	11.77%	2,342	22,245
2042	20,212	204	20,007	105,486	15.7%	96.60%	11.77%	2,354	22,361
2043	20,371	206	20,166	106,464	15.7%	96.60%	11.77%	2,373	22,538
2044	20,533	234	20,298	107,450	15.7%	96.60%	11.77%	2,388	22,687
2045	20,695	239	20,456	108,446	15.7%	96.60%	11.77%	2,407	22,863
2046	20,859	239	20,620	109,451	15.7%	96.60%	11.77%	2,426	23,046
Average 10-Yr Reg =>	86.96%			87.22%]				

Figure 8 – PJM 2019 Peak Demand Forecast – Non-Coincident Peak (Supporting Data)

One final note, PJM reduces its load forecasts for behind-the-meter ("BTM") solar PV generation. Thus, to avoid double counting, the Company has not included any operating or expected BTM solar PV facilities in any PLEXOS modeling supply-side resources.

a. Economic Development Rates

As of August 1, 2019, the Company has six customer service locations in Virginia receiving service under economic development rates. The total load associated with these rates is approximately 132 MW. As of August 1, 2019, the Company has no customers in North Carolina receiving service under economic development rates.

5. FUTURE SUPPLY-SIDE RESOURCES

The Company continues to gather information about emerging generation technologies from a mix of internal and external sources. The Company's internal knowledge base spans various departments including, but not limited to, planning, financial analysis, construction, operations, and business development. The dispatchable and non-dispatchable resources examined in this 2019 Update are discussed below.

a. Alternative Supply-Side Resources

The feasibility of utility-scale generation resources was evaluated on capital and operating expenses, including fuel, operation, and maintenance. Figure 9 summarizes the resource types that the Company reviewed as part of this IRP process. Those resources considered for further analysis in the busbar screening model are identified in the final column.

(C)
হি
2
5

Figure	9:	Alternative	Supply-Side	Resources
	•••	/		

Resource	Unit Type	Dispatchable	Primary Fuel	Busbar Resource
Aero-derivative CT	Peak	Yes	Natural Gas	Yes
Batteries	Peak	Yes	Varies	Yes
Biomass	Baseload	Yes	Renewable	Yes
CC 1x1	Intermediate/Baseload	Yes	Natural Gas	Yes
CC 2x1	Intermediate/Baseload	Yes	Natural Gas	Yes
CC 3x1	Intermediate/Baseload	Yes	Natural Gas	Yes
CFB	Baseload	Yes	Coal	No
Coal (SCPC) w/ CCS	Intermediate	Yes	Coal	Yes
Coal (SCPC) w/o CCS	Baseload	Yes	Coal	No
СТ	Peak	Yes	Natural Gas	Yes
Fuel Cell	Baseload	Yes	Natural Gas	Yes
Hydro Power	Intermittent	No	Renewable	No
IGCC CCS	Intermediate	Yes	Coal	Yes
IGCC w/o CCS	Baseload	Yes	Coal	No
Nuclear	Baseload	Yes	Uranium	Yes
Offshore Wind	Intermittent	No	Renewable	Yes
Onshore Wind	Intermittent	No	Renewable	Yes
Pumped Storage	Peak	Yes	Renewable	Yes
Reciprocating Engine CT	Peak	Yes	Natural Gas	No
Solar PV	Intermittent	No	Renewable	Yes
Solar PV w/Aero-derivative CT	Peak	Yes	Renewable	Yes
SMR	Baseload	Yes	Uranium	Yes

b. Busbar Analysis

The Company's busbar model was designed to estimate the levelized energy costs of various technologies on a level playing field. The busbar results show the levelized cost of power generation from a zero to one hundred percent capacity factor. The busbar results represent the Company's initial quantitative comparison of various alternative resources. These comparisons include: fuel, heat rate, emissions, variable and fixed operation and maintenance ("O&M") costs, expected service life, and overnight construction costs.

Figures 10 and 11 display high-level results of the busbar model comparing the costs of the different technologies. The results were separated into two figures because non-dispatchable resources are not equivalent to dispatchable resources in terms of the energy and capacity value they provide to customers. For example, dispatchable resources are able to generate when power prices are the highest, while non-dispatchable resources may not have the ability to do so. Furthermore, non-dispatchable resources typically receive less capacity value for meeting the Company's reserve margin requirements and may require additional technologies in order to assure grid stability.

Figure 10: Dispatchable Levelized Busbar Costs (2022 COD)

Figure 11: Non-Dispatchable Levelized Busbar Costs (2022 COD)

c. Energy Storage Technologies

There are several different types of energy storage technologies. Energy storage technologies include, but are not limited to, pumped storage hydroelectric power, superconducting magnetic energy storage, capacitors, compressed air energy storage, flywheels, and batteries. Cost considerations and technology maturity have restricted widespread deployment of most of these technologies, with the exception of pumped storage hydroelectric power and batteries.

Figure 12 shows the estimated levelized busbar costs for a 4-hour battery and a pumped storage facility from a zero to a forty percent capacity factor. Batteries and pumped storage technologies are incapable of achieving more than a forty percent capacity factor, due to their charging requirements.

i. Pumped Storage

There is increasing interest in pumped storage technology as a storage mechanism for the intermittent and highly variable output of renewable energy sources such as solar and wind. For example, as discussed above, SB 1418 supports the construction of "one or more pumped hydroelectric generation and storage facilities that utilize on-site or off-site renewable energy resources as all or a portion of their power source and such facilities and associated resources are located in the coalfield region of the Commonwealth."

Following the approval of SB 1418 in 2017, the Company entered into the early stages of conducting feasibility studies for a potential pumped storage facility in the western part of the Commonwealth of Virginia. Pumped storage is a proven

dispatchable technology that would complement the ongoing integration of renewable resources.

The Company continues to evaluate the construction of a proposed pumped hydroelectric storage power station at a site in Tazewell County, Virginia, and will spend the remainder of this year and part of next year conducting more extensive surveys of the proposed site. In addition, the project could generate thousands of construction jobs as well as provide a major new source of local taxes for the region. The facility would store energy from traditional sources, such as the Company's coalfired VCHEC, as well as renewable facilities.

ii. <u>Battery Storage</u>

In addition to pumped storage, the Company continues to monitor advancements in batteries. The Company is in the early stages of battery research and has relied on publicly available industry guidance regarding battery storage projects to help evaluate the technology's merits as compared to traditional generation sources. Battery storage is a viable future option for peak shifting at a stand-alone storage facility or co-located at a solar facility. Battery storage may also improve overall energy production at a solar facility by capturing energy that may be clipped by the inverters. A solar inverter converts the variable direct current ("DC") output of a PV panel into a utility frequency alternating current ("AC") that can be fed into the electric grid. Inverter clipping occurs when a solar inverter has reached maximum capacity for energy output. To avoid damage to the unit, it will "clip" any additional power that solar panels produce. This is a standard operating condition when designing systems with an oversized panel array.

Since battery storage facilities are still in early stages of development, the cost estimates for installation are more reflective of a pilot program versus a larger utility-scale facility. Indeed, the Company submitted its first application to participate in the battery pilot program established by the GTSA, as discussed further in Section 7(d) of this Update.

The Company included battery and pumped storage facilities in the busbar analysis discussed above.

6. PLANNING ASSUMPTIONS

a. PJM Capacity Value for Renewable Resources

PJM Manual 21 describes the "capacity value" (also referred to as "UCAP" or unforced capacity) of wind or solar generating resources as class average value for immature units and output during summer peak hours (3:00 PM-6:00 PM) for units with historical operating data.¹⁸ The "capacity value" referenced in Manual 21 sets a cap for what a wind or solar resource "can be offered as unforced capacity into the PJM capacity markets."¹⁹ Note that the "capacity value" language in Manual 21 predates the Capacity Performance ("CP") construct by several years.

¹⁸ See https://www.pjm.com/~/media/documents/manuals/m21.ashx, Appendix B at pp. 34-36.

¹⁹ See https://www.pjm.com/~/media/documents/manuals/m21.ashx, Appendix B.2.1 at p. 34.

Under the CP construct, it was PJM's expectation that the quantity of UCAP value that may qualify as CP for such resources may be based on expected output during summer and winter peak conditions.

Recently, PJM has developed the Effective Load Carrying Capability ("ELCC")-based approach for wind or solar capacity value, which is expected to replace the current class average method.²⁰ As opposed to the existing PJM class average capacity value, the ELCC-based value is a metric directly related to the wind or solar resource's ability to serve load without impact to system reliability. While this approach is still being discussed in the PJM stakeholder process, the preliminary wind or solar value (Wind ELCC = 12.3%, Solar ELCC = 45.1%) may more reasonably reflect the resource's potential bid value in the upcoming capacity auction. This capacity bid value can be offered into the capacity auction as annual, seasonal or aggregate capacity, or a combination thereof.

b. Commodity Price Forecast

The Company utilizes a single source to provide multiple scenarios for the commodity price forecast to ensure consistency in methodologies and assumptions. The Company performed the analysis in this 2019 Update using energy and commodity price forecasts provided by ICF for all periods except the first 36 months of the Study Period. The forecasts used for natural gas, coal, and power prices rely on forward market prices as of June 28, 2019, for the first 18 months of the Study Period and then blended forward prices with ICF estimates for the next 18 months. Beyond the first 36 months, the Company used the ICF commodity price forecast exclusively. The forecast used for capacity prices were provided by ICF for all years forecasted in the 2019 Update. The capacity prices are provided on a calendar year basis and reflect the results of the PJM Reliability Pricing Model ("RPM") BRA through the 2021/2022 delivery year, thereafter transitioning to the ICF capacity forecast beginning with the 2022/2023 delivery year.

The key assumptions on market structure and the use of an integrated, internally consistent fundamentals-based modeling methodology remain consistent with those utilized in the prior years' commodity forecasts. In the 2019 Update, the Company utilizes three commodity forecasts to evaluate the Alternative Plans:

- No CO₂ Tax commodity forecast
- RGGI + Federal CO₂ Tax commodity forecast
- Federal CO₂ Tax commodity forecast

In the two commodity forecasts that consider Federal CO_2 Tax programs, the assumptions for CO_2 regulation represent a probability-weighted outcome of legislative and regulatory initiatives, including the possibility of no regulatory program addressing CO_2 emissions. The probability-weighted approach to the CO_2 price forecast is consistent with the methodology utilized in evaluation of prior Plans. In both forecasts, a charge on CO_2 emissions from the power sector at the federal level is assumed to begin in 2026. The difference between the two forecasts is that in one forecast it is assumed Virginia joins the RGGI program in 2021, and in the other forecast it is assumed that Virginia does not take state-level action on CO_2 regulation.

²⁰ See https://www.pjm.com/-/media/committees-groups/committees/mrc/20190321/20190321-item-03c-m21-revisions-presentation.ashx.
The No CO_2 Tax commodity forecast anticipates a future without any new regulations or restrictions on CO_2 emissions, so the cost associated with carbon emissions is removed from the commodity forecast. To be clear, the Company expects that some form of GHG regulations or legislation will occur, and is planning accordingly. The No CO_2 Tax forecast is only utilized in analysis of Plan A; in this way, Plan A provides a benchmark against which to measure the cost of GHG program compliance.

Appendix 4A provides the annual prices (nominal \$) for the RGGI + Federal CO₂ Tax commodity forecast, the Federal CO₂ Tax commodity forecast, and the No CO₂ Tax commodity forecast. Figure 13 provides a comparison of the three commodity forecasts with the forecast used in the 2018 Plan.

	2019 - 2033 Average Value (Nominal \$)	2020 - 2034 Average Value (Nominal \$)					
	2018 Plan	RGGI + Federal CO₂ Tax	Federal CO₂ Tax	No CO₂ Tax			
Fuel Price	Federal CO ₂ commodity forecast	Federal CO ₂ commodity forecast		commodity forecast			
Henry Hub Natural Gas (\$/MMbtu)	4.29	3.81	3.81	3.81			
Zone 5 Delivered Natural Gas (\$/MMbtu)	3.71	3.54	3.54	3.54			
CAPP CSX: 12,500 1%S FOB (\$/MMbtu)	2.66	2.42	2.42	2.43			
1% No. 6 Oil (\$/MMbtu)	11.93	11.56	11.56	11.56			
Electric and REC Prices							
PJM-DOM On-Peak (\$/MWh)	41.29	38.94	38.66	38.56			
PJM-DOM Off-Peak (\$/MWh)	34.36	32.79	32.55	32.41			
PJM Tier 1 REC Prices (\$/MWh)	7.04	6.72	6.95	7.27			
RTO Capacity Prices (\$/kW-vr)	59.33	62.50	62.74	60.46			

Figure 13: 2018 Plan vs. 2019 Update Fuel & Power Price Comparison

i. Forecasting of Long-Term Capacity Prices

In most wholesale electricity markets, electric power generators are paid for providing:

- Energy: the actual electricity consumed by customers;
- Capacity: standing ready to provide a specified amount of electric energy; and
- Ancillary Services: a variety of operations needed to maintain grid stability and security, including frequency control, spinning reserves, and operating reserves.

The purpose of a mandatory capacity market is to encourage new investments where they are most needed on the grid. PJM's capacity market (*i.e.*, the RPM), ensures long-term grid reliability by procuring the appropriate amount of power supply resources needed to meet predicted peak demand in the future. In a capacity market, the utility or other electricity supplier are required to have enough resources to meet its customers' demand plus a reserve amount. Suppliers can meet that requirement with generating capacity they own, with capacity purchased from others under contract, or with capacity obtained through market auctions.

RPM prices are intended to provide additional revenue to attract and maintain sufficient capacity; in concept, revenues from energy and ancillary services plus capacity payments should equal the amount necessary to attract new entry. These capacity payments provide an incentive for generators to locate in that market and they help guarantee that there will be sufficient generation to meet the maximum energy requirements of the market at all times. As stated by the PJM Market Monitor: "In order to attract and retain adequate resources for the reliable operation of the energy market, revenues from PJM energy, ancillary services and capacity markets must be adequate for those resources."²¹

Parallel to the actual market construct, forecasting of long-term capacity prices are based on estimating the amount of capacity revenue a generation resource requires, in addition to revenue from energy and ancillary services, to maintain reliable electric service over the long-term. The capacity revenue forecast represents the amount by which a resource's cost exceeds its forecasted wholesale electricity market revenues. The basic concept utilized in forecasting is that in order to maintain appropriate reserve levels to assure reliable electric service, generating resources will require sufficient revenue to cover expenses and, when necessary, support the required new investment. When wholesale market, energy, and ancillary services revenue is not sufficient, then capacity revenues are required.

When forecasting capacity prices over long periods of time, it is reasonable to assume markets will move toward equilibrium and provide sufficient revenue to support existing resources and incent investment in new resources that require equity returns on the capital expended for development and construction of the resource. In markets with excess capacity, existing resources generally set the capacity price. These resources require revenue to cover only operating expenses and do not include equity returns or significant going forward capital expenditures. Because of this, the capacity price tends to be lower. However, over the long term, the market is expected to move to an equilibrium status where sufficient revenues are provided, which assures adequate resource capacity and encourages market efficiency. Note, while long-term forecasts tend toward an equilibrium pricing, it is expected that actual markets will continue to follow an up and down cycle that moves around equilibrium levels. Long-term forecasts for capacity focus on the equilibrium level pricing rather than attempting to estimate the cyclical movement.

7. SHORT-TERM ACTION PLAN

The Short-Term Action Plan ("STAP") provides the Company's strategic plan for the next five years (2020 to 2024), as well as a discussion of the specific short-term actions the Company is taking to meet the initiatives discussed in the 2018 Plan and the 2019 Update. The Company continues to proactively position itself in the short term to address the evolving developments surrounding future CO_2 emission mitigation rules or regulations, as well as societal and customer preferences for the benefit of all stakeholders over the long term. Over the next five years, the Company expects to:

- Continue development of planning processes that will reasonably assess the actions and costs associated with the integration of large volumes of intermittent renewable generation on the transmission and distribution systems;
- Enhance and upgrade the Company's existing transmission and distribution systems, enhancing reliability and customer service;
- Enhance the Company's access to natural gas supplies, including shale gas supplies from multiple supply basins;

²¹ 2019 Quarterly State of the Market Report for PJM, at p. 1, Monitoring Analytics, LLC. *See* https://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2019/2019q1-som-pjm.pdf.

- Construct additional generation to meet customer demand while maintaining a balanced fuel mix;
- Continue to lower the Company's emissions footprint;
- Continue to develop and implement a renewable strategy that supports the Virginia renewable generation objectives identified in the GTSA, the Virginia Renewable Portfolio Standard ("RPS") goals, and the North Carolina Renewable Energy and Energy Efficiency Portfolio Standard ("REPS") requirements;
- Propose and implement cost-effective programs based on measures identified in the 2017 DSM Potential Study and continue to implement cost-effective DSM programs in Virginia and North Carolina as developed through the stakeholder process required by the GTSA and at the levels for proposal set forth in the GTSA; and
- Continue to evaluate potential unit retirements in light of changing market conditions and regulatory requirements.

A more detailed discussion of the activities over the next five years is provided in the following sections.

a. Generation Resources

Over the next five years, the Company expects to take the following actions related to existing and proposed generation resources:

- Continue development of the CVOW facility along with the first tranche of utilityscale offshore wind generation;
- Continue the development of the energy storage alternatives, including battery storage and the development activities associated with a new pumped storage hydroelectric generation facility in western Virginia;
- Pursue a certificate of public convenience and necessity ("CPCN") for US-4 Solar, which was filed on July 23, 2019, with the SCC;
- Place the US-3 Solar Units 1 and 2 (240 MW) into service by the end of 2019;
- Continue technical evaluations and aging management programs required to support an SLR to extend the Company's existing Surry Units 1 and 2 and North Anna Units 1 and 2; and
- Submit an application for the second renewed operating licenses for Surry Units 1 and 2 by the end of the first quarter of 2019, and for North Anna Units 1 and 2 by the end of 2020.

Appendix 3K provides a summary of the generation under construction included in the Alternative Plans along with the forecasted in-service dates and summer/winter capacities. Appendix 5C provides the projected in-service dates and capacities for generation resources under development for the Alternative Plans.

b. Renewable Energy Resources

Approximately 532 MW of qualifying renewable generation is currently in operation:

- Solar: approximately 261 MW;
- Hydroelectric: approximately 220 MW; and
- Biomass: approximately 51 MW.

Over the next five years, the Company expects to take the following actions regarding renewable energy resources:

Virginia

- Achieve 61 MW of biomass capacity at VCHEC by 2023;
- Meet its targets under the Virginia RPS Program by applying renewable generation from existing qualified facilities and purchasing cost-effective renewable energy certificates ("RECs"); and
- Submit its Annual Report to the SCC detailing its efforts towards the RPS plan.

North Carolina

- Submit its 2019 REPS Compliance Report for compliance year 2018 in August 2019;
- Submit its annual REPS Compliance Plan (filed with the North Carolina 2019 Update); and
- Enter into or negotiate power purchased agreements ("PPAs") with approximately 680 MW (nameplate) of North Carolina solar NUGs by 2020.

c. Transmission

Virginia

- The following planned Virginia transmission projects detailed are pending SCC approval or are tentatively planned for filing with the SCC:
 - Line #574 Elmont to Ladysmith Rebuild
 - Line #581 Chancellor to Ladysmith 500 kV Rebuild
 - Line #29 Fredericksburg to Possum Point Partial Rebuild
 - Line #205 and Line #2003 Chesterfield to Tyler Partial Rebuild
 - Line #552 Bristers to Chancellor Rebuild
 - Line #205 and Line #2003 Chesterfield to Tyler Partial Rebuild

- Line #2023 & Line #248 Potomac Yards Undergrounding & Glebe GIS Conversion
- Line #550 Mount Storm to Valley Rebuild
- Line #247 Suffolk to Swamp Rebuild
- Line #2209 and Line #2110 Evergreen Mills 230 kV Delivery
- Line #224 Lanexa to Northern Neck Rebuild
- Lockridge 230 kV Delivery
- o Global Plaza 230 kV Delivery
- Line #2173 Loudoun to Elklick Rebuild
- Line #295 and Partial Line #265 Rebuild
- Lines #265, #200, and #2051 Partial Rebuild
- Line #2008 Partial Rebuild and Line #156 Retirement
- Line #2063 and Partial #2164 Rebuild

Appendix 3R lists the major transmission additions including line voltage and expected operation target dates. A list of the Company's transmission lines and associated facilities that are under construction can be found in Appendix 3X.

d. Energy Storage Technologies

On August 2, 2019, the Company submitted its first application to participate in the pilot program for electric power storage batteries established by the SCC pursuant to the GTSA. The application presents three projects for deployment of battery energy storage systems (*i.e.*, BESS) as part of the Pilot Program: BESS-1: Prevention of Solar Backfeeding; BESS-2: BESS as a Non-Wires Alternative; and BESS-3: Solar Plus Storage. Through BESS-1, the Company proposes to deploy a 2 MW / 4 MWh AC lithium-ion BESS that will study the prevention of solar backfeeding onto the transmission grid at a specific substation. Through BESS-2, the Company proposes to deploy a 2 MW / 4 MWh AC lithium-ion BESS that will study BESS as a non-wires alternative to reduce transformer loading at a specific substation. Through BESS-3, the Company proposes to study solar plus storage by deploying a lithium-ion BESS at its Scott Solar Facility consisting of a 2 MW / 8 MWh DC-coupled system and a 10 MW / 40 MWh AC-coupled system. The aggregate capacity of the proposals included with this application is 16 MW. The Company may seek approval of additional BESS in future applications up to the 30 MW authorized under the pilot program.

Following the approval of SB 1418 in 2017, the Company entered into the early stages of conducting feasibility studies for a potential pumped storage facility in the western part of the Commonwealth of Virginia. The Company continues to evaluate the construction of a proposed pumped hydroelectric storage power station at a site in Tazewell County, Virginia, and will spend the remainder of this year and part of next year conducting more extensive surveys of the proposed site.

e. Demand-Side Management

The DSM stakeholder process, as established by the GTSA, began in 2019, and will provide valuable input into the planning process into the foreseeable future. The Company issued a request for proposals ("RFP") in April 2019 and provided the 2017 DSM Potential Study to vendors to develop bids. The Company is currently in the process of evaluating the bids, and the results potentially will be included in future Company filings. The Company commissioned a new Market Potential Study in second quarter 2019, to identify potential measures that could be included in future Company-sponsored programs. The Company is committed to meeting the GTSA requirement to propose \$870 million of DSM programs through 2028, and will include additional measures in DSM programs in future Plans. The measures included in the commissioned 2019 DSM Potential Study still need to be part of a program design effort that looks at the viability of the potential measures as a single or multimeasure DSM program. These fully designed DSM programs would also need to be evaluated for cost-effectiveness and included in future Plan and DSM filings. The Company included in this 2019 Update the approved 11 DSM programs from Case No. PUR-2018-00168. On July 12, 2019, in Docket Nos. E-22, Sub 567, 568, 569, 570, 571, 572, 573, and 574, the Company filed for approval of the Residential Appliance Recycling Program, Residential Efficient Products Marketplace Program, Residential Home Energy Assessment Program, Non-Residential Lighting Systems & Controls Program, Non-Residential Heating and Cooling Efficiency Program, Non-Residential Window Film Program, Non-Residential Small Manufacturing Program, and Non-Residential Office Program. The Company is currently awaiting a final order on these program applications.

Like the 2018 Compliance Filing, the 2019 Update includes a Generic EE program designed to achieve the target of \$870 million of EE expenditures by 2028. The Company determined the balance of the EE energy reductions necessary to achieve this \$870 million goal given a generic program cost of \$200/MWh and also given the forecasted energy savings from EE programs currently approved by the SCC.

i. Approved DSM Programs

On October 3, 2017, as part of Case No. PUR-2017-00129, the Company filed for a five-year extension of the Phase IV Residential Income & Age Qualifying Home Improvement Program. On May 10, 2018, the SCC issued its Final Order approving the Residential Income and Age Qualifying Home Improvement Program for three years.

On October 3, 2018, the Company filed for SCC approval in Case No. PUR-2018-00168 of six residential DSM programs and five non-residential DSM programs. The 11 proposed programs were the (i) Residential Appliance Recycling Program, (ii) Residential Customer Engagement Program, (iii) Residential Efficient Products Marketplace Program, (iv) Residential Home Energy Assessment Program, (v) Residential Smart Thermostat Management Program (DR), (vi) Residential Smart Thermostat Management Program (DR), (vi) Residential Smart Thermostat Management Program (EE), (vii) Non-Residential Lighting Systems & Controls Program, (viii) Non-Residential Heating and Cooling Efficiency Program, (ix) Non-Residential Window Film Program, (x) Non-Residential Small Manufacturing Program, and (xi) Non-Residential Office Program. On May 2, 2019, the SCC issued its Final Order approving all 11 programs for a five-year period.

In North Carolina, the Company filed a Motion to Reopen the Residential Income and Age Qualifying Home Improvement Program on May 31, 2018, in Docket No. E-22, Sub 523. On June 26, 2018, the NCUC issued an order reopening this program.

On August 16, 2018, the Company filed for approval of two North Carolina-only programs in Docket Nos. E-22, Sub 507 and 508. The two programs were the Non-Residential Heating and Cooling Efficiency Program and the Non-Residential Lighting Systems & Controls Program. On October 16, 2018, the NCUC issued Final Orders approving both programs.

ii. <u>Cost/Benefit Analysis</u>

Since the 2018 Compliance Filing, the following DSM cases with cost-benefit scores were filed in North Carolina: Docket Nos. E-22, Sub 567, 568, 569, 570, 571, 572, 573, 574, and 577. The filings in these dockets reflect the most current information available. No additional analysis has been completed related to cost-benefit for DSM programs.

f. Grid Transformation Plan

Consistent with the policy objectives of the Commonwealth set forth in the GTSA, the Company has developed a plan to transform its electric distribution grid (*i.e.*, the Grid Transformation Plan or GT Plan) to address the structural limitations of the Company's distribution grid in a systematic manner, recognizing and accommodating fundamental changes in the electric industry and changing customer expectations.

The Grid Transformation Plan is a 10-year plan that includes six components: (i) advanced metering infrastructure ("AMI"); (ii) a new customer information platform ("CIP"); (iii) grid improvements, which include grid technologies and grid hardening; (iv) telecommunications infrastructure; (v) cyber and physical security; and (vi) emerging technology, which will include an initiative focused on electric vehicles charging infrastructure.

In 2018, the Company petitioned the SCC for approval of the first three years of the GT Plan ("Phase I") in Case No. PUR-2018-00100. The SCC approved proposed Phase I investments related to cyber and physical security, including supporting telecommunications infrastructure, as reasonable and prudent. The SCC denied the remaining portions of the proposed Phase I, but did so without prejudice to the Company seeking approval of the GT Plan in future petitions.

Since the Final Order was entered in Case No. PUR-2018-00100, the Company has been working diligently to address the concerns raised by the SCC, its Staff, and other parties to last year's GT Plan proceeding. Among other action items, the Company convened a series of stakeholder meetings to receive input and feedback on next steps for the Grid Transformation Plan, and solicited specific customer feedback on the GT Plan. Based on this feedback, the Company has been refining its proposed investments to ensure alignment with the objectives of grid transformation. In addition, the Company has retained an independent, experienced, third-party partner to generate a benefit-cost analysis for the GT Plan. The Company plans to file its second petition for approval of GT Plan investments later this year.

8. APPENDIX

The appendices listed below have been updated for the 2019 Update. Note that Appendices 2A through 2F are not able to be provided with PJM's 2019 Load Forecast because PJM does not provide forecasted sales or customer counts broken down by rate class. To comply with all prior relevant orders and rules, and as the PJM breakdown is not available, the Company is providing

Appendices 2A through 2G using the Company's 2019 Load Forecast. Note, however, that this information was not used to develop the PJM load forecast.

- a. Appendix 1A (Capacity and Energy)
- b. Appendix 2A (Total Sales by Customer Class)
- c. Appendix 2B (Virginia Sales by Customer Class)
- d. Appendix 2C (North Carolina Sales by Customer Class)
- e. Appendix 2D (Total Customer Count)
- f. Appendix 2E (Virginia Customer Count)
- g. Appendix 2F (North Carolina Customer Count)
- h. Appendix 2G (Zonal Summer and Winter Peak Demand)
- i. Appendix 2H (Summer and Winter Peaks)
- j. Appendix 2I (Projected Summer & Winter Peak Demand & Annual Energy)
- k. Appendix 2J (Required Reserve Margin)
- I. Appendix 3A (Existing Generation in Service)
- m. Appendix 3B (Other Generation Units)
- n. Appendix 3J (Potential Unit Retirements)
- o. Appendix 3K (Generation Under Construction)
- p. Appendix 3L (Wholesale Power Contracts)
- q. Appendix 3M (Description of Recently Approved DSM Programs)
- r. Appendix 3R (List of Planned Transmission Projects)
- s. Appendix 3X (List of Transmission Projects Under Construction)
- t. Appendix 4A (ICF Commodity Price Forecast)
- u. Appendix 5C (Planned Generation Under Development)

Appendix 1A: Plan A: No CO₂ Tax – Capacity and Energy

Capacity

2020

Note: 1) Accounts for potential unit retirements and rating changes to existing units in the Plan, and reflects summer ratings.

20¹² 20¹² 20¹² 20¹⁴ 20¹⁵ 20¹⁶ 20¹⁷ 20¹⁸ 20¹⁸ 20³⁵ 20³⁵ 20³⁵ 20³⁵

Note: 1) Accounts for potential unit retirements and rating changes to existing units in the Plan, and reflects summer ratings.

Note: 1) Accounts for potential unit retirements and rating changes to existing units in the Plan, and reflects summer ratings.

Year	Residential	Commercial	Industrial	Public Authority	and Traffic Lighting	for Resale	Total
2008	29,646	28,484	9,779	10,529	282	1,990	80,710
2009	29,904	28,455	8,644	10,448	276	1,932	79,658
2010	32,547	29,233	8,512	10,670	281	1,921	83,164
2011	30,779	28,957	7,960	10,555	273	2,011	80,536
2012	29,174	28,927	7,849	10,496	277	1,984	78,709
2013	30,184	29,372	8,097	10,261	276	1,956	80,145
2014	31,290	29,964	8,812	10,402	261	1,981	82,710
2015	30,923	30,282	8,765	10,159	275	1,856	82,260
2016	28,213	31,366	8,715	10,161	253	1,609	80,318
2017	29,737	32,292	8,638	10,555	258	1,607	83,086
2018	32,139	33,591	8,324	10,761	260	1,633	86,707
2019	31,236	32,807	8,990	10,330	280	1,560	85,203
2020	31,518	33,311	8,952	10,368	281	1,581	86,012
2021	31,758	34,166	8,788	10,422	282	1,594	87,010
2022	32,028	35,123	8,610	10,487	283	1,609	88,140
2023	32,364	35,954	8,447	10,635	284	1,625	89,308
2024	32,776	37,443	8,359	10,769	284	1,647	91,277
2025	32,972	38,708	8,327	10,801	285	1,658	92,753
2026	33,270	39,845	8,336	10,933	286	1,675	94,345
2027	33,551	41,138	8,340	11,036	287	1,694	96,046
2028	34,007	42,506	8,360	11,173	288	1,719	98,053
2029	34,304	43,540	8,317	11,342	289	1,738	99,529
2030	34,677	44,554	8,306	11,515	290	1,760	101,101
2031	35,110	45,690	8,364	11,459	291	1,779	102,693
2032	35,594	46,777	8,368	11,730	291	1,801	104,561
2033	35,866	47,559	8,345	11,767	292	1,822	105,651
2034	36,221	48,462	8,326	11,703	293	1,836	106,840

Appendix 2A: Total Sales by Customer Class (DOM LSE) (GWh)

Street

Sales

Note: Historic (2008 – 2018). Projected (2019 – 2034).

o
হ
R
5

Year	Residential	Commercial	Industrial	Public Authority	Street and Traffic Lighting	Sales for Resale	Total
2008	28,100	27,679	8,064	10,391	273	1,901	76,408
2009	28,325	27,646	7,147	10,312	268	1,883	75,581
2010	30,831	28,408	6,872	10,529	273	1,870	78,784
2011	29,153	28,163	6,342	10,423	265	1,958	76,304
2012	27,672	28,063	6,235	10,370	269	1,934	74,544
2013	28,618	28,487	6,393	10,134	267	1,906	75,804
2014	29,645	29,130	6,954	10,272	253	1,930	78,184
2015	29,293	29,432	7,006	10,029	266	1,803	77,829
2016	26,652	30,537	6,947	10,033	245	1,556	75,971
2017	28,194	31,471	6,893	10,429	250	1,555	78,792
2018	30,437	32,752	6,598	10,633	252	1,581	82,254
2019	29,583	31,988	7,126	10,207	272	1,510	80,686
2020	29,850	32,479	7,097	10,245	273	1,531	81,474
2021	30,077	33,313	6,966	10,299	273	1,543	82,471
2022	30,332	34,246	6,825	10,363	274	1,558	83,599
2023	30,651	35,056	6,696	10,508	275	1,573	84,760
2024	31,041	36,508	6,626	10,641	276	1,594	86,686
2025	31,227	37,742	6,601	10,673	277	1,605	88,125
2026	31,508	38,850	6,608	10,804	278	1,621	89,670
2027	31,775	40,111	6,612	10,905	279	1,640	91,321
2028	32,207	41,444	6,627	11,040	280	1,664	93,263
2029	32,488	42,453	6,593	11,207	281	1,682	94,703
2030	32,841	43,441	6,584	11,378	281	1,704	96,230
2031	33,252	44,549	6,630	11,323	282	1,722	97,759
2032	33,709	45,609	6,634	11,591	283	1,743	99,569
2033	33,967	46,371	6,615	11,628	284	1,764	100,629
2034	34,303	47,252	6,600	11,565	284	1,777	101,781

Appendix 2B: Virginia Sales by Customer Class (DOM LSE) (GWh)

Note: Historic (2008 – 2018). Projected (2019 – 2034).

Year	Residential	Commercial	Industrial	Public Authority	Street and Traffic Lighting	Sales for Resale	Total
2008	1,546	806	1,715	138	8	88	4,302
2009	1,579	809	1,497	136	8	49	4,078
2010	1,716	825	1,640	141	8	51	4,380
2011	1,626	795	1,618	132	8	53	4,232
2012	1,502	864	1,614	126	8	50	4,165
2013	1,567	885	1,704	127	8	50	4,341
2014	1,645	834	1,858	130	8	51	4,526
2015	1,630	850	1,759	130	8	53	4,430
2016	1,562	829	1,768	128	8	53	4,347
2017	1,542	821	1,744	126	8	52	4,293
2018	1,701	839	1,725	128	8	52	4,453
2019	1,654	819	1,864	123	8	50	4,517
2020	1,668	832	1,856	123	8	51	4,538
2021	1,681	853	1,822	124	8	51	4,539
2022	1,695	877	1,785	124	8	51	4,541
2023	1,713	898	1,751	126	8	52	4,548
2024	1,735	935	1,733	128	8	53	4,591
2025	1,745	967	1,726	128	8	53	4,628
2026	1,761	995	1,728	130	8	54	4,676
2027	1,776	1,027	1,729	131	8	54	4,726
2028	1,800	1,061	1,733	133	8	55	4,791
2029	1,816	1,087	1,724	135	8	56	4,826
2030	1,836	1,113	1,722	137	8	56	4,871
2031	1,859	1,141	1,734	136	8	57	4,935
2032	1,884	1,168	1,735	139	8	58	4,992
2033	1,899	1,188	1,730	140	8	58	5,022
2034	1,917	1,210	1,726	139	8	59	5,059

Appendix 2C: North Carolina Sales by Customer Class (DOM LSE) (GWh)

Note: Historic (2008 – 2018). Projected (2019 – 2034).

	ļ	2
	6	R
	8	R
		F
		(

	Appendix 2D: Total Customer Count (DOM LSE)							
Year	Residential	Commercial	Industrial	Public Authority	Street and Traffic Lighting	Sales for Resale	Total	
2008	2,124,089	230,715	598	29,008	2,513	5	2,386,927	
2009	2,139,604	232,148	581	29,073	2,687	5	2,404,099	
2010	2,157,581	232,988	561	29,041	2,798	5	2,422,974	
2011	2,171,795	233,760	535	29,104	3,031	4	2,438,228	
2012	2,187,670	234,947	514	29,114	3,246	3	2,455,495	
2013	2,206,657	236,596	526	28,847	3,508	3	2,476,138	
2014	2,229,639	237,757	631	28,818	3,653	3	2,500,500	
2015	2,252,438	239,623	662	28,923	3,814	3	2,525,463	
2016	2,275,551	240,804	654	29,069	3,941	3	2,550,022	
2017	2,298,894	242,091	648	28,897	4,149	3	2,574,683	
2018	2,323,662	243,701	644	28,716	4,398	4	2,601,125	
2019	2,345,799	245,311	641	28,794	4,617	3	2,625,166	
2020	2,370,432	247,417	640	28,899	4,761	3	2,652,153	
2021	2,397,466	249,671	639	28,997	4,905	3	2,681,681	
2022	2,426,552	252,057	638	29,090	5,049	3	2,713,389	
2023	2,456,033	254,472	637	29,179	5,193	3	2,745,518	
2024	2,484,773	256,841	636	29,258	5,337	3	2,776,849	
2025	2,513,088	259,182	635	29,327	5,481	3	2,807,716	
2026	2,541,189	261,510	634	29,390	5,625	3	2,838,351	
2027	2,568,347	263,782	633	29,446	5,769	3	2,867,981	
2028	2,594,344	265,980	632	29,494	5,913	3	2,896,367	
2029	2,619,660	268,135	631	29,535	6,057	3	2,924,022	
2030	2,644,405	270,254	630	29,572	6,201	3	2,951,065	
2031	2,668,550	272,335	629	29,603	6,345	3	2,977,466	
2032	2,692,171	274,384	628	29,631	6,489	3	3,003,306	
2033	2,715,315	276,403	627	29,655	6,633	3	3,028,636	
2034	2,738,072	278,397	626	29,675	6,777	3	3,053,550	

Note: Historic (2008 - 2018). Projected (2019 - 2034).

Ø	
2	
2	
Aug	

Year	Residential	Commercial	Industrial	Public Authority	Street and Traffic Lighting	Sales for Resale	Total
2008	2,023,592	215,212	538	27,141	2,116	3	2,268,602
2009	2,038,843	216,663	522	27,206	2,290	3	2,285,526
2010	2,056,576	217,531	504	27,185	2,404	3	2,304,203
2011	2,070,786	218,341	482	27,252	2,639	2	2,319,502
2012	2,086,647	219,447	464	27,265	2,856	2	2,336,680
2013	2,105,500	221,039	477	26,996	3,118	2	2,357,131
2014	2,128,313	222,143	579	26,966	3,267	2	2,381,269
2015	2,150,818	223,946	611	27,070	3,430	2	2,405,877
2016	2,173,472	225,029	603	27,223	3,560	2	2,429,889
2017	2,196,466	226,270	596	27,041	3,768	2	2,454,143
2018	2,219,817	227,757	594	26,872	4,017	2	2,479,059
2019	2,241,954	228,228	592	26,945	4,217	2	2,501,937
2020	2,265,497	230,187	591	27,043	4,349	2	2,527,668
2021	2,291,334	232,284	590	27,135	4,480	2	2,555,824
2022	2,319,132	234,503	589	27,222	4,612	2	2,586,060
2023	2,347,308	236,750	588	27,305	4,743	2	2,616,697
2024	2,374,776	238,955	587	27,379	4,875	2	2,646,574
2025	2,401,837	241,132	586	27,444	5,006	2	2,676,008
2026	2,428,694	243,299	585	27,502	5,138	2	2,705,220
2027	2,454,650	245,412	584	27,555	5,269	2	2,733,473
2028	2,479,496	247,457	583	27,600	5,401	2	2,760,540
2029	2,503,692	249,462	582	27,639	5,532	2	2,786,909
2030	2,527,341	251,433	581	27,673	5,664	2	2,812,694
2031	2,550,417	253,370	580	27,702	5,795	2	2,837,867
2032	2,572,992	255,276	580	27,728	5,927	2	2,862,504
2033	2,595,113	257,154	579	27,751	6,058	2	2,886,656
2034	2,616,862	259,009	578	27,770	6,190	2	2,910,410
c							

Annondiv 2E	Virginia	Customer	Count	
Appendix ZE.	virginia	Customer	Count	LJC)

Note: Historic (2008 - 2018). Projected (2019 - 2034).

o	
5	
N	
Ň	
3	
٠	

Year	Residential	Commercial	Industrial	Public Authority	Street and Traffic Lighting	Sales for Resale	Total
2008	100,497	15,502	60	1,867	397	2	118,325
2009	100,761	15,485	59	1,867	398	2	118,573
2010	101,005	15,457	56	1,857	395	2	118,772
2011	101,009	15,418	53	1,852	392	2	118,726
2012	101,024	15,501	50	1,849	390	1	118,815
2013	101,158	15,557	50	1,851	390	1	119,007
2014	101,326	15,614	52	1,853	386	1	119,231
2015	101,620	15,677	52	1,853	384	1	119,586
2016	102,079	15,775	51	1,846	381	1	120,133
2017	102,429	15,821	52	1,857	381	1	120,541
2018	103,845	15,944	50	1,844	381	2	122,066
2019	103,845	17,084	50	1,849	400	1	123,228
2020	104,935	17,230	50	1,856	412	1	124,485
2021	106,132	17,387	50	1,862	425	1	125,857
2022	107,420	17,553	50	1,868	437	1	127,329
2023	108,725	17,722	49	1,874	450	1	128,821
2024	109,997	17,887	49	1,879	462	1	130,275
2025	111,251	18,050	49	1,883	475	1	131,709
2026	112,495	18,212	49	1,887	487	1	133,131
2027	113,697	18,370	49	1,891	500	1	134,508
2028	114,848	18,523	49	1,894	512	1	135,827
2029	115,968	18,673	49	1,897	525	1	137,113
2030	117,064	18,821	49	1,899	537	1	138,371
2031	118,133	18,966	49	1,901	550	1	139,599
2032	119,178	19,108	49	1,903	562	1	140,801
2033	120,203	19,249	49	1,904	575	1	141,980
2034	121,210	19,388	49	1,906	587	1	143,140

Annendix 2F	North	Carolina	Customer	Count	
Appendix Zr.	NOTUL	Caronna	Customer	Count	1

Note: Historic (2008 – 2018). Projected (2019 – 2034).

Year	Summer Peak Demand (MW)	Winter Peak Demand (MW)
2008	19,051	17,028
2009	18,137	17,904
2010	19,140	17,689
2011	20,061	17,889
2012	19,249	16,881
2013	18,763	17,623
2014	18,692	19,784
2015	18,980	21,651
2016	19,538	18,948
2017	18,902	19,661
2018	19,244	21,232
2019	19,945	19,074
2020	20,235	19,319
2021	20,478	19,714
2022	20,748	20,118
2023	21,036	20,504
2024	21,394	20,944
2025	21,809	21,222
2026	22,208	21,596
2027	22,493	22,137
2028	22,773	22,527
2029	23,148	22,835
2030	23,587	22,980
2031	23,882	23,246
2032	24,094	23,494
2033	24,318	23,959
2034	24,589	24,269

Appendix 2G: Zonal Summer and Winter Peak Demand

Note: Historic (2008 – 2018). Projected (2019 – 2034).

Appendix 2H: Summer & Winter Peaks Plan B: RGGI

Company Name:	Virginia E	lectric and	Power Co	mpany														Se	chedule 5
POWER SUPPLY DATA	(ACTUAL)				(PROJECTED)													
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
II. Load (MW)																			
1. Summer																			
a. Adjusted Summer Peak ⁽¹⁾	16,821	16,241	16,409	16,156	16,299	16,336	16,621	16,867	17,015	17,144	17,216	17,275	17,430	17,697	17,753	17,870	17,883	17,953	18,105
b. Other Commitments ⁽²⁾	93	109	119	121	126	346	299	302	266	259	246	278	277	165	164	161	204	210	210
c. Total System Summer Peak	16,914	16,350	16,528	16,276	16,425	16,682	16,920	17,169	17,281	17,403	17,462	17,553	17,707	17,862	17,916	18,031	18,087	18,162	18,315
d. Percent Increase in Total																			
Summer Peak	2.3%	-3.3%	1.1%	-1.5%	0.9%	1.6%	1.4%	1.5%	0.6%	0.7%	0.3%	0.5%	0.9%	0.9%	0.3%	0.6%	0.3%	0.4%	0.8%
2. Winter																			
a. Adjusted Winter Peak ⁽¹⁾	16,080	16,509	17,673	15,457	15,737	15,796	16,096	16,334	16,463	16,563	16,669	16,770	16,896	17,021	17,126	17,217	17,327	17,440	17,553
b. Other Commitments ⁽²⁾	93	109	119	53.8	81	244	251	266	282	280	269	264	259	258	256	248	243	238	234
c. Total System Winter Peak	16,173	16,618	17,792	15,511	15,817	16,040	16,347	16,600	16,745	16,843	16,938	17,034	17,154	17,278	17,382	17,465	17,571	17,678	17,787
d. Percent Increase in Total																			
Winter Peak	-13.5%	2.8%	7.1%	-12.8%	2.0%	1.4%	1.9%	1.5%	0.9%	0.6%	0.6%	0.6%	0.7%	0.7%	0.6%	0.5%	0.6%	0.6%	0.6%

Note: 1) Adjusted load from Appendix 2I. 2) Includes firm additional forecast, conservation efficiency, and peak adjustments from Appendix 2I.

() ()	
õ	
2	
Ň	
3	
₹	

Company Name:	Virginia E	lectric an	d Power C	Company														Sched	lule 1
I. PEAK LUAD AND ENERGY FORECAST	(/	ACTUAL) ⁽	1)								(PF	ROJECTE	D)						
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
1. Utility Peak Load (MW) A. Summer																			
1a. Base Forecast	16,914	16,350	16,528	16,276	16,425	16,682	16,920	17,169	17,281	17,403	17,462	17,553	17,707	17,862	17,916	18,031	18,087	18,162	18,315
1b. Additional Forecast																			
NCEMC				150	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2. Conservation, Efficiency ⁽⁵⁾	-93	-109	-119	-271	-276	-346	-299	-302	-266	-259	-246	-278	-277	-165	-164	-161	-204	-210	-210
3. Demand Response ⁽²⁾⁽⁵⁾	-103	-70	-58	-63	-92	-126	-172	-227	-252	-254	-255	-256	-257	-258	-259	-260	-261	-262	-263
4. Demand Response-Existing ⁽²⁾⁽³⁾	-2	-1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
5. Peak Adjustment		-																	
6. Adjusted Load	16,821	16,241	16,409	16,156	16,299	16,336	16,621	16,867	17,015	17,144	17,216	17,275	17,430	17,697	17,753	17,870	17,883	17,953	18,105
7. % Increase in Adjusted Load	2.2%	-3.4%	1.0%	-1.5%	0.9%	0.2%	1.7%	1.5%	0.9%	0.8%	0.4%	0.3%	0.9%	1.5%	0.3%	0.7%	0.1%	0.4%	0.8%
(from previous year)																			
B. Winter																			
1a. Base Forecast	16,173	16,618	17,792	15,511	15,817	16,040	16,347	16,600	16,745	16,843	16,938	17,034	17,154	17,278	17,382	17,465	17,571	17,678	17,787
1b. Additional Forecast																			
NCEMC			-	150	150	-	-	-	-	-	_	-	-	-	-	-	-	-	-
2. Conservation, Efficiency ⁽⁵⁾	-93	-109	-119	-204	-231	-244	-251	-266	-282	-280	-269	-264	-259	-258	-256	-248	-243	-238	-234
3. Demand Response ⁽²⁾⁽⁴⁾	-4	-5	-6	-7	-20	-48	-88	-140	-193	-195	-196	-197	-199	-200	-201	-202	-203	-205	-206
4. Demand Response-Existing ⁽²⁾⁽³⁾	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
5. Adjusted Load	16,080	16,509	17,673	15,457	15,737	15,796	16,096	16,334	16,463	16,563	16,669	16,770	16,896	17,021	17,126	17,217	17,327	17,440	17,553
6. % Increase in Adjusted Load	-13.6%	2.7%	7.1%	-12.5%	1.8%	0.4%	1.9%	1.5%	0.8%	0.6%	0.6%	0.6%	0.7%	0.7%	0.6%	0.5%	0.6%	0.6%	0.7%
2. Energy (GWh)																			
A Base Forecast	84,698	84,046	88,377	88,183	89,665	89,211	90,331	91,485	92,524	92,934	93,730	94,243	95,359	96,258	96,840	97,539	98,474	98,872	99,632
B. Additional Forecast																			
C. Conservation & Demand Response ⁽⁵⁾	-556	-660	-727	-1,845	-2,068	-2,307	-2,155	-2,299	-2,436	-2,414	-2,347	-2,300	-2,278	-1,921	-1,922	-1,916	-1,900	-1,914	-1,921
D. Demand Response-Existing ⁽²⁾⁽³⁾	-				-	-	-	-	-		-	-	-	-	-	-	-		-
E. Adjusted Energy	84,142	83,386	87,650	86,338	87,597	86,905	88,176	89,185	90,089	90,520	91,383	91,942	93,080	94,337	94,919	95,623	96,574	96,957	97,711
F. % Increase in Adjusted Energy	-0.2%	-0.9%	5.1%	-1.5%	1.5%	-0.8%	1.5%	1.1%	1.0%	0.5%	1.0%	0.6%	1.2%	1.3%	0.6%	0.7%	1.0%	0.4%	0.8%

Appendix 2I: Projected Summer & Winter Peak Load & Energy Forecast for Plan B: RGGI

Note: 1) Actual metered data.

2) Demand response programs are classified as capacity resources and are not included in adjusted load.

3) Existing DSM programs are included in the load forecast.

4) Actual historical data based upon measured and verified EM&V results.

5) Actual historical data based upon measured and verified EM&V results. Projected values represent modeled DSM firm capacity.
6) Future BTM is not included in the base forecast.

Appendix 2J: Required Reserve Margin for Plan B: RGGI

Company Name:	Virginia E	lectric and	Power Co	ompany															Schedule 6
POWER SOFFET DATA (continued)	(ACTUAL)								(F	ROJECTED)								
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
I. Reserve Margin ⁽¹⁾																			
1. Summer Reserve Margin																			
a. MW ⁽¹⁾	3,919	3,506	2,890	3,880	3,708	2,991	3,144	2,434	2,439	2,424	2,904	3,012	2,852	2,579	2,517	2,521	2,672	2,679	2,691
b. Percent of Load	23.2%	21.4%	17.5%	24.0%	22.8%	18.3%	18.9%	14.4%	14.3%	14.1%	16.9%	17.4%	16.4%	14.6%	14.2%	14.1%	14.9%	14.9%	14.9%
c. Actual Reserve Margin ⁽²⁾	N/A	N∕A	N/A	24.0%	22.8%	18.3%	18.9%	10.3%	13.2%	13.6%	16.9%	17.4%	16.4%	14.6%	14.2%	14.1%	14.9%	14.9%	14.9%
2. Winter Reserve Margin																			
a. MW ⁽¹⁾	N/A	N/A	N/A	6,042	5,878	5,025	5,251	4,640	4,663	4,664	5,152	5,264	5,123	4,887	4,831	4,849	4,999	5,013	5,044
b. Percent of Load	N/A	N∕A	N/A	39.1%	37.4%	31.8%	32.6%	28.4%	28.3%	28.2%	30.9%	31.4%	30.3%	28.7%	28.2%	28.2%	28.8%	28.7%	28.7%
c. Actual Reserve Margin ⁽²⁾	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
II. Annual Loss-of-Load Hours ⁽³⁾	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N∕A	N/A

Note: 1) To be calculated based on total net capability for summer and winter.

2) Does not include spot purchases of capacity or energy efficiency programs.

3) The Company follows PJM reserve requirements, which are based on LOLE.

OFFICIAL COPY

Aug 29 2019

Appendix 3A: Existing Generation Units in Service

Virginia Electric and Power Company

Schedule 14a

Company Name: UNIT PERFORMANCE DATA Existing Supply-Side Resources (MW)

Unit Name	Location	Unit Class	Primary Fuel Type	C.O.D. ⁽¹⁾	MW Summer	MW Winter
Altavista	Altavista, VA	Base	Renewable	Feb-1992	51	51
Bath County 1-6	Warm Springs, VA	Intermediate	Hydro-Pumped Storage	Dec-1985	1,808	1,808
Bear Garden	Buckingham County, VA	Intermediate	Natural Gas-CC	May-2011	622	654
Brunswick	Brunswick County, VA	Intermediate	Natural Gas-CC	May-2016	1,376	1,470
Chesapeake CT 1, 2, 4, 6	Chesapeake, VA	Peak	Light Fuel Oil	Dec-1967	39	52
Chesterfield 5	Chester, VA	Base	Coal	Aug-1964	336	342
Chesterfield 6	Chester, VA	Base	Coal	Dec-1969	678	690
Chesterfield 7	Chester, VA	Intermediate	Natural Gas-CC	Jun-1990	197	226
Chesterfield 8	Chester, VA	Intermediate	Natural Gas-CC	May-1992	200	236
Clover 1	Clover, VA	Base	Coal	Oct-1995	220	222
Clover 2	Clover, VA	Base	Coal	Mar-1996	219	219
Darbytown 1	Richmond, VA	Peak	Natural Gas-Turbine	May-1990	84	98
Darbytown 2	Richmond, VA	Peak	Natural Gas-Turbine	May-1990	84	97
Darbytown 3	Richmond, VA	Peak	Natural Gas-Turbine	Apr-1990	84	95
Darbytown 4	Richmond, VA	Peak	Natural Gas-Turbine	Apr-1990	84	97
Elizabeth River 1	Chesapeake, VA	Peak	Natural Gas-Turbine	Jun-1992	110	121
Elizabeth River 2	Chesapeake, VA	Peak	Natural Gas-Turbine	Jun-1992	110	120
Elizabeth River 3	Chesapeake, VA	Peak	Natural Gas-Turbine	Jun-1992	110	124
Gaston Hydro	Roanoake Rapids, NC	Intermediate	Hydro-Conventional	Feb-1963	220	220
Gordonsville 1	Gordonsville, VA	Intermediate	Natural Gas-CC	Jun-1994	109	135
Gordonsville 2	Gordonsville, VA	Intermediate	Natural Gas-CC	Jun-1994	109	135
Gravel Neck 1-2	Surry, VA	Peak	Light Fuel Oil	Aug-1970	28	38
Gravel Neck 3	Surry, VA	Peak	Natural Gas-Turbine	Oct-1989	85	98
Gravel Neck 4	Surry, VA	Peak	Natural Gas-Turbine	Jul-1989	85	97
Gravel Neck 5	Surry, VA	Peak	Natural Gas-Turbine	Jul-1989	85	98
Gravel Neck 6	Surry, VA	Peak	Natural Gas-Turbine	Nov-1989	85	97
Greensville	Brunswick County, VA	Intermediate	Natural Gas-CC	Dec-2018	1,588	1,626
Hopewell	Hopewell, VA	Base	Renewable	Jul-1989	51	51
Ladysmith 1	Woodford, VA	Peak	Natural Gas-Turbine	May-2001	151	183
Ladysmith 2	Woodford, VA	Peak	Natural Gas-Turbine	May-2001	151	183
Ladysmith 3	Woodford, VA	Peak	Natural Gas-Turbine	Jun-2008	161	183
Ladysmith 4	Woodford, VA	Peak	Natural Gas-Turbine	Jun-2008	160	183
Ladysmith 5	Woodford, VA	Peak	Natural Gas-Turbine	Apr-2009	160	183
Lowmoor CT 1-4	Covington VA	Peak	Light Fuel Oil	Jul-1971	48	65

Note: 1) Commercial operation date.

OFFICIAL COPY

Aug 29 2019

Appendix 3A: Existing Generation Units in Service

Virginia Electric and Power Company

Schedule 14a

Company Name: UNIT PERFORMANCE DATA Existing Supply-Side Resources (MW)

Unit Name	Location	Unit Class	Primary Fuel Type	C.O.D. ⁽¹⁾	MW Summer	MW Winter
Mount Storm 1	Mt. Storm, WV	Base	Coal	Sep-1965	548	569
Mount Storm 2	Mt. Storm, WV	Base	Coal	Jul-1966	553	570
Mount Storm 3	Mt. Storm, WV	Base	Coal	Dec-1973	520	537
Mount Storm CT	Mt. Storm, WV	Peak	Light Fuel Oil	Oct-1967	11	15
North Anna 1	Mineral, VA	Base	Nuclear	Jun-1978	838	868
North Anna 2	Mineral, VA	Base	Nuclear	Dec-1980	834	863
North Anna Hydro	Mineral, VA	Intermediate	Hydro-Conventional	Dec-1987	1	1
Northern Neck CT 1-4	Warsaw, VA	Peak	Light Fuel Oil	Jul-1971	47	70
Possum Point 5	Dumfries, VA	Peak	Heavy Fuel Oil	Jun-1975	786	805
Possum Point 6	Dumfries, VA	Intermediate	Natural Gas-CC	Jul-2003	573	615
Possum Point CT 1-6	Dumfries, VA	Peak	Light Fuel Oil	May-1968	72	106
Remington 1	Remington, VA	Peak	Natural Gas-Turbine	Jul-2000	153	187
Remington 2	Remington, VA	Peak	Natural Gas-Turbine	Jul-2000	151	187
Remington 3	Remington, VA	Peak	Natural Gas-Turbine	Jul-2000	152	187
Remington 4	Remington, VA	Peak	Natural Gas-Turbine	Jul-2000	152	188
Roanoke Rapids Hydro	Roanoake Rapids, NC	Intermediate	Hydro-Conventional	Sep-1955	95	95
Rosemary	Roanoke Rapids, NC	Peak	Natural Gas-CC	Dec-1990	165	165
Scott Solar	Powhatan, VA	Intermittent	Renewable	Dec-2016	6	17
Solar Partnership Program	Distributed	Intermittent	Renewable	Jan-2012	2	7
Southampton	Franklin, VA	Base	Renewable	Mar-1992	51	51
Surry 1	Surry, VA	Base	Nuclear	Dec-1972	838	875
Surry 2	Surry, VA	Base	Nuclear	May-1973	838	875
Virginia City Hybrid Energy Center	Virginia City, VA	Base	Coal	Jul-2012	610	624
Warren	Front Royal, VA	Intermediate	Natural Gas-CC	Dec-2014	1,370	1,436
Whitehouse Solar	Louisa, VA	Intermittent	Renewable	Dec-2016	7	20
Woodland Solar	Isle of Wight, VA	Intermittent	Renewable	Dec-2016	7	19
Yorktown 3	Yorktown, VA	Peak	Heavy Fuel Oil	Dec-1974	790	792
Subtotal - Base					7,185	7,406
Subtotal - Intermediate					8,268	8,657
Subtotal - Peak					4,383	4,914
Subtotal - Intermittent					22	63
Total					19,858	21,041

Note: Summer MW for solar generation represents firm capacity.

1) Commercial operation date.

Appendix 3B: Other Generating Units

Company Name:

Virginia Electric and Power Company

Schedule 14b

UNIT PERFORMANCE DATA Existing Supply-Side Resources (kW)

Unit Name	Location	Primary Fuel Type	kW Summer	Contract Start	Contract Expiration
Non-Utility Generation (NUG) Units ⁽¹⁾					
Alexandria/Arlington - Covanta	VA	MSW	21,000	1/29/1988	1/28/2023
Brasfield Dam	VA	Hydro	2,500	10/12/1993	Auto renew
Suffolk Landfill	VA	Methane	3,000	11/4/1994	Auto renew
Columbia Mills	VA	Hydro	343	2/7/1985	Auto renew
Lakeview (Swift Creek) Dam	VA	Hydro	400	11/26/2008	Auto renew
MeadWestvaco (formerly Westvaco)	VA	Coal/Biomass	140,000	11/3/1982	9/30/2028
Banister Dam	VA	Hydro	1,785	9/28/2008	Auto renew
302 First Flight Run	NC	Solar	3	5/5/2010	Auto renew
3620 Virginia Dare Trail N	NC	Solar	4	9/14/2009	Auto renew
Weyerhaeuser/Domtar	NC	Coal/biomass	28,400 ⁽²⁾	7/27/1991	Auto renew
Chapman Dam	VA	Hydro	300	10/17/1984	Auto renew
Smurfit-Stone Container	VA	Coal/biomass	48,400 ⁽³⁾	3/21/1981	Auto renew
Rivanna	VA	Hydro	100	4/21/1998	Auto renew
Rapidan Mill	VA	Hydro	100	6/15/2009	Auto renew
Burnshire Dam	VA	Hydro	100	7/11/2016	Auto renew
Cushaw Hydro	VA	Hydro	7,500	11/21/2018	11/20/2033
Dairy Energy	VA	Biomass	400	8/2/2011	7/31/2019
Essex Solar Center	VA	Solar	20,000	12/14/2017	12/13/2037
W. E. Partners II	NC	Biomass	300	3/15/2012	Auto renew
Plymouth Solar	NC	Solar	5,000	10/4/2012	10/3/2027
W. E. Partners 1	NC	Biomass	100	4/26/2013	Auto renew
Dogwood Solar	NC	Solar	20,000	12/9/2014	12/8/2029
HXOap Solar	NC	Solar	20,000	12/16/2014	12/15/2029
Bethel Price Solar	NC	Solar	5,000	12/9/2014	12/8/2029
Jakana Solar	NC	Solar	5,000	12/4/2014	12/3/2029
Lewiston Solar	NC	Solar	5,000	12/18/2014	12/17/2029
Williamston Solar	NC	Solar	5,000	12/4/2014	12/3/2029
Windsor Solar	NC	Solar	5,000	12/17/2014	12/16/2029
510 REPP One Solar	NC	Solar	1,250	3/11/2015	3/10/2030
Everetts Wildcat Solar	NC	Solar	5,000	3/11/2015	3/10/2030
SolNC5 Solar	NC	Solar	5,000	5/12/2015	5/11/2030
Creswell Aligood Solar	NC	Solar	14,000	5/13/2015	5/12/2030
Two Mile Desert Road - SolNC1	NC	Solar	5,000	8/10/2015	8/9/2030
SolNCPower6 Solar	NC	Solar	5,000	11/1/2015	10/31/2030
Downs Farm Solar	NC	Solar	5,000	12/1/2015	11/30/2030
GKS Solar- SolNC2	NC	Solar	5,000	12/16/2015	12/15/2030
Windsor Cooper Hill Solar	NC	Solar	5,000	12/18/2015	12/17/2030
Green Farm Solar	NC	Solar	5,000	1/6/2016	1/5/2031
FAE X - Shawboro	NC	Solar	20.000	1/26/2016	1/25/2031
FAE XVII - Watson Seed	NC	Solar	20.000	1/28/2016	1/27/2031
Bradley PVI- FAE IX	NC	Solar	5,000	2/4/2016	2/3/2031
Conetoe Solar	NC	Solar	5,000	2/5/2016	2/4/2031
SolNC3 Solar-Sugar Run Solar	NC	Solar	5.000	2/5/2016	2/4/2031
Gates Solar	NC	Solar	5.000	2/8/2016	2/7/2031
Long Farm 46 Solar	NC.	Solar	5 000	2/12/2016	2/11/2031
Battleboro Farm Solar		Solar	5 000	2/17/2016	2/16/2031
Baalobolo , ann oolai		00.01	0,000	2/17/2010	211012001

Note: (1) In operation as of March 1, 2019; Generating facilities that have contracted directly with Dominion Energy Virginia or Dominion Energy North Carolina.

(2) PPA is for Excess Energy only typically 4,000-14,000 kW.

(3) PPA is for Excess Energy only typically 3,500 kW

Appendix 3B: Other Generating Units

Company Name:

Virginia Electric and Power Company

Schedule 14b

UNIT PERFORMANCE DATA Existing Supply-Side Resources (kW)

Unit Name	Location	Primary Fuel Type	kW Summer	Contract Start	Contract Expiration	
Non-Utility Generation (NUG) Units ⁽¹⁾						
Winton Solar	NC	Solar	5,000	2/8/2016	2/7/2031	
SolNC10 Solar	NC	Solar	5,000	1/13/2016	1/12/2031	
Tarboro Solar	NC	Solar	5,000	12/31/2015	12/30/2030	
Bethel Solar	NC	Solar	4,400	3/3/2016	3/2/2031	
Garysburg Solar	NC	Solar	5,000	3/18/2016	3/17/2031	
Woodland Solar	NC	Solar	5,000	4/7/2016	4/6/2031	
Gaston Solar	NC	Solar	5,000	4/18/2016	4/17/2031	
TWE Kelford Solar	NC	Solar	4,700	6/6/2016	6/5/2031	
FAE XVIII - Meadows	NC	Solar	20,000	6/9/2016	6/8/2031	
Seaboard Solar	NC	Solar	5,000	6/29/2016	6/28/2031	
Simons Farm Solar	NC	Solar	5,000	7/13/2016	7/12/2031	
Whitakers Farm Solar	NC	Solar	3,400	7/20/2016	7/19/2031	
MC1 Solar	NC	Solar	5,000	8/19/2016	8/18/2031	
Williamston West Farm Solar	NC	Solar	5,000	8/23/2016	8/22/2031	
River Road Solar	NC	Solar	5,000	8/23/2016	8/22/2031	
White Farm Solar	NC	Solar	5,000	8/26/2016	8/25/2031	
Hardison Farm Solar	NC	Solar	5,000	9/9/2016	9/8/2031	
Modlin Farm Solar	NC	Solar	5,000	9/14/2016	9/13/2031	
Battleboro Solar	NC	Solar	5,000	10/7/2016	10/6/2031	
Williamston Speight Solar	NC	Solar	15,000	11/23/2016	11/22/2031	
Barnhill Road Solar	NC	Solar	3,100	11/30/2016	11/29/2031	
Hemlock Solar	NC	Solar	5,000	12/5/2016	12/4/2031	
Leggett Solar	NC	Solar	5,000	12/14/2016	12/13/2031	
Schell Solar Farm	NC	Solar	5,000	12/22/2016	12/21/2031	
FAE XXXV - Turkey Creek	NC	Solar	13,500	1/31/2017	1/30/2027	
FAE XXII - Baker PVI	NC	Solar	5,000	1/30/2017	1/29/2032	
FAE XXI -Benthall Bridge PVI	NC	Solar	5,000	1/30/2017	1/29/2032	
Aulander Hwy 42 Solar	NC	Solar	5,000	12/30/2016	12/29/2031	
Floyd Road Solar	NC	Solar	5,000	6/19/2017	6/18/2032	
Flat Meeks- FAE II	NC	Solar	5,000	10/27/2017	10/26/2032	
HXNAir Solar One	NC	Solar	5,000	12/21/2017	12/20/2032	
Cork Oak Solar	NC	Solar	20,000	12/29/2017	12/28/2032	
Sunflower Solar	NC	Solar	16,000	12/29/2017	12/28/2032	
Davis Lane Solar	NC	Solar	5,000	12/31/2017	12/30/2032	
FAE XIX- American Legion PVI	NC	Solar	15.840	1/2/2018	1/1/2033	
FAE XXV-Vaughn's Creek	NC	Solar	20.000	1/2/2018	1/1/2033	
TWE Ahoskie Solar Project	NC	Solar	5,000	1/12/2018	1/11/2033	
Cottonwood Solar	NC	Solar	3.000	1/25/2018	1/24/2033	
Shiloh Hwy 1108 Solar	NC	Solar	5.000	2/9/2018	2/8/2033	
Chowan Jehu Road Solar	NC	Solar	5.000	2/9/2018	2/8/2033	
Phelps 158 Solar Farm	NC	Solar	5.000	2/26/2018	2/25/2033	
Sandy Solar		Solar	5.000	5/30/2018	5/29/2033	
Northern Cardinal Solar	NC	Solar	2.000	6/29/2018	6/28/2033	
Carl Friedrich Gauss Solar	NC	Solar	5.000	9/10/2018	9/9/2033	
Sun Farm VI Solar	NC	Solar	4 975	9/10/2018	9/9/2033	
Sun Farm V Solar	NC	Solar	4,975	9/10/2018	9/9/2033	

Note: The Customer Owned section of Appendix 3B has not been significantly changed since the 2018 Plan and was last updated based on a 2012 customer survey.

(1) In operation as of March 1, 2019; Generating facilities that have contracted directly with Dominion Energy Virginia or Dominion Energy North Carolina.

Appendix 3J: Potential Unit Retirements

Schedule 19

-	Virginia Electric and Power Company
UNIT PERFORMANCE DATA Planned Unit Retirements ⁽¹⁾	

Unit Nam e	Location	Unit Type	Primary Fuel Type	Projected Retirement Year	MW Summer	MW Winter
Chesapeake CT 1 Chesapeake GT1	Chesapeake, VA	CombustionTurbine	Light Fuel Oil	2019	15 15	20
Chesapeake CT 2	Chesapeake, VA	CombustionTurbine	Light Fuel Oil	2022	36	49
Chesapeake GT4					12	
Chesapeake GT6					12	
Gravel Neck 1	Surry, VA	CombustionTurbine	Light Fuel Oil	2020	28	38
Gravel Neck GT1					12	
Gravel Neck GT2					16	
Lowmoor CT	Covington, VA	CombustionTurbine	Light Fuel Oil	2022	48	65
Low moor GT1					12	
Low moor GT2					12	
Low moor GT3					12	
Low moor GT4					12	
Mount Storm CT	Mt. Storm, WV	CombustionTurbine	Light Fuel Oil	2022	11	15
Mt. Storm GT1					11	
Northern Neck CT	Warsaw VA		Light Fuel Oil	2022	47	63
Northern Neck GT1	Walsaw, VA	combustion urbine	Light ruer On	2022	12	05
Northern Neck GT2					11	
Northern Neck GT3					12	
Northern Neck GT4					12	
Possum Point CT	Dumfries, VA	Steam-Cvcle	Light Fuel Oil	2022	72	106
Possum Point CT1					12	
Possum Point CT2					12	
Possum Point CT3					12	
Possum Point CT4					12	
Possum Point CT5					12	
Possum Point CT6					12	
Bellemeade CC	Richmond, VA	Combined Cycle	Natural Gas	2019	267	267
Bremo 3	New Canton, VA	Steam-Cycle	Natural Gas	2019	71	71
Bremo 4	New Canton, VA	Steam-Cycle	Natural Gas	2019	156	156
Clover 1 ²	Clover, VA	Steam-Cycle	Coal	2025	220	222
Clover 2 ²	Clover, VA	Steam-Cycle	Coal	2025	219	219
Chesterfield 3	Chester, VA	Steam-Cycle	Coal	2019	98	102
Chesterfield 4	Chester, VA	Steam-Cycle	Coal	2019	163	168
Chesterfield 5 ²	Chester, VA	Steam-Cycle	Coal	2023	336	342
Chesterfield 6 ²	Chester, VA	Steam-Cycle	Coal	2023	670	690
Mecklenburg 1	Clarksville VA	Steam-Cycle		2019		69
Meckenburg	Ciar KSVIIIe, VA	Steam-Cycle	coal	2013		03
Mecklenburg 2	Clarksville, VA	Steam-Cycle	Coal	2019	69	69
Pittsylvania	Hurt, VA	Steam-Cycle	Biomass	2019	83	83
Possum Point 3	Dumfries, VA	Steam-Cycle	Natural Gas	2019	96	100
Possum Point 4	Dumfries, VA	Steam-Cycle	Natural Gas	2019	220	225
Possum Point 5	Dumfries, VA	Steam-Cycle	Heavy Fuel Oil	2021	786	805
Vorktown 3	Varktown VA	Steam Cuele	Heaver Fuel C"		700	700
INIKIOWIIJ	TOTKLOWN, VA	Steam-Gycle	neavy ruei Oli	2022	/90	/92

Note: 1) Reflects retirement assumptions used for planning purposes, not firm Company commitments.

2) These units are shown as potential retirements in Plans B and C.

Appendix 3K: Generation Under Construction

Company Name:	<u>Virginia Electric a</u>	and Power Comp	any			Schedule 15a
UNIT PERFORMANCE DATA						
Planned Supply-Side Resources (I	MW)					
Unit Name	Location	Unit Type	Primary Fuel Type	C.O.D. ⁽¹⁾	MW Summer ⁽²⁾	MW Nameplate
Under Construction						
US-3 Solar 1	VA	Intermittent	Solar	2020	33	142
US-3 Solar 2	VA	Intermittent	Solar	2021	22	98
CVOW	VA	Intermittent	Wind	2021	1	12

Note: 1) Commercial operation date. 2) Firm capacity.

Appendix 3L: Wholesale Power Sales Contracts

Company Name: WHOLESALE POWER	SALES CONTRACTS	Virginia Electric and Powe	er Compan	<u>/</u>																Sch	iedule 20
			(Actual)							(Project	ed)										
Entity	Contract Length	Contract Type	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Craig-Botetourt Electric Coop	12-Month Termination Notice	Full Requirements ⁽¹⁾	6	10	10	10	10	10	10	11	11	11	11	11	11	11	11	11	11	11	11
Town of Windsor, North Carolina	12-Month Termination Notice	Full Requirements ⁽¹⁾	11	11	12	12	12	12	12	12	12	12	13	13	13	13	13	13	13	13	13
Virginia Municipal Electric Association	5/31/2031 with annual renewal	Full Requirements ⁽¹⁾	350	299	299	300	300	301	302	302	303	303	304	305	305	306	306	307	308	308	309

Note: 1) Full requirements contracts do not have a specific contracted capacity amount. MW are included in the Company's load forecast.

Appendix 3M: Description of Recently Approved DSM Programs

Residential Appliance Recycling Program

Target Class:	Residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2019 - 2044
NC Duration:	Proposed

Program Description:

This program provides incentives to eligible residential customers to recycle specific types of qualifying freezers and refrigerators that are of specific of age and size. Appliance pick-up and proper recycling services are included.

Program Marketing:

The Company uses a number of marketing activities to promote its approved DSM programs, including but not limited to: direct mail, bill inserts, web content, social media, and outreach events.

Residential Customer Engagement Program

Target Class:	Residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2019 - 2044
NC Duration:	Future

Program Description:

This program provides educational insights into the customer's energy consumption via a home energy report (on-line and/or paper version). The home energy report is intended to provide periodic suggestions on how to save on energy based upon analysis of the customer's energy usage. Customers can opt-out of participating in the program at any time.

Program Marketing:

The Company uses a number of marketing activities to promote its approved DSM programs, including but not limited to: direct mail, bill inserts, web content, social media, and outreach events.

Appendix 3M: Description of Recently Approved DSM Programs

Residential Efficient Products Marketplace Program

Target Class:ResidentialVA Program Type:Energy EfficiencyNC Program Type:Energy EfficiencyVA Duration:2019 – 2044NC Duration:Proposed

Program Description:

This program provides eligible residential customers an incentive to purchase specific energy efficient appliances with a rebate through an online marketplace and through participating retail stores. The program offers rebates for the purchase of specific energy efficient appliances, including lighting efficiency upgrades such as A-line bulbs (prior to 2020), reflectors, decoratives, globes, retrofit kit and fixtures, as well as other appliances such as freezers, refrigerators, washers, dehumidifiers, air purifiers, dryers, and dishwashers.

Program Marketing:

The Company uses a number of marketing activities to promote its approved DSM programs, including but not limited to: direct mail, bill inserts, web content, social media, and outreach events.

Residential Home Energy Assessment Program

Target Class:	Residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2019 – 2044
NC Duration:	Proposed

Program Description:

This program provides qualifying residential customers with an incentive to install a variety of energy saving measures following completion of a walk-through home energy assessment. The energy saving measures include replacement of existing light bulbs with LED bulbs, heat pump tune-up, duct insulation/sealing, fan motors upgrades, installation of efficient faucet aerators and showerheads, water heater turndown, replacement of electric domestic hot water with heat pump water heater, heat pump upgrades (ducted and ductless), and water heater and pipe insulation.

Program Marketing:

Appendix 3M: Description of Recently Approved DSM Programs

Residential Smart Thermostat Program (DR)

Target Class:ResidentialVA Program Type:Demand ResponseNC Program Type:Demand ResponseVA Duration:2019 – 2044NC Duration:Future

Program Description:

All residential customers who are not already participating in the Company's DSM Phase I Smart Cooling Rewards Program and who have a qualifying smart thermostat would be offered the opportunity to enroll in the peak demand response portion of the program. Demand Response will be called by the Company during times of peak system demand throughout the year and thermostats of participating customers would be gradually adjusted to achieve a specified amount of load reduction while maintaining reasonable customer comfort and allowing customers to opt-out of specific events if they choose to do so.

Program Marketing:

The Company uses a number of marketing activities to promote its approved DSM programs, including but not limited to: direct mail, bill inserts, web content, social media, and outreach events.

Residential Smart Thermostat Program (EE)

Target Class:	Residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2019 – 2044
NC Duration:	Future

Program Description:

This program provides an incentive to customers to either purchase a qualifying smart thermostat and/or enroll in an energy efficiency program. This helps customers manage their daily heating and cooling energy usage by allowing remote optimization of their thermostat operation, and provides specific recommendations by e-mail or letter that customers can act on to realize additional energy savings. The program is open to several thermostat manufacturers, makes, and models that meet or exceed the Energy Star requirements and have communicating technology. Rebates for the purchase of a smart thermostat are provided on a one-time basis; incentives for participation in remote thermostat management are provided on an annual basis. For those customers who are enrolled in thermostat management, additional energy-saving suggestions based on operational data specific to the customer's heating and cooling system are provided to the customer at least quarterly.

Program Marketing:

The Company uses a number of marketing activities to promote its approved DSM programs, including but not limited to: direct mail, bill inserts, web content, social media, and outreach events.

Appendix 3M: Description of Recently Approved DSM Programs

Non-Residential Lighting Systems & Controls Program

Target Class: VA Program Type: NC Program Type: VA Duration: NC Duration: Non-Residential Energy Efficiency Energy Efficiency 2019 – 2044 Proposed

Program Description:

This Program provides qualifying non-residential customers with an incentive to implement more efficient lighting technologies that can produce verifiable savings. The program promotes the installation of lighting technologies including but not limited to LED based bulbs and lighting control systems.

Program Marketing:

The Company uses a number of marketing activities to promote its approved DSM programs, including but not limited to: direct mail, bill inserts, web content, social media, and outreach events. Because this program is implemented using a contractor network, customers will enroll in the program by contacting a participating contractor. The Company utilizes the contractor network to market the programs to customers as well.

Non-Residential Heating and Cooling Efficiency Program

Target Class:	Non-Residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2019 – 2044
NC Duration:	Proposed

Program Description:

This program provides qualifying non-residential customers with incentives to implement new and upgrade existing high efficiency heating and cooling system equipment to more efficient HVAC technologies that can produce verifiable savings.

Program Marketing:

Appendix 3M: Description of Recently Approved DSM Programs

Non-Residential Window Film Program

Target Class:	Non-Residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2019 – 2044
NC Duration:	Proposed

Program Description:

This program provides qualifying non-residential customers with incentives to install solar reduction window film to lower their cooling bills and improve occupant comfort.

Program Marketing:

The Company uses a number of marketing activities to promote its approved DSM programs, including but not limited to: direct mail, bill inserts, web content, social media, and outreach events. Because this program is implemented using a contractor network, customers will enroll in the program by contacting a participating contractor. The Company utilizes the contractor network to market the programs to customers as well.

Non-Residential Small Manufacturing Program

Target Class:	Non-Residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2019 - 2044
NC Duration:	Proposed

Program Description:

This program provides qualifying non-residential customers with incentives for the installation of energy efficiency improvements, consisting of primarily compressed air systems measures for small manufacturing facilities.

Program Marketing:

Appendix 3M: Description of Recently Approved DSM Programs

Non-Residential Office Program

Target Class:	Non-Residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2019 - 2044
NC Duration:	Proposed

Program Description:

This program provides qualifying non-residential customers with incentives for the installation of energy efficiency improvements, consisting of recommissioning measures at smaller office facilities.

Program Marketing:

0	
<u>Z</u>	
R	
ືຄ	
8	
₹.	

Line Terminals/Substations	Voltage Levels	Target Date	Location	
	(kV)			
Clifton Forge Sub – Connect 2nd 138/12.5 kV TX	138	19-Jun	VA	
Winters Branch 230 kV Delivery	230	19-Jul	VA	
Innovation 230 kV Delivery - NOVEC	230	19-Aug	VA	
Fork Union Sub to mitigate Bremo Units 3 & 4 Reserve Status	115 230	19-Oct	VA	
Herbert Substation - New 115 kV Substation	115	19-Oct	VA	
Cumulus 230 kV Delivery - DEV	230	19-Oct	VA	
Greenwich Substation - New 230 kV Circuit Switcher	230	19-Oct	VA	
Sandlot 230 kV Delivery - DEV	230	19-Oct	VA	
Gant 230 kV Delivery - NOVEC	230	19-Nov	VA	
Remington Substation – Transformer Upgrade	230	19-Nov	VA	
Chesterfield 230 Transformer #9 Replacement	230	19-Nov	VA	
Midlothian Substation - New 230 kV Circuit Switcher	230	19-Nov	VA	
Davis Drive 230 kV Delivery - Add 2nd Transformer	230	19-Nov	VA	
Cannon Branch Substation - Add 2nd Transformer	230	19-Nov	VA	
Brambleton 175 MVAR 230 kV Shunt Capacitor Bank	230	19-Dec	VA	
Ashburn 175 MVAR 230 kV Shunt Capacitor Bank	230	19-Dec	VA	
Shellhorn 300 MVAR 230 kV Reactive Resources	230	19-Dec	VA	
Liberty 150 MVAR 230 kV Shunt Capacitor Bank	230	19-Dec	VA	
West Albemarle - New 230 kV DP (AEMC)	230	19-Dec	NC	
Line #82 Everetts to Voice of America Rebuild	115	19-Dec	NC	
Tarboro 230-115kV Transformer #4 Upgrade	115 230	19-Dec	NC	
Line #18 and #145 Rebuild - Possum Point to Smoketown DP	115	19-Dec	VA	
Line #130 Clubhouse to Carolina Rebuild	115	19-Dec	VA-NC	
Line #166 and #67 Greenwich to Burton Rebuild	115	19-Dec	VA	
Freedom Substation (Redundant 69 kV Facility)	69	20-Mar	VA	
Shellhorn 230 kV Delivery - Add 2nd Transformer	230	20-Mar	VA	
Line #548 Valley Switching Station Fixed Series Capacitors replacement	500	20-Apr	VA	
Line #547 Lexington Substation Fixed Series Capacitors Replacement	500	20-Apr	VA	
Pacific Substation - Add 3rd Transformer - DEV	230	20-Apr	VA	
Skippers - New 115 kV Switching Station	115	20-May	VA	
Fines Corner 230 kV DP	230	20-May	VA	
Line #2175 ldylwood to Tyson's – New 230 kV Line	230	20-May	VA	
Virginia Beach Substation - New 115 kV Circuit Switcher	115	20-May	VA	
Genito 230 kV Delivery Point - DEV	230	20-May	VA	
BECO Substation - Add 4th Transformer - DEV	230	20-May	VA	
Spring Hill 230 kV Delivery	230	20-May	VA	
ldylwood - Convert Straight Bus to Breaker-and-a-Half	230	20-May	VA	
Farmwell 230 kV Delivery	230	20-May	VA	
	,	-		

Appendix 3R: List of Planned Transmission Pr	rojects
--	---------

2019	
2	
Aug	

Appendix 3R: List of Planned Transmission Project	opendix 3R:	endix 3R: List of Planne	d Transmission	Projects
---	-------------	--------------------------	----------------	----------

Line Terminals/Substations	Voltage Levels (kV)	Target Date	Location
Greenwich Substation – New line #120 Breaker	115	20-May	VA
Line #549 Dooms to Valley Rebuild	500	20-Jun	VA
Line #217 Chesterfield to Lakeside Rebuild	230	20-Jun	VA
Replace Overdutied 230 kV Breaker 203512 at ldylwood Substation	230	20-Jun	VA
Line #2209 and Line #2110 Evergreen Mills 230 kV Delivery	230	20-Sep	VA
Northampton Substation - 2nd Transformer	230	20-Sep	NC
Winterpock 230 kV Delivery and 230 kV Ring Bus	230	20-Sep	VA
Flat Creek 115 kV DP	115	20-Sep	VA
Cumulus Substation - Add 2nd Transformer - DEV	230	20-Oct	VA
Line #112 Fudge Hollow to Lowmoor Rebuild	138	20-Oct	VA
Thelma 230 kV Interconnection	230	20-Oct	VA
Line #2199 Remington to Gordonsville – New 230 kV Line	230	20-Nov	VA
Plaza Substation - New 230 kV Circuit Switcher	230	20-Nov	VA
Peninsula – Transformer 4 Replacement and 230 kV Ring Bus	230	20-Nov	VA
Perimeter 230 kV DP - NOVEC	230	20-Dec	VA
Line #76 and #79 Yorktown to Peninsula Rebuild	115	20-Dec	VA
Line #231 Landstown to Thrasher Rebuild	230	20-Dec	VA
Line #211 and #228 Chesterfield to Hopewell Partial Rebuild	230	20-Dec	VA
Buttermilk 230 kV Delivery - DEV	230	20-Dec	VA
Line #65 Norris Bridge Rebuild	115	20-Dec	VA
Line #154 Twittys Creek to Pamplin Rebuild	115	20-Dec	VA
Line #26 Lexington to Rockbridge Partial Rebuild	115	20-Dec	VA
Beaumeade - Add 5th Transformer - DEV	230	21-Mar	VA
Fentress Sub New Transformer Circuit Switcher	230	21-May	VA
Rawlings Switching Station – New 500 kV STATCOM	500	21-May	VA
Clover Substation – New 500 kV STATCOM	500	21-May	VA
Chickahominy 230 kV Delivery - Add 2nd Transformer - DEV	230	21-May	VA
Line #550 Mount Storm to Valley Rebuild	500	21-Jun	VA
Line #274 Pleasant View to Beaumeade Rebuild	230	21-Jun	VA
Ladysmith 2nd 500-230 kV Transformer	230	21-Jun	VA
Varina Substation	230	21-Jun	VA
Opal 230 kV Delivery	230	21-Jul	VA
Line #2176 Gaines ville to Haymarket and Line #2169 Haymarket to Loudoun – New 230 kV Lines and New 230 kV Substation	230	21-Jul	VA
Paragon Park 230 kV Delivery - DEV	230	21-Jul	VA
Lucky Hill Substation	115 230	21-Jul	VA
Rockville Substation 2nd Distribution Transformer	230	21-Aug	VA
Prince Edward 230 kV DP	230	21-Nov	VA
Global Plaza 230 kV Delivery - DEV	230	21-Nov	VA
DTC 230 kV Delivery - DEV	230	21-Nov	VA
2019			

2			
Aug			

Line Terminals/Substations	Voltage Levels (kV)	Target Date	Location
Line #120 Dozier to Thompsons Corner Partial Rebuild	115	21-Dec	VA
Line #127 Buggs Island to Plwood Rebuild	115	21-Dec	VA
Line #16 Great Bridge to Hickory and Line #74 Chesapeake	115	21-Dec	VA
Line #49 New Road to Middleburg Rebuild	115	21-Dec	VA
Poland Road 230 kV Delivery - Add 4th Transformer - DEV	230	21-Dec	VA
Line #2023 and Line #248 Potomac Yards Undergrounding & Glebe GIS Conversion	230	22-May	VA
Line #2001 Possum Point to Occoquan Reconductor and Uprate	230	22-Jun	VA
Lockridge 230 kV Delivery - DEV	230	22-Jul	VA
Line #43 Staunton - Harrisonburg Rebuild	115	22-Oct	VA
Nimbus 230 kV Delivery - DEV	230	22-Nov	VA
Line #552 Bristers to Chancellor Rebuild	500	22-Dec	VA
Line #101 Mackeys to Creswell Rebuild	115	22-Dec	NC
Line #247 Suffolk to Swamp Rebuild	230	22-Dec	VA/NC
New Switching Station to Retire Line #139 Everetts to Windsor DP	115	22-Dec	NC
Line #2144 Winfall to Swamp Rebuild	230	22-Dec	NC
Line #205 and #2003 Chesterfield to Tyler Partial Rebuild	230	22-Dec	VA
Line #139 Everetts to Windsor DP Retirement	115	22-Dec	NC
Line #29 Fredericksburg to Possum Point Partial Rebuild	115	22-Dec	VA
Line #295 and Partial Line #265 Rebuild	230	22-Dec	VA
Line #2173 - Loudoun to Elklick Rebuild	230	22-Dec	VA
Pentagon - Re-install Transformer #2 (open window)	230	23-May	VA
Possum Point 2 nd 500-230 kV Transformer	500 230	23-Jun	VA
Line #227 Partial Rebuild	230	23-Jun	VA
Judes Ferry 230 kV DP	230	23-Nov	VA
Line #581 Chancellor - Ladysmith 500 kV Rebuild	500	23-Dec	VA
Line #34 Skiffes Creek to Yorktown and Line #61 Whealton to Yorktown Partial Rebuild and Fort Eustis Tap Rebuild	115	23-Dec	VA
Line #224 Lanexa to Northern Neck Rebuild	230	23-Dec	VA
Lines #265, 200, and 2051 Partial Rebuild	230	23-Dec	VA
Line #2008 Partial Rebuild and Line #156 Retirement	115 230	23-Dec	VA
Line #141 & Line #28 Rebuild	115	23-Dec	VA
Line #574 Elmont to Ladysmith Rebuild	500	24-Dec	VA
Line #2113 Waller to Lightfoot Partial Rebuild	230	24-Dec	VA
Line #2154 and #19 Waller to Skiffes Creek Rebuild	230	24-Dec	VA
Lines #2063 and Partial #2164 Rebuild	230	24-Dec	VA
Line #2181 and Line #2058 Hathaway to Rocky Mount (DEP) Rebuild	230	24-Dec	NC
Line #254 Clubhouse-Lakeview Rebuild	230	24-Dec	VA
Line #81 and Partial Line #2056 Rebuild	115 230	25-Dec	NC

Appendix 3R: List of Planned Transmission Projects

Line Terminals/Substations	Voltage Levels (kV)	Target Date	Location
Cumulus 230 kV Delivery - DEV	230	19-Oct	VA
Davis Drive 230 kV Delivery - Add 2nd Transformer	230	19-Nov	VA
Line #82 Everetts to Voice of America Rebuild	115	19-Dec	NC
Line #18 and Line #145 Rebuild – Possum Point to Smoketown DP	115	19-Dec	VA
Line #130 Clubhouse to Carolina Rebuild	115	19-Dec	VA-NC
Line #217 Chesterfield to Lakeside Rebuild	230	20-Jun	VA
Line #2199 Remington to Gordonsville – New 230 kV Line	230	20-Nov	VA
Line #211 and Line #228 Chesterfield to Hopewell Partial Rebuild	230	20-Dec	VA
Line #2176 Gaines ville to Haymarket and Line #2169 Haymarket to Loudoun – New 230 kV Lines and New 230 kV Substation	230	21-Jul	VA
Line #101 Mackeys to Creswell Rebuild	115	22-Dec	NC

Appendix 3X:	List of Transmission	Projects	Under	Construction
--------------	----------------------	----------	-------	--------------

Appendix 4A – ICF Commodity Price Forecasts for Virginia Electric and Power Company

Summer 2019 Forecast

NOTICE PROVISIONS FOR AUTHORIZED THIRD PARTY USERS.

This report and information and statements herein are based in whole or in part on information obtained from various sources. ICF makes no assurances as to the accuracy of any such information or any conclusions based thereon. ICF is not responsible for typographical, pictorial or other editorial errors. The report is provided AS IS.

NO WARRANTY, WHETHER EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE IS GIVEN OR MADE BY ICF IN CONNECTION WITH THIS REPORT. You use this report at your own risk. ICF is not liable for any damages of any kind attributable to your use of this report.

	Fuel Price				Power and REC Prices			Emission Prices																																	
Year	Henry Hub Natural Gas	Zone 5 Delivered Natural	CAPP CSX: 12,500 1%S FOB	No. 2 Oil (\$/MMBtu)	1%No.6 Oil (\$/MMBtu)	PJM-DOM PJM-DOM On-Peak Off-Peak (\$/MWh) (\$/MWh)	PJM-DOM Off-Peak	M-DOM ff-Peak PJM Tier 1 REC Prices	RTO Capacity Prices		CSAPR		CO ₂																												
	(\$/MMBtu)	Gas (\$/MMBtu)	(\$/MMBtu)	(¢/miniBtd)	(¢mmBta)		(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh) (\$/MWh)	(\$/MWh) (\$	Wh) (\$/MWh)	Wh) Prices (\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/MWh) (\$/kW-yr)	(\$/MWh) (\$/MWh) ((\$/MWh) (\$/kW-yr)	ⁱ⁾ (\$/MWh)	Wh) (\$/MWh)	SO ₂ (\$/Ton)	Ozone NO _x (\$/Ton)	Annual NO _x (\$/Ton)						
2019	2.37	2.51	2.18	14.05	10.13	32.82	23.82	5.78	46.35	3.50	165.00	3.50	0.00																												
2020	2.54	3.08	2.33	13.90	9.84	34.36	25.75	5.95	31.50	3.54	166.90	3.54	0.00																												
2021	2.76	3.13	2.26	13.77	9.37	35.12	27.51	6.18	41.45	3.45	107.87	3.45	5.89																												
2022	3.05	3.05	2.13	13.81	8.84	35.52	28.97	5.57	47.69	3.29	8.62	3.29	6.23																												
2023	3.23	2.98	2.15	14.47	9.14	34.82	28.73	6.48	48.89	3.32	3.32	3.32	6.57																												
2024	3.38	2.99	2.21	15.46	9.82	34.29	28.63	8.12	54.67	3.39	3.39	3.39	6.92																												
2025	3.52	3.23	2.26	16.30	10.41	36.51	30.63	9.08	60.65	3.45	3.45	3.45	7.30																												
2026	3.67	3.24	2.32	16.88	10.81	36.37	30.75	7.00	64.35	3.52	3.52	3.52	7.67																												
2027	3.83	3.50	2.37	17.66	11.34	38.78	32.91	5.62	66.38	3.59	3.59	3.59	8.05																												
2028	3.99	3.60	2.43	18.60	12.00	39.61	33.75	4.51	68.47	3.65	3.65	3.65	8.71																												
2029	4.15	3.75	2.49	19.52	12.63	40.83	35.00	4.16	70.62	3.72	3.72	3.72	9.15																												
2030	4.32	3.79	2.55	20.26	13.15	40.83	35.24	4.05	72.82	3.79	3.79	3.79	9.93																												
2031	4.46	3.90	2.61	20.85	13.54	41.55	36.03	5.77	74.78	3.87	3.87	3.87	10.75																												
2032	4.60	4.19	2.67	21.33	13.86	44.41	38.52	7.56	76.58	3.94	3.94	3.94	11.64																												
2033	4.74	4.29	2.74	21.77	14.15	45.14	39.30	9.41	78.41	4.01	4.01	4.01	12.62																												
2034	4.88	4.40	2.80	22.18	14.42	45.89	40.08	11.32	80.27	4.08	4.08	4.08	13.68																												

RGGI + Federal CO₂ Commodity Price Forecast (Virginia in RGGI) (Nominal \$)

Note: The 2019 - 2022 prices are a blend of futures/forwards and forecast prices for all commodities except capacity prices. 2023 and beyond are forecast prices. Capacity prices reflect PJM RPM auction clearing prices through delivery year 2020/2021, forecast thereafter. CO₂ prices reflect the price in Virginia.

RGGI + Federal CO₂ Commodity Forecast, Federal CO₂ Commodity Forecast, and No CO₂ Tax Commodity Forecast; Natural Gas

	Zone 5 Natural Gas Price (Nominal \$/MMBtu)				
Year	RGGI + Federal CO₂ Tax commodity forecast	Federal CO ₂ Tax commodity forecast	No CO ₂ Tax commodity forecast		
2019	2.51	2.51	2.51		
2020	3.08	3.08	3.08		
2021	3.13	3.13	3.15		
2022	3.05	3.05	3.12		
2023	2.98	2.98	3.03		
2024	2.99	2.99	3.01		
2025	3.23	3.23	3.23		
2026	3.24	3.24	3.24		
2027	3.50	3.50	3.50		
2028	3.60	3.60	3.60		
2029	3.75	3.75	3.75		
2030	3.79	3.79	3.79		
2031	3.90	3.90	3.88		
2032	4.19	4.19	4.15		
2033	4.29	4.29	4.23		
2034	4.40	4.40	4.32		

RGGI + Federal CO₂ Commodity Forecast, Federal CO₂ Commodity Forecast, and No CO₂ Tax Commodity Forecast; Natural Gas

	Henry Hub Natural Gas Price (Nominal \$/MMBtu)						
Year	RGGI + Federal CO ₂ Tax commodity forecast	Federal CO ₂ Tax commodity forecast	No CO ₂ Tax commodity forecast				
2019	2.37	2.37	2.37				
2020	2.54	2.54	2.54				
2021	2.76	2.76	2.78				
2022	3.05	3.06	3.12				
2023	3.23	3.24	3.29				
2024	3.38	3.38	3.40				
2025	3.52	3.52	3.52				
2026	3.67	3.67	3.67				
2027	3.83	3.83	3.83				
2028	3.99	3.99	3.99				
2029	4.15	4.15	4.15				
2030	4.32	4.32	4.32				
2031	4.46	4.46	4.44				
2032	4.60	4.60	4.56				
2033	4.74	4.74	4.68				
2034	4.88	4.88	4.80				

RGGI + Federal CO₂ Commodity Forecast, Federal CO₂ Commodity Forecast, and No CO₂ Tax Commodity Forecast; FOB

	CAPP 12,500 1%S Coal (Nominal \$/MMBtu)					
Year	RGGI + Federal CO ₂ Tax commodity forecast	Federal CO₂ Tax commodity forecast	No CO₂ Tax commodity forecast			
2019	2.18	2.18	2.18			
2020	2.33	2.33	2.33			
2021	2.26	2.26	2.26			
2022	2.13	2.13	2.13			
2023	2.15	2.15	2.16			
2024	2.21	2.21	2.22			
2025	2.26	2.27	2.27			
2026	2.32	2.32	2.33			
2027	2.37	2.37	2.38			
2028	2.43	2.43	2.44			
2029	2.49	2.49	2.50			
2030	2.55	2.55	2.56			
2031	2.61	2.61	2.62			
2032	2.67	2.67	2.69			
2033	2.74	2.74	2.75			
2034	2.80	2.80	2.82			

Note: The 2019 – 2022 prices are a blend of futures/forwards and forecast prices. 2023 and beyond are forecast prices.

66

RGGI + Federal CO₂ Commodity Forecast, Federal CO₂ Commodity Forecast, and No CO₂ Tax Commodity Forecast; Oil

	No. 2 Oil (Nominal \$/MMBtu)					
Year	RGGI + Federal CO ₂ Tax commodity forecast	Federal CO ₂ Tax commodity forecast	No CO ₂ Tax commodity forecast			
2019	14.05	14.05	14.05			
2020	13.90	13.90	13.90			
2021	13.77	13.77	13.77			
2022	13.81	13.81	13.81			
2023	14.47	14.47	14.47			
2024	15.46	15.46	15.46			
2025	16.30	16.31	16.31			
2026	16.88	16.89	16.89			
2027	17.66	17.66	17.66			
2028	18.60	18.60	18.60			
2029	19.52	19.52	19.52			
2030	20.26	20.27	20.27			
2031	20.85	20.85	20.85			
2032	21.33	21.33	21.33			
2033	21.77	21.77	21.77			
2034	22.18	22.18	22.18			

	1% No. 6 Oil (Nominal \$/MMBtu)					
Year	RGGI + Federal CO₂ Tax commodity forecast	Federal CO₂ Tax commodity forecast	No CO ₂ Tax commodity forecast			
2019	10.13	10.13	10.13			
2020	9.84	9.84	9.84			
2021	9.37	9.37	9.37			
2022	8.84	8.84	8.84			
2023	9.14	9.14	9.14			
2024	9.82	9.83	9.83			
2025	10.41	10.41	10.41			
2026	10.81	10.81	10.81			
2027	11.34	11.34	11.34			
2028	12.00	12.00	12.00			
2029	12.63	12.63	12.63			
2030	13.15	13.15	13.15			
2031	13.54	13.54	13.54			
2032	13.86	13.86	13.86			
2033	14.15	14.15	14.15			
2034	14.42	14.42	14.42			

RGGI + Federal CO₂ Commodity Forecast, Federal CO₂ Commodity Forecast, and No CO₂ Tax Commodity Forecast; Oil

	Dom Zone Power On Peak (Nominal \$/MWh)				
Year	RGGI + Federal CO ₂ Tax commodity forecast	Federal CO₂ Tax commodity forecast	No CO₂ Tax commodity forecast		
2019	32.82	32.82	32.82		
2020	34.36	34.36	34.36		
2021	35.12	35.08	35.22		
2022	35.52	35.22	35.66		
2023	34.82	34.51	34.99		
2024	34.29	34.02	34.49		
2025	36.51	36.25	36.71		
2026	36.37	36.12	36.53		
2027	38.78	38.50	38.86		
2028	39.61	39.32	39.61		
2029	40.83	40.52	40.75		
2030	40.83	40.51	40.67		
2031	41.55	41.22	40.84		
2032	44.41	44.06	43.11		
2033	45.14	44.74	43.20		
2034	45.89	45.47	43.34		

RGGI + Federal CO₂ Commodity Forecast, Federal CO₂ Commodity Forecast, and No CO₂ Tax Commodity Forecast; On-Peak Power Price

	Dom Zone Power Off Peak (Nominal \$/MWh)					
Year	RGGI + Federal CO ₂ Tax commodity forecast	Federal CO₂ Tax commodity forecast	No CO₂ Tax commodity forecast			
2019	23.82	23.82	23.82			
2020	25.75	25.75	25.75			
2021	27.51	27.48	27.59			
2022	28.97	28.78	29.13			
2023	28.73	28.55	28.97			
2024	28.63	28.47	28.93			
2025	30.63	30.48	30.98			
2026	30.75	30.58	30.99			
2027	32.91	32.70	33.02			
2028	33.75	33.49	33.71			
2029	35.00	34.70	34.80			
2030	35.24	34.91	34.90			
2031	36.03	35.69	35.21			
2032	38.52	38.17	37.17			
2033	39.30	38.90	37.37			
2034	40.08	39.68	37.61			

RGGI + Federal CO₂ Commodity Forecast, Federal CO₂ Commodity Forecast, and No CO₂ Tax Commodity Forecast; Off-Peak Power Price

RGGI + Federal CO ₂ Commodity Forecast, Federal CO ₂ Commodi	ty Forecast, and No CO2 Tax Commodity Forecast;
Tier 1 Renewable Energy	Certificates

	PJM Tier 1 REC Prices (Nominal \$/MWh)				
Year	RGGI + Federal CO₂ Tax commodity forecast	Federal CO₂ Tax commodity forecast	No CO₂ Tax commodity forecast		
2019	5.78	5.78	5.78		
2020	5.95	5.95	5.95		
2021	6.18	6.26	6.24		
2022	5.57	5.88	5.45		
2023	6.48	6.80	6.53		
2024	8.12	8.42	8.35		
2025	9.08	9.33	9.48		
2026	7.00	7.26	7.46		
2027	5.62	5.88	6.13		
2028	4.51	4.81	5.12		
2029	4.16	4.22	4.28		
2030	4.05	4.11	4.17		
2031	5.77	5.94	6.42		
2032	7.56	7.83	8.72		
2033	9.41	9.79	11.13		
2034	11.32	11.83	13.60		

	RTO Capacity Prices (Nominal \$/KW-yr)			
Year	RGGI + Federal CO ₂ Tax commodity forecast	Federal CO₂ Tax commodity forecast	No CO₂ Tax commodity forecast	
2019	46.35	46.35	46.35	
2020	31.50	31.50	31.50	
2021	41.45	41.45	41.45	
2022	47.69	47.69	47.69	
2023	48.89	48.83	47.73	
2024	54.67	54.50	51.46	
2025	60.65	60.36	55.30	
2026	64.35	64.16	58.64	
2027	66.38	66.44	61.65	
2028	68.47	68.80	64.76	
2029	70.62	71.23	67.98	
2030	72.82	73.71	71.28	
2031	74.78	75.69	73.83	
2032	76.58	77.29	75.83	
2033	78.41	78.93	77.87	
2034	80.27	80.58	79.95	

RGGI + Federal CO₂ Commodity Forecast, Federal CO₂ Commodity Forecast, and No CO₂ Tax Commodity Forecast; PJM RTO Capacity

Note: PJM RPM auction clearing prices through delivery year 2020/21, forecast thereafter.

	CSAPR SO ₂ Prices (Nominal \$/Ton)				
Year	RGGI + Federal CO ₂ Tax commodity forecast	Federal CO₂ Tax commodity forecast	No CO₂ Tax commodity forecast		
2019	3.50	3.50	3.50		
2020	3.54	3.54	3.54		
2021	3.45	3.45	3.45		
2022	3.29	3.29	3.29		
2023	3.32	3.32	3.32		
2024	3.39	3.39	3.39		
2025	3.45	3.45	3.45		
2026	3.52	3.52	3.52		
2027	3.59	3.59	3.59		
2028	3.65	3.65	3.65		
2029	3.72	3.72	3.72		
2030	3.79	3.79	3.79		
2031	3.87	3.87	3.87		
2032	3.94	3.94	3.94		
2033	4.01	4.01	4.01		
2034	4.08	4.08	4.08		

RGGI + Federal CO₂ Commodity Forecast, Federal CO₂ Commodity Forecast, and No CO₂ Tax Commodity Forecast; SO₂ Emission Allowances

	CSAPR Ozone NOx Prices (Nominal \$/Ton)				
Year	RGGI + Federal CO ₂ Tax commodity forecast	Federal CO ₂ Tax commodity forecast	No CO₂ Tax commodity forecast		
2019	165.00	165.00	165.00		
2020	166.90	166.90	166.90		
2021	107.87	107.87	107.87		
2022	8.62	8.62	8.62		
2023	3.32	3.32	3.32		
2024	3.39	3.39	3.39		
2025	3.45	3.45	3.45		
2026	3.52	3.52	3.52		
2027	3.59	3.59	3.59		
2028	3.65	3.65	3.65		
2029	3.72	3.72	3.72		
2030	3.79	3.79	3.79		
2031	3.87	3.87	3.87		
2032	3.94	3.94	3.94		
2033	4.01	4.01	4.01		
2034	4.08	4.08	4.08		

RGGI + Federal CO₂ Commodity Forecast, Federal CO₂ Commodity Forecast, and No CO₂ Tax Commodity Forecast; NO_x Emission Allowances

	CSAPR Annual NOx Prices (Nominal \$/Ton)				
Year	RGGI + Federal CO ₂ Tax commodity forecast	Federal CO ₂ Tax commodity forecast	No CO ₂ Tax commodity forecast		
2019	3.50	3.50	3.50		
2020	3.54	3.54	3.54		
2021	3.45	3.45	3.45		
2022	3.29	3.29	3.29		
2023	3.32	3.32	3.32		
2024	3.39	3.39	3.39		
2025	3.45	3.45	3.45		
2026	3.52	3.52	3.52		
2027	3.59	3.59	3.59		
2028	3.65	3.65	3.65		
2029	3.72	3.72	3.72		
2030	3.79	3.79	3.79		
2031	3.87	3.87	3.87		
2032	3.94	3.94	3.94		
2033	4.01	4.01	4.01		
2034	4.08	4.08	4.08		

RGGI + Federal CO₂ Commodity Forecast, Federal CO₂ Commodity Forecast, and No CO₂ Tax Commodity Forecast; NO_x Emission Allowances

st, and No CO ₂ Tax Commodity Forecast;					
No CO2 Tax commodity forecast					
0.00					
0.00]				
0.00					
0.00					

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

RGGI + Federal CO₂ Commodity Forecast, Federal CO₂ Commodity Forecast, and No CO₂ Tax Commodity Forecast; CO₂

RGGI + Federal CO₂ Tax

commodity forecast

0.00

0.00

5.89

6.23

6.57

6.92

7.30

7.67

8.05

8.71

9.15

9.93

10.75

11.64

12.62

13.68

Year

2019

2020

2021 2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032 2033

2034

CO₂ Prices (Nominal \$/Ton)

Federal CO₂ Tax

commodity forecast

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.12

0.19

0.74

0.86

1.52

2.10

2.76

3.48

4.29

Note: The CO₂ prices are reflective of the price in Virginia.

COPYRIGHT © 2019 ICF Resources, LLC. All rights reserved.

Appendix 5C: Planned Generation Under Development

Company Name: UNIT PERFORMANCE DATA Planned Supply-Side Resources (MW)	Virginia Electric and Power Company		-			Schedule 15c
Unit Name	Location	Unit Type	Primary Fuel Type	C.O.D. ⁽²⁾	MW Summer	MW Nameplate
Under Development ⁽¹⁾						
US-4 Solar	VA	Intermittent	Solar	2021	36	100
Battery Storage Pilot 1	VA	Storage	N/A	2021	6	16
Battery Storage Pilot 2	VA	Storage	N/A	2023	6	14
Offshore Wind Tranche 1	VA	Intermittent	Wind	2025	142	852
Pumped Storage	VA	Storage	N/A	2030	300	300
Surry Unit 1 Nuclear Extension	VA	Baseload	Nuclear	2032	838	875
Surry Unit 2 Nuclear Extension	VA	Baseload	Nuclear	2033	838	875
North Anna Unit 1 Nuclear Extension	VA	Baseload	Nuclear	2038	838	868
North Anna Unit 2 Nuclear Extension	VA	Baseload	Nuclear	2040	834	863

Note: 1) Includes the additional resources under development in the Alternative Plans. 2) Estimated commercial operation date.

Schedule 15c

NCUC Docket No. E-100, Sub 157

2019 Dominion IRP

ADDENDUM 1:

Dominion Renewable Energy and Energy Efficiency Portfolio Standard Compliance Plan

VIRGINIA ELECTRIC AND POWER COMPANY 2019 REPS COMPLIANCE PLAN

Pursuant to N.C.G.S. § 62-133.8 and North Carolina Utilities Commission ("NCUC" or "Commission") Rule R8-67(b), Virginia Electric & Power Company d/b/a Dominion Energy North Carolina ("DENC" or the "Company") submits its annual Renewable Energy and Energy Efficiency Portfolio Standard ("REPS") Compliance Plan. The REPS Compliance Plan covers the current calendar year (2019) and immediately subsequent two calendar years (2020-2021) (the "Planning Period"). The Company also presents REPS compliance information for Town of Windsor ("Windsor") during the Planning Period.¹

The Company's 2019 REPS Compliance Report, filed in August 2019, indicates that the Company and Windsor have satisfied all 2018 REPS compliance obligations.

1.1 RENEWABLE ENERGY REQUIREMENTS

Figures 1.1.1 and 1.1.2 summarize the Company's North Carolina REPS goals and Virginia's Renewable Energy Portfolio Standard ("RPS") goals for each year of the Planning Period. Figure 1.1.3 summarizes Windsor's North Carolina REPS goals.

	2019	2020	2021	
NC Total REPs Obligation %	10.0%	10.0%	12.5%	
NC Solar Set-Aside Target %	0.20%	0.20%	0.20%	
NC Total Swine Set-Aside %	0.07%	0.07%	0.14%	
Projected Poultry Set-Aside %	3.31% of 700,000	3.31% of 900,000	3.31% of 900,000	

Figure 1.1.1 2019-2021 COMPANY'S NC REPS COMPLIANCE GOALS

Figure 1.1.2 2019-2021 COMPANY'S VA RPS COMPLIANCE GOALS

	2019	2020	2021
VA Total RPs Obligation %	7.0%	7.0%	7.0%

The RPS goals are a percentage of the amount of electricity sold in 2007 (the "base year"), minus the average annual percentage of nuclear generators between 2004 and 2006.

Figure 1.1.3 2019-2021 TOWN OF WINDSOR NC REPS COMPLIANCE GOALS

	2019	2020	2021
NC Total REPs Obligation %	10%	10%	12.5%
NC Solar Set-Aside Target %	0.20%	0.20%	0.20%
NC Total Swine Set-Aside %	0.07%	0.07%	0.14%
Projected Poultry Set-Aside %	0.04% of 700,000	0.04% of 900,000	0.04% of 900,000

¹Town of Windsor is a wholesale customer of the Company, for which DENC provides REPS compliance services.

1.2 COMPLIANCE PLAN

In accordance with Rule R8-67(b)(1)(i), the Company describes its planned actions to comply with N.C.G.S. 62-133.8 (b),(c),(d),(e), and (f) for each year.

The Company

During the Planning Period, the Company plans to meet its statutory annual REPS obligations, as modified by the Commission², through the use of renewable energy certificates ("RECs")³, energy efficiency ("EE") savings and new company-generated renewable energy where economically feasible.

Figure 1.2.1 summarizes the Company's REPS compliance requirements and strategy for the Planning Period.

	2019	2020	2021
Baseline Sales Forecast (MWh)	4,265,000	4,307,650	4,350,727
NC Total REPs Obligation %	10.0%	10.0%	12.5%
Total REPS Obligation (MWh) ¹	440,079	426,500	538,457
NC Solar Set-Aside Target %	0.20%	0.20%	0.20%
Total Solar Set-Aside (MWh) ¹	8,802	8,530	8,616
NC Total Swine Set-Aside %	0.07%	0.07%	0.14%
Total Swine Set-Aside (MWh) ¹	3,081	2,986	6,031
Projected Poultry Set-Aside %	3.31%	3.31%	3.31%
Total Poultry Set-Aside (MWh) ²	23,174	29,796	29,796
General Requirement (net of Solar, Swine and Poultry) (MWh)	405,022	385,188	494,014
Projected Energy Efficiency (MWh) ³	27,551	27,551	27,551
Projected Company Generated Renewables (MWh) ⁴	72,395	190,655	234,455

Figure 1.2.1 2019-2021 COMPANY'S REPS COMPLIANCE PLAN SUMMARY

Notes: (1) 2019 targets are based on actual 2018 retail sales of 4,400,784 MWh. 2020-2021 targets are based on baseline retail sales forecasts. The total target is the product of the previous year's baseline load and the current year target percentage. (2) Targets are based on the average of 2013-2015 load share ratio. (3) For REPS reporting and compliance purpose, DENC will rely upon actual EE savings achieved by North Carolina customers. (4) Company Generated Renewables (MWh) are the estimated North Carolina jurisdictional allocation of the Company's solar and biomass generation.

² On October 8, 2018, the Commission issued an Order reducing the initial swine waste set-aside requirement to 0.02% for the electric public utilities and delaying the swine waste set-aside requirement for municipalities. The Commission also modified the poultry waste set-aside aggregate requirement to 300,000 MWh. *Order Modifying the Swine and Poultry Waste Set-Aside Requirement and Providing Other Relief*, Docket No. E-100, Sub 113 (October 8, 2018) ("2018 Delay Order").

³ For planning purposes, the Company notes that it has unique flexibility to use out-of-state RECs for REPS compliance. *Order on Dominion's Motion for Further Clarification*, Docket No. E-100, Sub 113 (Sept. 22, 2009) (holding that the meaning of N.C.G.S. § 62-133.8(b)(2)(e) is to allow the Company to achieve up to 100% REPS general obligation and set-aside compliance using out-of-state RECs).

As shown in Figure 1.2.1, the Company's REPS requirements in the Planning Period include the solar energy resource requirement ("Solar Set-Aside"), swine waste resource requirement ("Swine Set-Aside"), and poultry waste resource requirement ("Poultry Set-Aside"). In addition, the Company must also ensure that, in total, the RECs that it produces or procures, combined with energy efficiency savings, is an amount equivalent to ten percent (10%) of its prior year retail sales in compliance years 2019 and 2020, and twelve and a half percent (12.5%) in 2021 ("Total Obligation").⁴

The Town of Windsor

Planned REPS compliance for Windsor during the Planning Period is outlined in Figure 1.2.2

SOWIWART						
	2019	2020	2021			
Baseline Sales Forecast (MWh)	49,100	49,650	50,200			
NC Total REPs Obligation %	10%	10%	12.5%			
Total REPS Obligation (MWh) ¹	5,047	4,910	6,207			
NC Solar Set-Aside Target %	0.20%	0.20%	0.20%			
Total Solar Set-Aside (MWh) ¹	101	99	100			
NC Total Swine Set-Aside %	0.07%	0.07%	0.14%			
Total Swine Set-Aside (MWh)	36	35	70			
Projected Poultry Set-Aside %	0.04%	0.04%	0.04%			
Total Poultry Set-Aside (MWh) ²	265	340	340			
General REPS Requirement (net of Solar, Swine and Poultry) (MWh)	4,645	4,436	5,697			

Figure 1.2.2 2019-2021 TOWN OF WINDSOR REPS COMPLIANCE PLAN
SUMMARY

Notes: (1) 2019 targets are based on actual 2018 retail sales of 50,462 MWh reported by Windsor to DNCP. 2020-2021 targets are based on forecasts reported by the Windsor to DNCP. The total target is a product of the previous year's baseline retail sales and the current year target percentage. (2) Targets are based on the average of 2013-2015 load share ratio.

Solar Set-Aside

Pursuant to N.C.G.S. § 62-133.8(d), the Company must produce or procure solar RECs equal to a minimum of twenty hundredths of one percent (0.20%) of the prior year's total electric power in megawatthours ("MWh") sold to retail customers in North Carolina in 2019, 2020 and 2021.

Based on the Company's actual retail sales in 2018, the Solar Set-Aside is 8,802 RECs in 2019. Based on forecasted retail sales, the Solar Set-Aside is projected to be approximately 8,530 RECs in 2020, and 8,616 RECs in 2021, respectively.

⁴ The Company refers to its Total Obligation, net of the Solar, Swine, and Poultry Set-Aside requirements, as its General Requirement ("General Requirement").

The Company's Solar Set-Aside compliance strategy is consistent with DENC's plan from the previous years, as described herein. Specifically, the Company plans to buy unbundled solar RECs. The Company has purchased, or entered into contracts to purchase, solar RECs for DENC's compliance with N.C.G.S. § 62-133.8(d). These contracts will provide enough solar RECs to satisfy the Company's compliance through 2021. The Company has also executed contracts with solar facilities located in North Carolina that will satisfy the in-state portion of the Windsor's compliance requirements for 2019 through 2021. The Company continues to evaluate opportunities to purchase both in-state and out-of-state solar RECs, and will continue to make all reasonable efforts to satisfy DENC's and Windsor's solar set-aside requirements during the Planning Period.

Swine Waste Set-Aside

Pursuant to N.C.G.S. § 62-133.8(e) and the 2018 Delay Order, for calendar years 2019 and 2020, at least seven hundredths of one percent (0.07%) and for calendar year 2021, fourteen hundredths of one percent (0.14%) of prior year total retail electric power sold in aggregate by electric power suppliers in North Carolina must be supplied by energy derived from swine waste. As the Company's share of the State's total retail megawatt-hour sales is approximately 3.31 percent, the Company's Swine Set-Aside requirement is 3,081 RECs in 2019, 2,986 RECs in 2020, and 6,031 RECs in 2021.

Independently of the Swine Waste REC Buyers Group, the Company has executed swine waste to energy contracts with two suppliers. As a result of these efforts, both DENC and the Windsor have sufficient RECs in NC-RETs to meet the 2019-2021 requirements.

The Company continues to evaluate all potential opportunities to purchase both in-state and out-of-state swine RECs, and will continue to make all reasonable efforts to satisfy DENC's Swine Set-Aside requirements during the Planning Period. The Company continues to work with the Swine Waste REC Buyers Group. Due to the high default rate with swine waste to energy contracts, the Company intends to contract for RECs above and beyond the initial requirement to increase the probability of maintaining compliance. The Company intends to bank any excess RECs to be used for future compliance.

Poultry Waste Set-Aside

Pursuant to N.C.G.S. § 62-133.8(f) and the 2018 Delay Order, for calendar year 2019, at least 700,000 MWhs, and for 2020 and thereafter, at least 900,000 MWhs of the prior year's total electric power sold to retail electric customers in the State or an equivalent amount of energy shall be produced or procured each year by poultry waste, as defined per the Statute and additional clarifying Orders. As the Company's retail sales share of the State's total retail megawatt-hour sales is approximately 3.31 percent, the Company's Poultry Set-Aside is 23,174 RECs in 2019 and estimated to be 29,796 RECs in 2020 and 2021.

Initially, the Poultry Waste REC Buyers Group executed two (2) long-term poultry waste contracts and the Company, as a part of this group, has executed two (2) long-term contracts to satisfy the Town of Windsor's in-state Poultry Set-Aside requirements. One (1) of the in-state contracts was terminated by mutual agreement with the supplier in September 2013, the other was terminated in April 2018. In an attempt to locate and purchase additional poultry RECs, the Company joined with the Poultry Waste REC Buyers Group in requesting Commission approval for a RFP in Docket E-100 Sub 113. The RFP was conducted in 2013 and resulted in two (2) additional contracts. Based on the execution of two (2)

contracts that could each, individually, provide sufficient RECs, the Company has enough in-state RECs for Windsor compliance with the full Poultry Set-Aside in 2019 and 2020. At this time, the Company is reasonably confident that Town of Windsor will be in compliance with the full Poultry Set-Aside in 2021. The Company has also continued to search for opportunities to purchase poultry waste RECs in North Carolina and throughout the continental United States. These efforts yielded multiple poultry waste REC contracts and sufficient delivered volume to comply with both the Company's and Windsor's out-of-state requirements for years 2019, 2020 and 2021.

General REPS Requirements Net of Solar, Swine and Poultry

Pursuant to N.C.G.S. § 62-133.8(d), the Company is required to comply with its Total Obligation in the Planning Period by submitting for retirement a total volume of RECs equivalent to ten percent (10%) in 2019 and 2020, and twelve and a half percent (12.5%) in 2021. This equates to approximately 430,000 RECs in 2019 and 2020, and 540,000 RECs in 2020 and beyond. This General Requirement, net of the Solar, Swine, and Poultry Set-Aside requirements, is 405,022 RECs in 2019 and estimated to be approximately 400,000 in 2020, and approximately 500,000 RECs in 2021 and beyond. The resource options available to the Company to meet the General Requirement are discussed below, as well as the Company's plan to meet the General Requirement with these resources.

The Company plans to comply with the General Requirement using a combination of EE savings generated by the Company's portfolio of approved North Carolina EE programs; purchasing in-state and out-of-state RECs; and using company-generated new renewable energy resources. For Windsor, the Company plans to comply with the General Requirement using its Southeastern Power Administration ("SEPA") allocation of hydroelectric RECs, in-state biomass RECs, and out-of-state biomass RECs.

Pursuant to Commission Rule R8-67(b)(1)(iii), the Company has presented in Figure 1.4.1 below these EE measures that it plans to use toward REPS compliance, including projected impacts.

Company-generated new renewable energy includes generation from biomass fuel co-firing at the Company's Virginia City Hybrid Energy Center (VCHEC), which commenced commercial operations in 2012, as well as biomass fuel conversions at the Altavista, Hopewell and Southampton power stations, which commenced commercial operations in 2013. The Company is currently selling the RECs generated at these biomass facilities in PJM Tier 1 markets at a significant premium to the out-of-state general RECs the Company is purchasing for compliance. Company-generated new renewable energy also includes generation from operational and planned Company-owned solar facilities in Virginia and North Carolina. The Company is selling the solar RECs generated at these facilities in the PJM markets at a substantial premium to the in-state and out-of-state solar RECs the Company is purchasing for REPS compliance.⁵

⁵ On April 10, 2014, the Commission approved the Company's Rule R8-66 REPS Facility Registration Statement for VCHEC in Docket No. E-22, Sub 489. The Company will file Rule R8-66 REPS Facility Registration Statements for Altavista, Hopewell and Southampton power stations and for Company-owned solar facilities prior to relying on these facilities for REPS compliance.

1.3 REC CONTRACTS

In accordance with Rule R8-67(b)(1)(ii), the Company provides a list of executed contracts to purchase renewable energy certificates.

As mentioned in the previous section, the Company has purchased wind, biomass, hydro, poultry waste, swine waste and solar RECS and entered into long-term poultry waste, swine waste and solar REC contracts to comply with N.C.G.S. § 62-133.8(b), (d), (e), and (f). Figures 1.3.1 through 1.3.4 provide summaries of the key terms (volume, term, price, current status, and expiration date) of the Company's executed REC purchase contracts.

	Full Term Total Volume	Term	Price / REC	Total Expense	Current Status	Expiration Date
	15,000	6				
	729	1				
	392	1				
	4	1				
	4	1				
	50	1				
	2,000	2				
	40	1				
	24	1				
	2,000	1				
	2,000	1				
	1,544	1				
	664	2				
	331	1				
	2,000	1				
	2,000	1				
	5,000	1				
	2,932	2				
	9,500	1				
	1,057	1				
	15,000	3				
	15,000	3				
	7,145	3				
Total Volume	84,416					

Figure 1.3.1 Solar REC Purchase Contract Summary¹

Notes: Contract counterparties and prices are confidential. (1) The Company plans to bank any surplus RECs from 2013-2018 for future compliance purposes. (2) Contracts for Windsor compliance. (3) Contracts for Windsor solar or general REPS compliance.

Figure 1.3.2 Poultry Waste REC Purchase Contract Summary¹

	Full Term Total Volume	Term	Price / REC	Total Expense	Current Status	Expiration Date
	0	2				
	25,000	2				
	0	20				
	15,000	1				
	55	1				
	699	1				
	20,000	1				
	4,860	15				
	6,480	15				
	59,400	1				
	1,576	3				
	136,000	10				
	50	1				
	10,000	1				
	40	1				
	12,000	1				
	225,000	15				
Total Volume	516,160					

Notes: Contract counterparties and prices are confidential. (1) The Company plans to bank any surplus RECs from 2012-2018 for future compliance purposes. (2) Contract terminated. (3) Contract for Windsor compliance.

<u></u>
2
<u> </u>
0
¥.
£ 3
-

A .
C
-
- - - - - - - - - - -

	Full Term Total Volume	Term	Price / REC	Total Expense	Current Status	Expiration Date	Z
	30.000	1		•			I.
	20.000	1					Ē
	30,000	1					Q
	1,000	1					
	42,400	1					
	25,600	1					
	35,000	1					9
	25,000	1					1è
	15,000	1					
	64,746	1					Ň
	10,943	5					2
	25,000	1					12
	25,000	1					
	25,000	1					
	27,587	3					
	50,000	1					
	50,000	1					
	12,265	2					
	50,000	1					
	30,000	1					
	54,459	1					
	50,000	1					
	50,000	1					
	0	20					
	50,000	1					
	25,000	1					
	50,000	1					
	350,000	2					
	325,000	1					
	15,978	<u> </u>					
	150,000	1					
	300,000	1					
	400,000	1					
	400,000	1					
	200.000	1					
	200,000	1					
	1,796 716	10					
	154 505	1					
	47,589	2					
	120.000	1					
Total Volume	5,293,788						

Notes: Contract counterparties and prices are confidential. (1) The Company plans to bank any surplus RECs from 2012-2018 for future compliance purposes. (2) Contract for Windsor compliance. (3) Contract terminated.

	Full Term Total Volume	Term	Price / REC	Total Expense	Current Status	Expiration Date	
	6,480	20					
	0	20					0
	0	20					
	2,315	5					
	108,500	15					6
	0	20					2
	0	20					2
	0	20					
	1,000	1					
	1,672	1					
	36,000	10					
Total Volume	155,967						-

Figure 1.3.4 Swine Waste REC Purchase Contract Summary¹

Notes: Contract counterparties and prices are confidential. (1) The Company plans to bank any surplus RECs from 2010-2018 for future compliance. (2) Reduced volumes in first year of contract. (3) Price escalates annually. Prices given are for initial year. (4) Contract terminated. (5) Contract for Windsor compliance.

1.4 ENERGY EFFICIENCY PROGRAMS

In accordance with Rule R8-67(b)(1)(iii), the Company provides a list of planned or implemented energy efficiency measures, including a brief description of the measure and projected impacts.

The Company intends to apply North Carolina EE savings to meet the REPS requirements as permitted by law. Figure 1.4.1 lists energy efficiency programs and resulting potential savings projected to be achieved by North Carolina customers. A description of these EE programs can be found in the 2019 EM&V Report filed on May 1, 2019, in Docket No. E-22, Sub 556.

	2019	2020	2021
Air Conditioner Cycling Program ¹	0	0	0
Commercial HVAC Upgrade Program ¹	110	110	110
Commercial Lighting Program ¹	2,743	2,743	2,743
Residential Low Income Program ¹	615	615	615
Residential Lighting Program ¹	1,028	1,028	1,028
Non-residential Energy Audit Program ²	1,386	1,386	1,386
Non-residential Duct Testing and Sealing Program ²	3,155	3,155	3,155
Residential Home Energy Check-Up Program ²	791	791	791
Residential Duct Sealing Program ²	133	133	133
Residential Heat Pump Tune-Up Program ²	1,208	1,208	1,208
Residential Heat Pump Upgrade Program ²	297	297	297
Non-residential Heating and Cooling Efficiency Program ³	0	0	0
Non-residential Lighting Systems and Controls Program ³	7,565	7,565	7,565
Non-residential Window Film Program ³	0	0	0
Income and Age Qualifying Home Improvement Program ⁴	173	173	173
Small Business Improvement Program ⁵	1,085	1,085	1,085
Residential Retail LED Lighting Program (NC Only)⁵	6,913	6,913	6,913
Non-Residential Prescriptive Program ⁶	350	350	350
Energy Efficiency Total ⁷	27,552	27,552	27,552

Notes: (1) DSM I programs. (2) DSM II programs. (3) DSM III programs. (4) DSM IV programs. (5) DSM V programs. (6) DSM VI program. (7) Forecast based on initial 2018 EM&V data. The Company is using estimates for the first year of these programs, and will use actual savings in subsequent years. For REPS reporting and compliance purpose, DENC will rely upon actual EE savings achieved by North Carolina customers.

Figure 1.4.1 FORECAST SAVINGS (MWh) NORTH CAROLINA ENERGY EFFICIENCY PROGRAMS

1.5 RETAIL SALES & CUSTOMER ACCOUNTS

In accordance with Rule R8-67(b)(1)(iv), the Company states the projected Company's North Carolina retail sales and year-end number of customer accounts by customer class for each year.

The Company

Figure 1.5.1 summarizes the Company's North Carolina retail sales and Figure 1.5.2 summarizes the yearend number of customer accounts by customer class for each year of the Planning Period.

Voor	Residential	Commercial	Industrial	Total Sales	
Tear	Sales (MWh)	Sales (MWh)	Sales (MWh)	(MWh)	
2019 (projected)	1,645,000	858,000	1,762,000	4,265,000	
2020 (projected)	1,655,000	863,000	1,762,000	4,307,650	
2021 (projected)	1,665,000	867,000	1,761,000	4,350,727	

Notes: (1) Excludes the Town of Windsor's wholesale customer load.

Figure 1.5.2 COMPANY'S NORTH CAROLINA CUSTOMER ACCOUNTS¹

Veer	Residential	Residential Commercial		Total
rear	Customers	Customers	Customers	Customers
2019 (projected)	103,177	15,698	56	118,931
2020 (projected)	103,496	15,730	56	119,282
2021 (projected)	103,847	15,763	56	119,666

Notes: (1) Customer account totals are year-end forecasts.

Town of Windsor

Figure 1.5.3 summarizes the Windsor's retail sales and Figure 1.5.4 summarizes the year-end number of customer accounts by customer class for each year of the Planning Period.

Voor	Residential Commercial		Industrial	Total Sales	
Tear	Sales (MWh)	Sales (MWh)	Sales (MWh)	(MWh)	
2019 (projected)	19,000	21,000	9,100	49,100	
2020 (projected)	19,300	21,200	9,150	49,650	
2021 (projected)	19,500	21,500	9,200	50,200	

Note: (1) Sales are year-end forecasts reported by the Town of Windsor to DENC.

Figure 1.5.4 TOWN OF WINDSOR'S CUSTOMER ACCOUNTS¹

Voor	Residential	Commercial	Industrial	Total	
Teal	Customers Custome		Customers	Customers	
2019 (projected)	1,360	400	1	1,761	
2020 (projected)	1,365	405	1	1,771	
2021 (projected)	1,375	410	1	1,786	

Notes: (1) Customer account totals are year-end forecasts reported by the Town of Windsor to DENC.

1.6 **AVOIDED COST RATES**

In accordance with Rule R8-67(b)(1)(v), the Company provides the following statement regarding the current and projected avoided cost rates for each year.

For facilities eligible for the Company's avoided cost standard offer contract, see Dominion Energy North Carolina Schedule 19 for currently available energy and capacity rates. Figure 1.6.1 shows the Company's projected avoided energy and capacity rates.

	On-Peak (\$/MWh)	Off-Peak (\$/MWh)	Capacity Price (\$/kW-Year)
2019	32.83	24.97	0.00
2020	30.83	23.73	0.00
2021	31.13	24.52	0.00

Figure 1.6.1 PROJECTED AVOIDED ENERGY AND CAPACITY COST (from E-100 Sub 158)¹

Note: (1) These rates were filed on November 1, 2018 and will likely change in a future compliance filing pursuant to the North Carolina Utilities Commission final order in Docket E-100, Sub 158.

CONFIDENTIAL INFORMATION REDACTED

1.7 TOTAL & PROJECTED COSTS

In accordance with Rule R8-67(b)(1)(vi), the Company provides the projected total and incremental costs anticipated to implement REPS Compliance plan for each year of the Planning Period.

The Company

The Company's Planning Period incremental costs to comply with the Solar Set-Aside, Swine Set-Aside, Poultry Set-Aside and General Requirements are presented in Figure 1.7.1 below.

2019 2020 2021 Type of REC Solar 8,530 Target (MWh) 8,802 8,616 REC Cost (\$/MWh)1 **Projected Cost** Swine Target (MWh) 3,081 2,986 6,031 REC Cost (\$/MWh)1 **Projected Cost** Poultry Target (MWh) 23,174 29,796 29,796 REC Cost (\$/MWh)1 **Projected Cost General RECs** 494,014 Target (MWh) 405,022 385,188 Less Energy Efficiency² 27,875 27,875 27,875 377,147 357,313 466,139 Net Target REC Cost (\$/MWh)1 **Projected Cost** Administrative Costs³ \$22,000 \$22,000 \$22,000 Microgrid Research Project Cost⁴ \$564 \$564 \$564 TOTAL PROJECTED COMPLIANCE COST \$965,021 \$1,174,167 \$1,574,572

Figure 1.7.1	COMPANY'S RE	PS COMPLIANCE	COST SUMMARY

Notes: (1) 2019-2021 projected REC costs are based on market estimates, signed contracts and/or ongoing negotiations. (2) Projected EE savings represents a projected system allocation. (3) Administrative costs include, but are not limited to: NC-RETs fees, broker fees and miscellaneous expenses. (4) As permitted by NCGS § 62-133.8 (h)(1) and (4), DENC has developed a North Carolina Microgrid research and development (R&D) project. This figure represents research project projected costs prior to receiving any offsetting tax credits.

The Town of Windsor

The Town of Windsor's projected Planning Period REPS costs are expected to consist of the sum of the costs required to comply with the Solar Set-Aside, Swine Set-Aside, Poultry Set-Aside and other General Requirements Figure 1.7.2 outlines Windsor's Compliance Cost Summary from 2019 to 2021.

Type of REC	2019	2020	2021
Solar			
Target (MWh)	101	99	100
REC Cost (\$/MWh) ¹			
Projected Cost	-		
Swine			
Target (MWh)	36	35	70
REC Cost (\$/MWh)1			
Projected Cost			
Poultry			
Target (MWh)	265	340	340
REC Cost (\$/MWh)¹			
Projected Cost			-
General REPs			
Target (MWh)	4,645	4,436	5,697
REC Cost (\$/MWh) ¹			
Projected Cost			
TOTAL PROJECTED COMPLIANCE COST	\$27,588	\$32,845	\$36,831

Figure 1.7.2 TOWN OF WINDSOR'S COMPLIANCE COST SUMMARY

Notes: (1) 2019-2021 projected REC costs are based on market estimates, signed contracts and/or ongoing negotiations.

1.8 ANNUAL COST CAPS

In accordance with Rule R8-67(b)(1)(vii), the Company provides the following comparison of projected costs to the annual cost caps contained in N.C.G.S. § 62-133.8(h)(4).

Figure 1.8.1 provides a comparison of the Company's projected costs to the annual cost caps for each year of the Planning Period. Compliance costs are allocated to the Customer Classes based on the percentage of each of the Customer Class Cost Caps to the Total Cost Cap.

Compliance Year	Residential	Commercial	Industrial	Total
2019	Customers	Customers	Customers	Customers
Actual Year-End Annual Customers (2018)	103,159	18,227	50	121,436
Annual Cost Cap per Customer	\$27	\$150	\$1,000	-
Annual Cost Cap, Total	\$2,785,293	\$2,734,050	\$50,000	\$5,569,343
Projected Cost of Compliance ¹	\$482,618	\$473,739	\$8,664	\$965,021

Figure 1.8.1 COMPANY'S COMPARISON TO ANNUAL CAPS

Compliance Year	Residential	Commercial	Industrial	Total
2020	Customers	Customers	Customers	Customers
Projected Year-End Annual Customers (2019)	103,177	15,698	56	118,931
Annual Cost Cap per Customer	\$27	\$150	\$1,000	-
Annual Cost Cap, Total	\$2,785,779	\$2,354,700	\$56,000	\$5,196,479
Projected Cost of Compliance ¹	\$629,459	\$532,054	\$12,653	\$1,174,167

Compliance Year	Residential	Commercial	Industrial	Total
2021	Customers	Customers	Customers	Customers
Projected Year-End Annual Customers (2020)	103,496	15,730	56	119,282
Annual Cost Cap per Customer	\$27	\$150	\$1,000	-
Annual Cost Cap, Total	\$2,794,392	\$2,359,500	\$56,000	\$5,209,892
Projected Cost of Compliance ¹	\$844,542	\$713,106	\$16,925	\$1,574,572

Notes: (1) Projected costs were allocated to the customer classes based on customer percentage of total cost cap.

Figure 1.8.2 provides a comparison of Windsor's projected costs to the annual cost caps for each year of the Planning Period. Compliance costs are allocated to the Customer Classes based on the percentage of each of the Customer Class Cost Caps to the Total Cost Cap.

Compliance Year	Residential	Commercial	Industrial	Total
2019	Customers	Customers	Customers	Customers
Actual Year-End Annual Customers (2018)	1,359	395	1	1,755
Annual Cost Cap per Customer	\$27	\$150	\$1,000	-
Annual Cost Cap, Total	\$36,693	\$59,250	\$1,000	\$96,943
Projected Cost of Compliance ¹	\$10,442	\$16,861	\$285	\$27,588

Compliance Year 2020	Residential Customers	Commercial Customers	Industrial Customers	Total Customers
Projected Year-End Annual Customers (2019)	1,360	400	1	1,761
Annual Cost Cap per Customer	\$27	\$150	\$1,000	-
Annual Cost Cap, Total	\$36,720	\$60,000	\$1,000	\$97,720
Projected Cost of Compliance ¹	\$12,342	\$20,167	\$336	\$32,845

Compliance Year	Residential	Commercial	Industrial	Total
2021	Customers ²	Customers	Customers	Customers
Projected Year-End Annual Customers (2020)	1,365	405	1	1,771
Annual Cost Cap per Customer	\$27	\$150	\$1,000	-
Annual Cost Cap, Total	\$36,855	\$60,750	\$1,000	\$98,605
Projected Cost of Compliance ¹	\$13,766	\$22,691	\$374	\$36,831

Notes: (1) The Town of Windsor is to determine the allocation among the different customer classes.
Aug 29 2019

1.9 REPS RIDER

In accordance with Rule R8-67(b)(1)(viii), the Company provides an estimate of the amount of the REPS rider and the impact on the cost of fuel and fuel-related costs rider necessary to fully recover the projected costs.

	2019	2020	2021
Total Projected REPS Compliance Costs	\$965,021	\$1,174,167	\$1,574,572
Costs recovered through the Fuel Rider	\$0	\$0	\$0
Total Incremental Cost	\$965,021	\$1,174,167	\$1,574,572
Annual REPS Rider - Residential	\$837,191	\$1,018,775	\$1,366,425
Annual REPS Rider - Commercial	\$127,376	\$154,840	\$207,410
Annual REPS Rider - Industrial	\$454	\$551	\$737
Projected Annual Cost Caps (REPS Rider)	\$5,569,343	\$5,196,479	\$5,209,892

NCUC Docket No. E-100, Sub 157

2019 Dominion IRP

ADDENDUM 2:

Federal Energy Regulatory Commission Form 1

THIS FILING IS					
Item 1: 🛛 An Initial (Original) Submission	OR 🔲 Resubmission No				

Form 1 Approved OMB No.1902-0021 (Expires 12/31/2019) Form 1-F Approved OMB No.1902-0029 (Expires 12/31/2019) Form 3-Q Approved

OMB No.1902-0205 (Expires 12/31/2019)

FERC FINANCIAL REPORT FERC FORM No. 1: Annual Report of Major Electric Utilities, Licensees and Others and Supplemental Form 3-Q: Quarterly Financial Report

These reports are mandatory under the Federal Power Act, Sections 3, 4(a), 304 and 309, and 18 CFR 141.1 and 141.400. Failure to report may result in criminal fines, civil penalties and other sanctions as provided by law. The Federal Energy Regulatory Commission does not consider these reports to be of confidential nature

Filed 3/26/19

Exact Legal Name of Respondent (Company) VIRGINIA ELECTRIC AND POWER COMPANY

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	 (1) X An Original (2) A Resubmission 	(Mo, Da, Yr) / /	End of2018/Q4
	CS		

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	ON	VOLTAGE (KV)	Type of	LENGTH (In the	(Pole miles)	Number
No.			other than		Supporting	undergro report cire	ound lines cuit miles)	Of
		Т	Or cycle, 3 prie	Designed	Supporting	On Structure	On Structures	Circuits
	(a)	(b)	Operating (c)	Designed	Structure	Designated	Line	(b)
			(0)	(u)		(f)	(g)	(n) 1
1		MOSBY (502)	500.00	500.00	STEEL PULE	0.17		1
2			500.00	500.00	STEEL TWR	0.08		1
3			500.00	500.00	STEEL TWR	0.12		1
4	BRUNSWICK COUNTY	HERITAGE SUB (509)	500.00	500.00	STEEL TWR	0.13		1
5	RAWLINGS	CARSON (511)	500.00	500.00	STEEL PULE	0.09		I
6	RAWLINGS		500.00	500.00	STEEL IWR	22.51		1
1	GOOSE CREEK	DOUBS (514)	500.00	500.00	STEEL HERM	0.21		
8	GOOSE CREEK	DOUBS (514)	500.00	500.00	STEEL POLE	0.33		
9	GOOSE CREEK	DOUBS (514)	500.00	500.00	STEEL TWR	2.56		
10	SURRY	SUFFOLK (531)	500.00	500.00	CONCIWR	0.08		1
11	SURRY	SUFFOLK (531)	500.00	500.00	STEEL HERM	0.07		
12	SURRY	SUFFOLK (531)	500.00	500.00	STEEL TWR	37.10		
13	DOOMS	CUNNINGHAM (534)	500.00	500.00	STEEL TWR	11.31		1
14	DOOMS	CUNNINGHAM (534)	500.00	500.00	STEEL TWR	21.04		
15	MEADOWBROOK	LOUDOUN (535)	500.00	500.00	STEEL HFRM		2.35	1
16	MEADOWBROOK	LOUDOUN (535)	500.00	500.00	STEEL HFRM	2.56		
17	MEADOWBROOK	LOUDOUN (535)	500.00	500.00	STEEL POLE		1.28	
18	MEADOWBROOK	LOUDOUN (535)	500.00	500.00	STEEL POLE	16.38		
19	MEADOWBROOK	LOUDOUN (535)	500.00	500.00	STEEL TWR		27.43	
20	MEADOWBROOK	LOUDOUN (535)	500.00	500.00	STEEL TWR	15.09		
21	BRISTERS	OX (539)	500.00	500.00	STEEL TWR	23.02		1
22	FRONT ROYAL	MORRISVILLE (541)	500.00	500.00	STEEL HFRM	2.93		1
23	FRONT ROYAL	MORRISVILLE (541)	500.00	500.00	STEEL POLE	14.98		
24	FRONT ROYAL	MORRISVILLE (541)	500.00	500.00	STEEL TWR	27.72		
25	CUNNINGHAM	FLUVANA PWR STA (542)	500.00	500.00	STEEL HFRM	0.18		1
26	CUNNINGHAM	FLUVANA PWR STA (542)	500.00	500.00	STEEL POLE	0.01		
27	CUNNINGHAM	FLUVANA PWR STA (542)	500.00	500.00	STEEL TWR	0.10		
28	CARSON	SUFFOLK (544)	500.00	500.00	STEEL HFRM	1.66		1
29	CARSON	SUFFOLK (544)	500.00	500.00	STEEL POLE		0.10	
30	CARSON	SUFFOLK (544)	500.00	500.00	STEEL POLE	0.30		
31	CARSON	SUFFOLK (544)	500.00	500.00	STEEL TWR	59.39		
32	BRISTERS	MORRISVILLE (545)	500.00	500.00	STEEL HFRM	0.48		1
33	BRISTERS	MORRISVILLE (545)	500.00	500.00	STEEL TWR	7.37		
34	BRAMBLETON	MOSBY (546)	500.00	500.00	STEEL HFRM		0.19	1
35	BRAMBLETON	MOSBY (546)	500.00	500.00	STEEL POLE		0.20	
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Perior	d of Report					
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of _	2018/Q4					
TRANSMISSION LINE STATISTICS (Continued)									
7. Do not report the same transmission line structure to	wice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if					

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	F (Include in Colum	nn (i) Land.					Т
Size of Land rights, and clearing right-of-way)			of-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	DTAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	-
and Material (i)	(j)	Other Costs (k)	(I)	Expenses (m)	Expenses (n)	(0)	Expenses (p)	No.
1351.5 ACSS				()				1
1351.5 ACSS								2
1351.5 ACSR								3
1351.5 ACSR								4
1351.5 ACSR								5
1351.5 ACSR								6
2049.5 AAAC								7
1351.5 ACSR								8
2049.5 AAAC								9
2500 ACAR								10
2500 ACAR								11
2500 ACAR								12
1351.5 ACSR								13
2049.5 AAAC								14
1351.5 ACSR								15
1351.5 ACSR								16
1351.5 ACSR								17
1351.5 ACSR								18
1351.5 ACSR								19
1351.5 ACSR								20
2500 ACAR								21
2500 ACAR								22
2500 ACAR								23
2500 ACAR								24
2049.5 AAAC								25
2049.5 AAAC								26
2049.5 AAAC								27
1351.5 ACSR								28
1351.5 ACSR								29
1351.5 ACSR								30
1351.5 ACSR								31
2500 ACAR								32
2500 ACAR								33
1351.5 ACSR								34
1351.5 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	TRANSMISSION LINE STATISTI	CS	

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNATIO	ON	VOLTAGE (KV (Indicate where other than	() e	Type of	LENGTH (In the undergro report cire	(Pole miles) case of ound lines cuit miles)	Number Of
	 From	То	Operating	Designed	Supporting	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	Structure (e)	Designated	Line	(b)
1	BRAMBI ETON	MOSBY (546)	500.00	500.00		(1)	(9)	(1)
2	BRAMBLETON	MOSBY (546)	500.00	500.00	STEEL TOLL	0.47	4.27	
- 3	BRAMBI FTON	MOSBY (546)	500.00	500.00	STEEL TWR	0.10		
4	BATH COUNTY	LEXINGTON (JU) (547)	500.00	500.00	STEEL POLE	0.31		1
5	BATH COUNTY	LEXINGTON (JU) (547)	500.00	500.00	STEEL TWR	34.38		
6	BATH COUNTY	VALLEY (JU) (548)	500.00	500.00	STEEL POLE	0.28		1
7	BATH COUNTY	VALLEY (JU) (548)	500.00	500.00	STEEL TWR	51.55		
8	VALLEY	DOOMS (549)	500.00	500.00	STEEL POLE	0.12		1
9	VALLEY	DOOMS (549)	500.00	500.00	STEEL TWR		0.07	
10	VALLEY	DOOMS (549)	500.00	500.00	STEEL TWR	17.50		
11	MT STORM	VALLEY (JU) (550)	500.00	500.00	STEEL HFRM	0.15		1
12	MT STORM	VALLEY (JU) (550)	500.00	500.00	STEEL POLE	0.05		
13	MT STORM	VALLEY (JU) (550)	500.00	500.00	STEEL TWR	64.05		
14	MT STORM	BISMARK (551)	500.00	500.00	STEEL HFRM	0.49		1
15	MT STORM	BISMARK (551)	500.00	500.00	STEEL TWR	0.23		
16	MT STORM	BISMARK (551)	500.00	500.00	STEEL TWR	7.12		
17	BRISTERS	LADYSMITH (552)	500.00	500.00	STEEL POLE	0.10		1
18	BRISTERS	LADYSMITH (552)	500.00	500.00	STEEL TWR	21.24		
19	BRISTERS	LADYSMITH (552)	500.00	500.00	STEEL TWR	0.05		
20	CUNNINGHAM	ELMONT (553)	500.00	500.00	STEEL HFRM	0.25		1
21	CUNNINGHAM	ELMONT (553)	500.00	500.00	STEEL TWR	50.60		
22	DOOMS	LEXINGTON (555)	500.00	500.00	STEEL TWR		38.98	1
23	DOOMS	LEXINGTON (555)	500.00	500.00	STEEL TWR	0.07		
24	CLOVER	RAWLINGS (556)	500.00	500.00	STEEL TWR	54.13		1
25	CHICKAHOMINY	ELMONT (557)	500.00	500.00	STEEL POLE	0.07		1
26	CHICKAHOMINY	ELMONT (557)	500.00	500.00	STEEL TWR	27.75		
27	BRAMBLETON	GOOSE CREEK (558)	500.00	500.00	STEEL POLE		0.18	1
28	BRAMBLETON	GOOSE CREEK (558)	500.00	500.00	STEEL POLE	0.05		
29	BRAMBLETON	GOOSE CREEK (558)	500.00	500.00	STEEL TWR		7.60	
30	LOUDOUN	CLIFTON (559)	500.00	500.00	STEEL TWR	11.94		1
31	POSSUM POINT	BURCHES HILL (560)	500.00	500.00	STEEL HERM	0.06		1
32	POSSUM POINT	BURCHES HILL (560)	500.00	500.00	STEEL IWR	0.14		
33	CLIFTON	OX (561)	500.00	500.00	STEEL HERM	0.14		1
34		OX (561)	500.00	500.00	STEEL TWR	7.04		1
35	SEPTA	CARSON (562)	500.00	500.00		0.10		I
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Perio	od of Report					
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of	2018/Q4					
TRANSMISSION LINE STATISTICS (Continued)									
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if					

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	nn (j) Land,	EVDE				Т
Size of	Land rights,	and clearing right-o	f-way)	EXPE	NSES, EXCEPT DE	PRECIATION ANL	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	1
and Material (i)	(i)	Other Costs (k)	(1)	Expenses (m)	Expenses	(0)	Expenses	No.
1351.5 ACSR	07		()	()	()		(17)	1
1351.5 ACSR								2
1351.5 ACSR								3
2500 ACAR								4
2500 ACAR								5
2500 ACAR								6
2500 ACAR								7
2049.5 AAAC								8
2049.5 AAAC								9
2049.5 AAAC								10
2049.5 AAAC								11
2049.5 AAAC								12
2049.5 AAAC								13
1351.5 ACSS								14
1351.5 ACSR								15
1351.5 ACSS								16
2500 ACAR								17
2049.5 AAAC								18
2500 ACAR								19
1351.5 ACSR								20
1351.5 ACSR								21
1351.5 ACSR								22
1351.5 ACSR								23
1351.5 ACSR								24
2500 ACAR								25
2500 ACAR								26
1351.5 ACSR								27
1351.5 ACSR								28
1351.5 ACSR								29
2500 ACAR								30
1534 ACAR								31
1534 ACAR								32
2500 ACAR								33
2500 ACAR								34
2500 ACAR								35
								<u> </u>
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	TRANSMISSION LINE STATISTI	CS	

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATI	ON	VOLTAGE (KV	() 2	Type of	LENGTH	(Pole miles)	Number
No.			other than	, () , ()	Supporting	undergro report circ	ound lines cuit miles)	Of
		T .	Or cycle, 3 pria	Destant	Supporting	On Structure	On Structures	Circuits
	From (a)	10 (b)	Operating	Designed	Structure	Designated	Line	(1-)
			(0)	(u)		(†)	(g)	(n)
1		CARSON (562)	500.00	500.00	STEEL TWR	38.35		
2	CARSON	MIDLOTHIAN (563)	500.00	500.00	STEEL PULE	0.08		1
3		MIDLOTHIAN (563)	500.00	500.00	STEEL PULE	0.26		
4	CARSON	MIDLOTHIAN (563)	500.00	500.00	STEEL TWR	0.07		
5	CARSON	MIDLOTHIAN (563)	500.00	500.00	STEEL TWR	37.01		1
6	CUNNINGHAM	FLUVANA PWR STA (564)	500.00	500.00	STEEL HERM	0.01		1
7	CUNNINGHAM	FLUVANA PWR STA (564)	500.00	500.00	SIEELIWR	0.26		
8	SUFFOLK	YADKIN (565)	500.00	500.00	ALUM TWR	8.71		1
9	SUFFOLK	YADKIN (565)	500.00	500.00	STEEL TWR	4.56		
10	LEXINGTON	CLOVERDALE (AEP) (566)	500.00	500.00	STEEL TWR	7.10		1
11	SURRY	CHICKAHOMINY (567)	500.00	500.00	CONC TWR	0.08		1
12	SURRY	CHICKAHOMINY (567)	500.00	500.00	STEEL TWR		0.14	
13	SURRY	CHICKAHOMINY (567)	500.00	500.00	STEEL TWR	1.19		
14	SURRY	CHICKAHOMINY (567)	500.00	500.00	STEEL TWR	43.27		
15	POSSUM POINT	LADYSMITH (568)	500.00	500.00	STEEL HFRM	3.18		1
16	POSSUM POINT	LADYSMITH (568)	500.00	500.00	STEEL TWR	3.57		
17	POSSUM POINT	LADYSMITH (568)	500.00	500.00	STEEL TWR	40.95		
18	LOUDOUN	MORRISVILLE (569)	500.00	500.00	STEEL HFRM		0.10	1
19	LOUDOUN	MORRISVILLE (569)	500.00	500.00	STEEL HFRM		0.12	
20	LOUDOUN	MORRISVILLE (569)	500.00	500.00	STEEL HFRM	2.19		
21	LOUDOUN	MORRISVILLE (569)	500.00	500.00	STEEL HFRM	0.24		
22	LOUDOUN	MORRISVILLE (569)	500.00	500.00	STEEL HFRM	0.22		
23	LOUDOUN	MORRISVILLE (569)	500.00	500.00	STEEL POLE		0.38	
24	LOUDOUN	MORRISVILLE (569)	500.00	500.00	STEEL POLE	1.19		
25	LOUDOUN	MORRISVILLE (569)	500.00	500.00	STEEL POLE	0.26		
26	LOUDOUN	MORRISVILLE (569)	500.00	500.00	STEEL TWR		0.19	
27	LOUDOUN	MORRISVILLE (569)	500.00	500.00	STEEL TWR	18.43		
28	LOUDOUN	MORRISVILLE (569)	500.00	500.00	STEEL TWR	0.92		
29	LOUDOUN	MORRISVILLE (569)	500.00	500.00	STEEL TWR	7.55		
30	HERITAGE	WAKE (CP&L) (570)	500.00	500.00	STEEL TWR	4.69		1
31	HERITAGE	WAKE (CP&L) (570)	500.00	500.00	STEEL TWR	27.95		
32	POSSUM POINT	OX (571)	500.00	500.00	STEEL HFRM		0.10	1
33	POSSUM POINT	OX (571)	500.00	500.00	STEEL HFRM	12.72		
34	POSSUM POINT	OX (571)	500.00	500.00	STEEL TWR	0.04		
35	NORTH ANNA	SPOTSYLVANIA (573)	500.00	500.00	STEEL HFRM	0.45		1
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure to	7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights,	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
2500 ACAR								1
1351.5 ACSR								2
2500 ACAR								3
1351.5 ACSR								4
2500 ACAR								5
2049.5 AAAC								6
2049.5 AAAC								7
2500 ACAR								8
2500 ACAR								9
1351.5 ACSR								10
2500 ACAR								11
2500 ACAR								12
1351.5 ACSS								13
2500 ACAR								14
2500 ACAR								15
1534 ACAR								16
2500 ACAR								17
1351.5 ACSR								18
2500 ACAR								19
1351.5 ACSR								20
2049.5 AAAC								21
2500 ACAR								22
1351.5 ACSR								23
1351.5 ACSR								24
2500 ACAR								25
1351.5 ACSR								26
1351.5 ACSR								27
2049.5 AAAC								28
2500 ACAR								29
1351.5 ACSR								30
2500 ACAR								31
1534 ACAR								32
1534 ACAR								33
1534 ACAR								34
2500 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	DESIGNATION VOLTAGE (KV) Type of LENGTH (Pole		(Pole miles)				
No.			other than	9	Type of	(In the undergro	case of bund lines	Number
		<u></u>	60 cycle, 3 pha	ise)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	NORTH ANNA	SPOTSYLVANIA (573)	500.00	500.00	STEEL TWR	13.57		
2	ELMONT	LADYSMITH (574)	500.00	500.00	STEEL HFRM	0.05		1
3	ELMONT	LADYSMITH (574)	500.00	500.00	STEEL TWR	26.01		
4	ELMONT	LADYSMITH (574)	500.00	500.00	STEEL TWR	0.13		
5	NORTH ANNA	LADYSMITH (575)	500.00	500.00	STEEL HFRM	0.92		1
6	NORTH ANNA	LADYSMITH (575)	500.00	500.00	STEEL TWR		0.07	
7	NORTH ANNA	LADYSMITH (575)	500.00	500.00	STEEL TWR	13.46		
8	NORTH ANNA	LADYSMITH (575)	500.00	500.00	STEEL TWR	0.08		
9	NORTH ANNA	MIDLOTHIAN (576)	500.00	500.00	STEEL HFRM	0.26		1
10	NORTH ANNA	MIDLOTHIAN (576)	500.00	500.00	STEEL POLE		0.04	
11	NORTH ANNA	MIDLOTHIAN (576)	500.00	500.00	STEEL TWR	40.82		
12	SURRY	SEPTA (578)	500.00	500.00	CONC HFRM		0.10	1
13	SURRY	SEPTA (578)	500.00	500.00	CONC TWR	0.08		
14	SURRY	SEPTA (578)	500.00	500.00	STEEL TWR	11.23		
15	SEPTA	YADKIN (579)	500.00	500.00	STEEL HFRM	0.47		1
16	SEPTA	YADKIN (579)	500.00	500.00	STEEL POLE	0.30		
17	SEPTA	YADKIN (579)	500.00	500.00	STEEL TWR	32.36		
18	FRONT ROYAL	MEADOWBROOK (580)	500.00	500.00	STEEL TWR	1.96		1
19	CHANCELLOR	LADYSMITH (581)	500.00	500.00	STEEL HFRM		0.26	1
20	CHANCELLOR	LADYSMITH (581)	500.00	500.00	STEEL TWR		0.96	
21	CHANCELLOR	LADYSMITH (581)	500.00	500.00	STEEL TWR	13.97		
22	BISMARK	DOUBS (583)	500.00	500.00	STEEL TWR	83.76		1
23	BISMARK	DOUBS (583)	500.00	500.00	STEEL TWR	4.56		
24	LOUDOUN	MOSBY (584)	500.00	500.00	STEEL HFRM	0.10		1
25	LOUDOUN	MOSBY (584)	500.00	500.00	STEEL POLE		0.07	
26	LOUDOUN	MOSBY (584)	500.00	500.00	STEEL POLE	0.06		
27	CARSON	ROGERS ROAD (585)	500.00	500.00	STEEL POLE	0.13		1
28	CARSON	ROGERS ROAD (585)	500.00	500.00	STEEL TWR	28.61		
29	YADKIN	FENTRESS (588)	500.00	500.00	CONC HFRM	0.04		1
30	YADKIN	FENTRESS (588)	500.00	500.00	STEEL TWR	13.62		
31	MOSBY	BRAMBLETON (590)	500.00	500.00	STEEL POLE		0.32	1
32	MOSBY	BRAMBLETON (590)	500.00	500.00	STEEL POLE	0.05		
33	MOSBY	BRAMBLETON (590)	500.00	500.00	STEEL POLE	0.10		
34	MOSBY	BRAMBLETON (590)	500.00	500.00	STEEL TWR		4.26	
35	MOSBY	BRAMBLETON (590)	500.00	500.00	STEEL TWR	0.27		
					τοται	E E A 4 7 A	1 1 4 / 50	EDO
36					IUIAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
	())	(К)	(1)	(m)	(n)	(0)	(p)	1
								1
								2
								3
								4
								5
								7
2500 ACAR								0
2500 SDC								0
								7
								11
								12
								12
								14
								15
2500 ACAR								16
2500 ACAR								17
2500 ACAR								18
2049.5 AAAC								19
2049.5 AAAC								20
2049.5 AAAC								21
1351.5 ACSR								22
1351.5 ACSS								23
1351.5 ACSS								24
1351.5 ACSS								25
1351.5 ACSS								26
1351.5 ACSR								27
1351.5 ACSR								28
2500 ACAR								29
2500 ACAR								30
1351.5 ACSR								31
1351.5 ACSR								32
1351.5 ACSS								33
1351.5 ACSR								34
1351.5 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNAT	FION	VOLTAGE (KV (Indicate where other than	() 2	Type of	LENGTH (In the undergro	(Pole miles) case of ound lines cuit miles)	Number
		-	60 cycle, 3 pha	ise)	Supporting	On Structure	On Structures	Circuits
	From (a)	lo (b)	Operating (c)	Designed	Structure	Designated	or Another Line	(b)
1			500.00	500.00	STEEL TWR	(1)	(9)	(1)
2	BRUNSWICK CT	RAWLINGS (591)	500.00	500.00	STEEL TWR	13.07	0.30	1
3	FRONT ROYAL	WARREN COUNTY (592)	500.00	500.00	STEEL HERM	0.09		1
4	FRONT ROYAL	WARREN COUNTY (592)	500.00	500.00	STEEL POLE	0.08		
5	SPOTSYLVANIA	MORRISVILLE (594)	500.00	500.00	STEEL TWR	18.75		1
6	PLEASANT VIEW	GOOSE CREEK (595)	500.00	500.00	STEEL HFRM	0.10		1
7	PLEASANT VIEW	GOOSE CREEK (595)	500.00	500.00	STEEL TWR	0.09		-
8	GREENSVILLE	ROGERS ROAD (596)	500.00	500.00	STEEL TWR	0.24		1
9					-			
10	TOTAL					1,208.68	90.06	56
11						,		
12	BULL RUN	PENDER (200)	230.00	230.00	STEEL HFRM	2.87		1
13	BULL RUN	PENDER (200)	230.00	230.00	STEEL POLE	3.92		
14	BULL RUN	PENDER (200)	230.00	230.00	STEEL TWR	0.64		
15	BULL RUN	PENDER (200)	230.00	230.00	STEEL TWR	0.02		
16	POSSUM POINT	OCCOQUAN (2001)	230.00	230.00	CONC HFRM	0.04		1
17	POSSUM POINT	OCCOQUAN (2001)	230.00	230.00	CONC HFRM	0.10		
18	POSSUM POINT	OCCOQUAN (2001)	230.00	230.00	STEEL POLE		0.76	
19	POSSUM POINT	OCCOQUAN (2001)	230.00	230.00	STEEL POLE	0.01		
20	POSSUM POINT	OCCOQUAN (2001)	230.00	230.00	STEEL TWR		7.14	
21	POSSUM POINT	OCCOQUAN (2001)	230.00	230.00	STEEL TWR		4.28	
22	POSSUM POINT	OCCOQUAN (2001)	230.00	230.00	STEEL TWR	0.08		
23	POSSUM POINT	OCCOQUAN (2001)	230.00	230.00	STEEL TWR	0.09		
24	POSSUM POINT	OCCOQUAN (2001)	230.00	230.00	WOOD HFRM	0.04		
25	CARSON	POE (2002)	230.00	230.00	CONC HFRM	6.28		1
26	CARSON	POE (2002)	230.00	230.00	CONC POLE	0.32		
27	CARSON	POE (2002)	230.00	230.00	STEEL HFRM	0.14		
28	CARSON	POE (2002)	230.00	230.00	STEEL POLE	0.12		
29	CARSON	POE (2002)	230.00	230.00	STEEL TWR	5.77		
30	CARSON	POE (2002)	230.00	230.00	WOOD POLE	0.07		
31	CHESTERFIELD 230	POE (2003)	230.00	230.00	CONC HFRM	0.08		1
32	CHESTERFIELD 230	POE (2003)	230.00	230.00	STEEL HFRM	0.05		
33	CHESTERFIELD 230	POE (2003)	230.00	230.00	STEEL HFRM			
34	CHESTERFIELD 230	POE (2003)	230.00	230.00	STEEL POLE	0.05		
35	CHESTERFIELD 230	POE (2003)	230.00	230.00	STEEL TWR		8.86	
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)						

7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if you do not include Lower voltage lines with higher voltage lines. If two or more transmission line structures support lines of the same voltage, report the pole miles of the primary structure in column (f) and the pole miles of the other line(s) in column (g)

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	nn (j) Land,	FXPF	NSES, EXCEPT DE	PRECIATION AND	TAXES	
Size of Conductor	Land rights, a	and clearing right-o	of-way)					
and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	Other Costs (k)	(1)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
1351.5 ACSR			()	()	()			1
1351.5 ACSR								2
2500 ACAR								3
2500 ACAR								4
2500 ACAR								5
1351.5 ACSR								6
1351.5 ACSR								7
1351.5 ACSR								8
	157,301,783	995,545,959	1,152,847,742	2.737.944	5.604.953	19.781	8.362.678	9
	157,301,783	995,545,959	1,152,847,742	2,737,944	5,604,953	19,781	8,362,678	10
				, - ,-	-,,	-, -	-,,	11
2500 ACAR								12
2500 ACAR								13
1033.5 ACSR								14
2500 ACAR								15
636 ACSR								16
721 ACAR								17
636 ACSR								18
2500 ACAR								19
636 ACSR								20
721 ACAR								21
2500 ACAR								22
721 ACAR								23
2500 ACAR								24
721 ACAR								25
721 ACAR								26
721 ACAR								27
721 ACAR								28
721 ACAR								29
721 ACAR								30
1033.5 ACSR								31
1109 ACAR								32
721 ACAR								33
1109 ACAR								34
1033.5 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent This Report Is: VIRGINIA ELECTRIC AND POWER COMPANY (1) X An Original (2) A Resubmission		Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	NC	VOLTAGE (K)	/) 2	Type of	LENGTH (In the	(Pole miles)	Number
No.			other than		Supporting	undergro report circ	ound lines cuit miles)	Of
		То	Operating	Designed		On Structure	On Structures	Circuits
	(a)	(b)	(c)	Designed (d)	Structure	Designated	Line	(b)
4			220.00	(0)		(1)	(9)	(1)
1		POE (2003)	230.00	230.00	STEEL TWR		2.03	
2		POE (2003)	230.00	230.00	STEEL TWR	0.00	4.04	
3		POE (2003)	230.00	230.00	STEEL TWR	0.09		
4		POE (2003)	230.00	230.00	STEEL TWR	0.40		
5		POE (2003)	230.00	230.00	STEEL TWR	2.45		
7		POE (2003)	230.00	230.00		0.01		
0		POE (2003)	230.00	230.00		0.01		
0			230.00	230.00		0.14		1
9		SHELLBANK (2004)	230.00	230.00		0.03	5.42	1
10		SHELLBANK (2004)	230.00	230.00		0.02	5.42	
10		SHELLBANK (2004)	230.00	230.00		0.02		
12		SHELLBANK (2004)	230.00	230.00	STEEL TWD	0.46		
13		SHELLBAINK (2004)	230.00	230.00		0.04		1
14		HUNTER (2005)	230.00	230.00		2.46		1
10			230.00	230.00		2.40		1
10			230.00	230.00		0.97		1
10			230.00	230.00	STEEL TWD	0.40		
10			230.00	230.00		0.03		1
19			230.00	230.00		0.15		1
20			230.00	230.00	STEEL FULE	0.10		
21			230.00	230.00		0.02		1
22			230.00	230.00		0.00	0.17	1
23			230.00	230.00	STEEL LEDM	0.07	0.17	
24		DULLES (2008)	230.00	230.00		0.07		
20			230.00	230.00		0.00	0.10	
20			230.00	230.00			0.18	
21			230.00	230.00		2 /5	4.07	
20		DULLES (2008)	230.00	230.00		0.40		
29			230.00	230.00	STEEL TWD	0.21	2 00	
21			230.00	230.00	STEEL TWR		0.10	
20			230.00	230.00	STEEL TWR	0.20	0.10	
32			230.00	230.00		0.20		
33			230.00	230.00		0.03		1
25			230.00	230.00		0.19		1
- 35	MIDEOTHIAN	SHORT FOMF (2009)	230.00	230.00		23.40		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	1 his Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of 2018/Q4				
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate in a footnote if				

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

		- / · · · · · · ·						
Cine of	COST OF LIN	E (Include in Colum	n (j) Land,	EXPE	INSES, EXCEPT DE	EPRECIATION AND	TAXES	
Size of	Land rights,	and cleaning right-o	i-way)					
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	line
(i)	(i)	Other Costs	(I)	Expenses	Expenses	(0)	Expenses	No.
	0/	(K)	(1)	(11)	(1)	(-)	(P)	1
721 ACAD								2
								2
1100 ACAD								1
								5
								6
								7
2500 ACAR								8
721 ACAR								9
721 ACAR								10
2500 ACAR								11
721 ACAR								12
721 ACAR								13
1192.5 ACSR								14
1192.5 ACSR								15
1534 ACAR								16
1534 ACAR								17
1534 ACAR								18
2500 ACAR								19
2500 ACAR								20
2500 ACAR								21
1590 ACSR								22
1590 ACSR								23
1590 ACSR								24
636 ACSR								25
1033.5 ACSS								26
1590 ACSR								27
1590 ACSR								28
636 ACSR								29
1033.5 ACSS								30
1590 ACSR								31
1033.5 ACSS								32
795 ACSR								33
636 ACSR								34
636 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	ELECTRIC AND POWER COMPANY (1) X An Original (2) A Resubmission		Mo, Da, Yr) End of 2018/Q4			
	TRANSMISSION LINE STATISTI	CS				

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATI	ON	VOLTAGE (KV	/)	Type of	LEŅGŢH	(Pole miles)	
No.			other than	9	Type of	(In the undergro	case of bund lines	Number
		1	60 cycle, 3 pha	ase)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	MIDLOTHIAN	SHORT PUMP (2009)	230.00	230.00	STEEL POLE	1.09		
2	BRAMBLETON	BELMONT (201)	230.00	230.00	CONC HFRM	0.04		1
3	BRAMBLETON	BELMONT (201)	230.00	230.00	STEEL POLE	0.22		
4	BRAMBLETON	BELMONT (201)	230.00	230.00	STEEL TWR	6.34		
5	TYSONS	RESTON (2010)	230.00	230.00	CONC HFRM	0.13		1
6	TYSONS	RESTON (2010)	230.00	230.00	CONC POLE	4.32		
7	TYSONS	RESTON (2010)	230.00	230.00	STEEL POLE	0.78		
8	TYSONS	RESTON (2010)	230.00	230.00	STEEL POLE	0.27		
9	TYSONS	RESTON (2010)	230.00	230.00	WOOD POLE	2.25		
10	CLIFTON	CANNON BRANCH (2011)	230.00	230.00	CONC HFRM	0.16		1
11	CLIFTON	CANNON BRANCH (2011)	230.00	230.00	STEEL POLE	7.06		
12	ROANOKE VALLEY NUG	EARLEYS (2012)	230.00	230.00	CONC HFRM	0.08		1
13	ROANOKE VALLEY NUG	EARLEYS (2012)	230.00	230.00	STEEL HFRM		29.89	
14	ROANOKE VALLEY NUG	EARLEYS (2012)	230.00	230.00	STEEL HFRM	0.03		
15	ROANOKE VALLEY NUG	EARLEYS (2012)	230.00	230.00	STEEL HFRM	1.29		
16	ROANOKE VALLEY NUG	EARLEYS (2012)	230.00	230.00	STEEL HFRM	0.70		
17	ROANOKE VALLEY NUG	EARLEYS (2012)	230.00	230.00	STEEL POLE		1.29	
18	ROANOKE VALLEY NUG	EARLEYS (2012)	230.00	230.00	STEEL POLE	0.72		
19	ROANOKE VALLEY NUG	EARLEYS (2012)	230.00	230.00	STEEL POLE	0.10		
20	ROANOKE VALLEY NUG	EARLEYS (2012)	230.00	230.00	STEEL TWR		3.41	
21	ROANOKE VALLEY NUG	EARLEYS (2012)	230.00	230.00	WOOD POLE	0.08		
22	ROANOKE VALLEY NUG	EARLEYS (2012)	230.00	230.00	WOOD POLE	0.12		
23	OCCOQUAN	OX (2013)	230.00	230.00	CONC HFRM	0.10		1
24	OCCOQUAN	OX (2013)	230.00	230.00	CONC POLE	0.18		
25	OCCOQUAN	OX (2013)	230.00	230.00	STEEL POLE	1.19		
26	EARLEYS	EVERETTS (2014)	230.00	230.00	CONC HFRM	0.03		1
27	EARLEYS	EVERETTS (2014)	230.00	230.00	STEEL HFRM	1.72		
28	EARLEYS	EVERETTS (2014)	230.00	230.00	STEEL TWR		0.11	
29	EARLEYS	EVERETTS (2014)	230.00	230.00	STEEL TWR	0.15		
30	EARLEYS	EVERETTS (2014)	230.00	230.00	WOOD HFRM		0.15	
31	EARLEYS	EVERETTS (2014)	230.00	230.00	WOOD HFRM	28.58		
32	EARLEYS	EVERETTS (2014)	230.00	230.00	WOOD POLE	1.86		
33	RESTON	DULLES (2015)	230.00	230.00	CONC HFRM	0.12		1
34	RESTON	DULLES (2015)	230.00	230.00	STEEL HFRM	0.07		
35	RESTON	DULLES (2015)	230.00	230.00	STEEL POLE	0.42		
26					τοται	5 5 1 1 6 1	1 1/4 50	520
30						0,044.04	1,140.39	JZ9

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	 I his Report Is: (1) X An Original (2) A Resubmission 	Inis Report is: Date of Report (1) X An Original (Mo, Da, Yr) (2) A Resubmission / /	
	TRANSMISSION LINE STATISTICS (C	ontinued)	
7. Do not report the same transmission line structu	re twice. Report Lower voltage Lines and h	higher voltage lines as one	line. Designate in a footnote if

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colur	nn (i) Land.	=\/>=				
Size of	Land rights, a	and clearing right-o	f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	lino
and Material	(1)	Other Costs	(1)	Expenses	Expenses	(0)	Expenses	No
(1)	0)	(к)	(1)	(m)	(n)	(0)	(p)	110.
636 ACSR								
768.2 ACSS								2
768.2 ACSS								3
768.2 ACSS								4
1033.5 ACSS								5
1033.5 ACSS								6
1033.5 ACSS								7
1351.5 ACSR								8
1033.5 ACSS								9
1590 ACSR								10
1590 ACSR								11
1534 ACAR								12
545.6 ACAR								13
1233.6 ACSS285								14
1534 ACAR								15
545.6 ACAR								16
545.6 ACAR								17
1534 ACAR								18
545.6 ACAR								19
545.6 ACAR								20
1233.6 ACSS285								21
545.6 ACAR								22
2500 ACAR								23
2500 ACAR								24
2500 ACAR								25
545.6 ACAR								26
545.6 ACAR								27
545.6 ACAR								28
545.6 ACAR								29
545.6 ACAR								30
545.6 ACAR								31
545.6 ACAR								32
1192.5 ACSS								33
1033.5 ACSS								34
1033 5 ACSS								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report	
VIRGINIA ELECTRIC AND POWER COMPANY	WER COMPANY (1) X An Original (2) A Resubmission		Year/Period of Report End of 2018/Q4	
	TRANSMISSION LINE STATIST	ĊS		

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATI	ON	VOLTAGE (KV	())	Type of	LENGTH	(Pole miles)	Number
No.			other than	~ 	Currenting	undergro	ound lines	Of
			60 cycle, 3 pha	ise)	Supporting	On Structure	On Structures	Circuits
	From	lo	Operating	Designed	Structure	of Line Designated	of Another Line	
	(d)	(b)	(0)	(d)	(e)	(f)	(g)	(h)
1	RESTON	DULLES (2015)	230.00	230.00	STEEL TWR	3.28		
2	RESTON	DULLES (2015)	230.00	230.00	STEEL TWR	1.29		
3		HARMONY VILLAGE (2016)	230.00	230.00	CONC HERM	0.26		1
4	LANEXA	HARMONY VILLAGE (2016)	230.00	230.00	STEEL HERM		23.04	
5	LANEXA	HARMONY VILLAGE (2016)	230.00	230.00	STEEL HERM	0.16		
6	LANEXA	HARMONY VILLAGE (2016)	230.00	230.00	STEEL HERM	0.24		
7	LANEXA	HARMONY VILLAGE (2016)	230.00	230.00	STEEL POLE		2.38	
8	LANEXA	HARMONY VILLAGE (2016)	230.00	230.00	STEEL POLE	0.97		
9	LANEXA	HARMONY VILLAGE (2016)	230.00	230.00	STEEL POLE	0.21		
10	LANEXA	HARMONY VILLAGE (2016)	230.00	230.00	STEEL TWR		2.95	
11	LANEXA	HARMONY VILLAGE (2016)	230.00	230.00	STEEL TWR		0.76	
12	LANEXA	HARMONY VILLAGE (2016)	230.00	230.00	STEEL TWR	0.15		
13	LANEXA	HARMONY VILLAGE (2016)	230.00	230.00	STEEL TWR	0.22		
14	HARRISONBURG	ENDLESS CAVERNS (2017)	230.00	230.00	CONC HFRM	0.04		1
15	HARRISONBURG	ENDLESS CAVERNS (2017)	230.00	230.00	CONC HFRM	0.03		
16	HARRISONBURG	ENDLESS CAVERNS (2017)	230.00	230.00	CONC POLE	0.03		
17	HARRISONBURG	ENDLESS CAVERNS (2017)	230.00	230.00	STEEL HFRM	0.23		
18	HARRISONBURG	ENDLESS CAVERNS (2017)	230.00	230.00	STEEL POLE	19.53		
19	GREENWICH	ELIZABETH RIVER NUG	230.00	230.00	CONC HFRM	0.02		1
20	GREENWICH	ELIZABETH RIVER NUG	230.00	230.00	STEEL HFRM		0.11	
21	GREENWICH	ELIZABETH RIVER NUG	230.00	230.00	STEEL POLE		0.34	
22	GREENWICH	ELIZABETH RIVER NUG	230.00	230.00	STEEL POLE	0.73		
23	GREENWICH	ELIZABETH RIVER NUG	230.00	230.00	STEEL TWR		0.28	
24	GREENWICH	ELIZABETH RIVER NUG	230.00	230.00	STEEL TWR		9.25	
25	GREENWICH	ELIZABETH RIVER NUG	230.00	230.00	STEEL TWR	0.26		
26	GREENWICH	ELIZABETH RIVER NUG	230.00	230.00	STEEL TWR	0.15		
27	GREENWICH	THALIA (2019)	230.00	230.00	CONC HFRM	0.03		1
28	GREENWICH	THALIA (2019)	230.00	230.00	CONC POLE	0.54		
29	GREENWICH	THALIA (2019)	230.00	230.00	CONC POLE	1.08		
30	GREENWICH	THALIA (2019)	230.00	230.00	STEEL POLE	0.61		
31	GREENWICH	THALIA (2019)	230.00	230.00	STEEL POLE	0.09		
32	CLARK	IDYLWOOD (202)	230.00	230.00	STEEL TWR	3.82		1
33	CLARK	IDYLWOOD (202)	230.00	230.00	WOOD POLE	0.07		
34	WINFALL	ELIZABETH CITY (2020)	230.00	230.00	CONC HFRM	0.07		1
35	WINFALL	ELIZABETH CITY (2020)	230.00	230.00	STEEL HFRM	0.08		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	 I his Report Is: (1) X An Original (2) A Resubmission 	Inis Report is: Date of Report (1) X An Original (Mo, Da, Yr) (2) A Resubmission / /	
	TRANSMISSION LINE STATISTICS (C	ontinued)	
7. Do not report the same transmission line structu	re twice. Report Lower voltage Lines and h	higher voltage lines as one	line. Designate in a footnote if

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	nn (j) Land,					T
Size of	Land rights,	and clearing right-o	f-way)	EXPE	NSES, EXCEPT DE	PRECIATION ANL	TAXES	
	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	lina
	(i)	Other Costs	(1)	Expenses	Expenses	(0)	Expenses	No.
(1)	Ű	(K)	(1)	(m)	(n)	(0)	(þ)	1
1033.5 ACSS								
1192.5 ACSS								2
1033.5 ACSS								3
1033.5 ACSS								4
1033.5 ACSR								5
1033.5 ACSS								6
1033.5 ACSS								/
1033.5 ACSR								8
1033.5 ACSS								9
1033.5 ACSS								10
1109 ACAR								11
1033.5 ACSS								12
1109 ACAR								13
636 ACSR								14
795 ACSR								15
795 ACSR								16
636 ACSR								17
636 ACSR								18
1033.5 ACSS								19
1033.5 ACSS								20
1033.5 ACSS								21
1033.5 ACSS								22
1033.5 ACSR								23
1033.5 ACSS								24
1033.5 ACSS								25
636 ACSR								26
1590 ACSS								27
1590 ACSS								28
2500 ACAR								29
1590 ACSS								30
2500 ACAR								31
1192.5 ACSR								32
1192.5 ACSR								33
636 ACSR								34
1109 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report	
VIRGINIA ELECTRIC AND POWER COMPANY	WER COMPANY (1) X An Original (2) A Resubmission		Year/Period of Report End of 2018/Q4	
	TRANSMISSION LINE STATIST	ĊS		

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNATI	ON	VOLTAGE (KV (Indicate where other than 60 cycle, 3 pha	/) e ase)	Type of Supporting	LENGTH (In the undergro report cire	(Pole miles) case of bund lines cuit miles)	Number Of
	From	То	Operating	Designed	Structure	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line	(b)
1	WINFALL	ELIZABETH CITY (2020)	230.00	230.00	STEEL HERM	(1)	(9)	(1)
2	WINFALL	ELIZABETH CITY (2020)	230.00	230.00	STEEL POLE	0.13		
3	WINFALL		230.00	230.00	STEEL POLE	1 35		
4		SHAWBORO (2021)	230.00	230.00	STEEL HERM	1.00		1
5		SHAWBORO (2021)	230.00	230.00	STEEL POLE	0.47		
6		SHAWBORO (2021)	230.00	230.00	STEEL TWR	0.27		
7		SHAWBORO (2021)	230.00	230.00	WOOD HERM	6.84		
8		SHAWBORO (2021)	230.00	230.00	WOOD POLE	1.23		
9	POSSUM POINT	RAVENSWORTH (2022)	230.00	230.00	CONC HFRM	0.10		1
10	POSSUM POINT	RAVENSWORTH (2022)	230.00	230.00	CONC POLE	0.02		
11	POSSUM POINT	RAVENSWORTH (2022)	230.00	230.00	STEEL HERM		0.16	
12	POSSUM POINT	RAVENSWORTH (2022)	230.00	230.00	STEEL HERM	0.04		
13	POSSUM POINT	RAVENSWORTH (2022)	230.00	230.00	STEEL HERM	0.07		
14	POSSUM POINT	RAVENSWORTH (2022)	230.00	230.00	STEEL POLE		0.79	
15	POSSUM POINT	RAVENSWORTH (2022)	230.00	230.00	STEEL POLE		0.66	
16	POSSUM POINT	RAVENSWORTH (2022)	230.00	230.00	STEEL POLE		5.47	
17	POSSUM POINT	RAVENSWORTH (2022)	230.00	230.00	STEEL POLE	0.09		
18	POSSUM POINT	RAVENSWORTH (2022)	230.00	230.00	STEEL POLE	0.10		
19	POSSUM POINT	RAVENSWORTH (2022)	230.00	230.00	STEEL TWR		9.39	
20	POSSUM POINT	RAVENSWORTH (2022)	230.00	230.00	STEEL TWR		2.81	
21	POSSUM POINT	RAVENSWORTH (2022)	230.00	230.00	STEEL TWR	0.05	-	
22	NORTH ALEXANDRIA	GLEBE (2023)	230.00	230.00	STEEL HFRM		0.06	1
23	NORTH ALEXANDRIA	GLEBE (2023)	230.00	230.00	STEEL POLE		0.15	
24	NORTH ALEXANDRIA	GLEBE (2023)	230.00	230.00	STEEL POLE	0.13		
25	NORTH ALEXANDRIA	GLEBE (2023)	230.00	230.00	UG UG		1.43	
26	CHICKAHOMINY	LANEXA (2024)	230.00	230.00	STEEL HFRM		0.13	1
27	CHICKAHOMINY	LANEXA (2024)	230.00	230.00	STEEL HFRM	0.19		
28	CHICKAHOMINY	LANEXA (2024)	230.00	230.00	STEEL TWR	0.16		
29	CHICKAHOMINY	LANEXA (2024)	230.00	230.00	STEEL TWR	13.80		
30	GREEN RUN	LYNNHAVEN (2025)	230.00	230.00	CONC HFRM	0.06		1
31	GREEN RUN	LYNNHAVEN (2025)	230.00	230.00	CONC POLE	1.83		
32	GREEN RUN	LYNNHAVEN (2025)	230.00	230.00	STEEL HFRM	0.03		
33	GREEN RUN	LYNNHAVEN (2025)	230.00	230.00	STEEL POLE	0.08		
34	GREEN RUN	LYNNHAVEN (2025)	230.00	230.00	STEEL POLE	5.01		
35	LANDSTOWN	LYNNHAVEN (2026)	230.00	230.00	CONC HFRM	0.06		1
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
636 ACSR								1
1109 ACAR								2
636 ACSR								3
545.6 ACAR								4
545.6 ACAR								5
545.6 ACAR								6
545.6 ACAR								7
545.6 ACAR								8
1033.5 ACSR								9
1033.5 ACSR								10
1033.5 ACSR								11
1033.5 ACSR								12
2500 ACAR								13
1033.5 ACSR								14
1158 ACCR								15
2500 ACAR								16
1033.5 ACSR								17
2500 ACAR								18
1033.5 ACSR								19
1158 ACCR								20
2500 ACAR								21
2500 ACAR								22
2500 ACAR								23
2500 ACAR								24
2500 CU								25
636 ACSR								26
636 ACSR								27
636 ACSR								28
721 ACAR								29
721 ACAR								30
2500 ACAR								31
2500 ACAR								32
2500 ACAR								33
721 ACAR								34
2500 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNATIO	ON	VOLTAGE (KV (Indicate where other than 60 cycle, 3 pha	() e ase)	Type of Supporting	LENGTH (In the undergro report cire	(Pole miles) case of bund lines cuit miles)	Number Of
	From	То	Operating	Designed	Structuro	On Structure	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line	(h)
1	LANDSTOWN	LYNNHA\/EN (2026)	230.00	230.00	CONC HERM	0.06	(9)	(1)
2	LANDSTOWN	LYNNHAVEN (2026)	230.00	230.00	STEEL POLE	5 79		
3		BREMO (2027)	230.00	230.00	CONC HERM	0.08		1
4	MIDLOTHIAN	BREMO (2027)	230.00	230.00	CONC HFRM	0.10		
5	MIDLOTHIAN	BREMO (2027)	230.00	230.00	STEEL HFRM		0.75	
6	MIDLOTHIAN	BREMO (2027)	230.00	230.00	STEEL HFRM	22.22		
7	MIDLOTHIAN	BREMO (2027)	230.00	230.00	STEEL POLE	0.53		
8	MIDLOTHIAN	BREMO (2027)	230.00	230.00	STEEL TWR	0.03		
9	MIDLOTHIAN	BREMO (2027)	230.00	230.00	WOOD HFRM	11.92		
10	CHARLOTTESVILLE	BREMO (2028)	230.00	230.00	CONC HFRM	1.77		1
11	CHARLOTTESVILLE	BREMO (2028)	230.00	230.00	CONC HFRM	0.53		
12	CHARLOTTESVILLE	BREMO (2028)	230.00	230.00	STEEL HFRM	0.61		
13	CHARLOTTESVILLE	BREMO (2028)	230.00	230.00	STEEL POLE	0.23		
14	CHARLOTTESVILLE	BREMO (2028)	230.00	230.00	STEEL TWR	3.66		
15	CHARLOTTESVILLE	BREMO (2028)	230.00	230.00	STEEL TWR	0.02		
16	CHARLOTTESVILLE	BREMO (2028)	230.00	230.00	WOOD HFRM	4.49		
17	CHARLOTTESVILLE	BREMO (2028)	230.00	230.00	WOOD HFRM	12.65		
18	CHARLOTTESVILLE	BREMO (2028)	230.00	230.00	WOOD POLE	0.16		
19	CHARLOTTESVILLE	BREMO (2028)	230.00	230.00	WOOD POLE	1.51		
20	CIA	SWINKS MILL (2029)	230.00	230.00	CONC TWR	0.01		1
21	CIA	SWINKS MILL (2029)	230.00	230.00	STEEL POLE	3.75		
22	PLEASANT VIEW	DICKERSON (203)	230.00	230.00	CONC POLE	0.05		1
23	PLEASANT VIEW	DICKERSON (203)	230.00	230.00	STEEL HFRM	0.09		
24	PLEASANT VIEW	DICKERSON (203)	230.00	230.00	STEEL POLE	2.97		
25	PLEASANT VIEW	DICKERSON (203)	230.00	230.00	STEEL TWR	0.02		
26	GAINESVILLE	LOUDOUN (2030)	230.00	230.00	CONC POLE		0.05	1
27	GAINESVILLE	LOUDOUN (2030)	230.00	230.00	STEEL HFRM		1.46	
28	GAINESVILLE	LOUDOUN (2030)	230.00	230.00	STEEL HFRM	0.11		
29	GAINESVILLE	LOUDOUN (2030)	230.00	230.00	STEEL POLE		1.06	
30	GAINESVILLE	LOUDOUN (2030)	230.00	230.00	STEEL POLE	0.23		
31	GAINESVILLE	LOUDOUN (2030)	230.00	230.00	STEEL TWR		4.85	
32	ENTERPRISE	ROUNDTABLE (2031)	230.00	230.00	CONC HFRM	0.04		1
33	ENTERPRISE	ROUNDTABLE (2031)	230.00	230.00	STEEL HFRM	0.11		
34	ENTERPRISE	ROUNDTABLE (2031)	230.00	230.00	STEEL POLE	1.48		
35	ELMONT	FOUR RIVERS (2032)	230.00	230.00	CONC HFRM	0.12		1
36					IOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights, a	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total		
and Material		Other Costs		Expenses	Expenses		Expenses	No	
(1)	())	(к)	(1)	(m)	(n)	(0)	(p)		
721 ACAR								1	
721 ACAR								2	
1033.5 ACSS								3	
636 ACSR								4	
1033.5 ACSS								5	
1033.5 ACSS								6	
1033.5 ACSS								7	
1033.5 ACSS								8	
1033.5 ACSS								9	
636 ACSR								10	
721 ACAR								11	
721 ACAR								12	
636 ACSR								13	
636 ACSR								14	
721 ACAR								15	
636 ACSR								16	
721 ACAR								17	
636 ACSR								18	
721 ACAR								19	
1033.5 ACSS								20	
1033.5 ACSS								21	
1033.5 ACSR								22	
768.2 ACSS								23	
768.2 ACSS								24	
1033.5 ACSR								25	
636 ACSR								26	
636 ACSR								27	
636 ACSR								28	
636 ACSR								29	
636 ACSR								30	
636 ACSR								31	
636 ACSR								32	
636 ACSR								33	
636 ACSR								34	
795 ACSR								35	
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36	

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNATION		VOLTAGE (KV) (Indicate where other than 60 cvcle, 3 phase)		Type of Supporting	LENGTH (In the undergro report cire	Number Of	
	From	То	Operating	Designed	Chrysterra	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	Structure (e)	Designated	Line	(b)
1			220.00	220.00		(1)	(g)	(1)
2			230.00	230.00	STEEL HEDM	0.04		
2			230.00	230.00		0.27		
3			230.00	230.00		0.17 8 1/		
5	ELMONT		230.00	230.00		0.14		
6		DAVIS DRIVE (2033)	230.00	230.00		0.17	0.05	1
7	CLARK	DAVIS DRIVE (2033)	230.00	230.00	CONC HERM	0.16	0.00	
8	CLARK	DAVIS DRIVE (2033)	230.00	230.00	CONC POLE	0.10	0.09	
<u>a</u>	CLARK		230.00	230.00	STEEL POLE		0.07	
10	CLARK		230.00	230.00		1 19	0.22	
11	CLARK		230.00	230.00		0.14		
12	CLARK	DAVIS DRIVE (2033)	230.00	230.00	STEEL POLE	0.14		
13		DAVIS DRIVE (2000)	230.00	230.00	STEEL TWR	0.00	5.08	
14	CLARK	DAVIS DRIVE (2033)	230.00	230.00	STEEL TWR	0.13	0.00	
15	CLARK	DAVIS DRIVE (2033)	230.00	230.00	STEEL TWR	2.98		
16	CLARK	DAVIS DRIVE (2033)	230.00	230.00	STEEL TWR	0.08		
17	FARIEYS	TROWBRIDGE (2034)	230.00	230.00	CONC HERM	0.08		1
18	FARIEYS	TROWBRIDGE (2034)	230.00	230.00	STEEL HERM	1.00		-
19	EARLEYS	TROWBRIDGE (2034)	230.00	230.00	STEEL POLE	0.51		
20	EARLEYS	TROWBRIDGE (2034)	230.00	230.00	STEEL TWR		1.36	
21	EARLEYS	TROWBRIDGE (2034)	230.00	230.00	STEEL TWR	5.16		
22	EARLEYS	TROWBRIDGE (2034)	230.00	230.00	WOOD HFRM	26.06		
23	EARLEYS	TROWBRIDGE (2034)	230.00	230.00	WOOD POLE	1.02		
24	IDYLWOOD	CIA (2035)	230.00	230.00	CONC HFRM	0.09		1
25	IDYLWOOD	CIA (2035)	230.00	230.00	CONC POLE		0.08	
26	IDYLWOOD	CIA (2035)	230.00	230.00	CONC POLE	5.14		
27	IDYLWOOD	CIA (2035)	230.00	230.00	STEEL POLE	0.96		
28	IDYLWOOD	CIA (2035)	230.00	230.00	STEEL POLE	0.03		
29	IDYLWOOD	CIA (2035)	230.00	230.00	STEEL TWR		0.21	
30	IDYLWOOD	CIA (2035)	230.00	230.00	STEEL TWR	0.03		
31	GLEBE	RADNOR HEIGHTS (2036)	230.00	230.00	UG UG			1
32	GLEBE	RADNOR HEIGHTS (2036)	230.00	230.00	UG UG	2.35		
33	GLEBE	RADNOR HEIGHTS (2036)	230.00	230.00	UG UG	2.48		
34	GLEBE	PENTAGON (2037)	230.00	230.00	UG UG		2.37	1
35	GREENWICH	REEVES AVENUE (2038)	230.00	230.00	CONC POLE		0.05	1
36					IOTAL	5,544.64	1,146.59	529

Name of Respondent		This Report Is:	Date of Report	Year/Period of Report				
	VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of _	2018/Q4			
	TRANSMISSION LINE STATISTICS (Continued)							
	7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if							

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colurr	nn (j) Land,	EVDE				T
Size of	Land rights, and clearing right-of-way)			EXPE	NSES, EXCEPT DE	PRECIATION ANL	DIAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
and Material	(1)	Other Costs	(1)	Expenses	Expenses	(0)	Expenses	No
(1)	0)	(К)	(1)	(m)	(n)	(0)	(þ)	110.
795 ACSR								1
795 ACSR								2
795 ACSR								3
795 ACSR								4
795 ACSR								5
1033.5 ACSS								6
1033.5 ACSS								7
1033.5 ACSS								8
1033.5 ACSS								9
1033.5 ACSS								10
1192.5 ACSS								11
1233.6 ACSS								12
1033.5 ACSS								13
1033.5 ACSS								14
1192.5 ACSS								15
1590 AAC								16
545.6 ACAR								17
545.6 ACAR								18
545.6 ACAR								19
545.6 ACAR								20
545.6 ACAR								21
545.6 ACAR								22
545.6 ACAR								23
1033.5 ACSS								24
1033.5 ACSS								25
1033.5 ACSS								26
1033.5 ACSS								27
1590 AAC								28
1033.5 ACSS								29
1033.5 ACSS								30
2500 CU								31
1750 CU								32
2500 CU								33
1750 CU								34
2500 ACAR								35
2000 / 10/11								55
								<u> </u>
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATION		VOLTAGE (KV)		Type of LENGTH (Pole miles)			
No.			(Indicate where other than	9	Type of	(In the undergro	case of bund lines	Number
			60 cycle, 3 pha	ise)	Supporting	report čire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated (f)	(g)	(h)
1	GREENWICH	REEVES AVENUE (2038)	230.00	230.00	STEEL HFRM	0.01		
2	GREENWICH	REEVES AVENUE (2038)	230.00	230.00	STEEL POLE		3.92	
3	GREENWICH	REEVES AVENUE (2038)	230.00	230.00	STEEL POLE	1.78		
4	MORRISVILLE	MARSH RUN CT (2039)	230.00	230.00	CONC HFRM	0.10		1
5	MORRISVILLE	MARSH RUN CT (2039)	230.00	230.00	STEEL POLE	0.08		
6	MORRISVILLE	MARSH RUN CT (2039)	230.00	230.00	STEEL TWR	3.74		
7	GUM SPRINGS	JEFFERSON STREET (204)	230.00	230.00	CONC HFRM	0.04		1
8	GUM SPRINGS	JEFFERSON STREET (204)	230.00	230.00	STEEL HFRM	0.19		
9	GUM SPRINGS	JEFFERSON STREET (204)	230.00	230.00	STEEL HFRM	0.11		
10	GUM SPRINGS	JEFFERSON STREET (204)	230.00	230.00	STEEL POLE	0.49		
11	GUM SPRINGS	JEFFERSON STREET (204)	230.00	230.00	STEEL POLE	0.18		
12	GUM SPRINGS	JEFFERSON STREET (204)	230.00	230.00	STEEL POLE	3.67		
13	GUM SPRINGS	JEFFERSON STREET (204)	230.00	230.00	STEEL TWR	4.47		
14	GUM SPRINGS	JEFFERSON STREET (204)	230.00	230.00	STEEL TWR	1.69		
15	GUM SPRINGS	JEFFERSON STREET (204)	230.00	230.00	STEEL TWR	0.01		
16	MORRISVILLE	MARSH RUN CT (2040)	230.00	230.00	CONC HFRM	0.04		1
17	MORRISVILLE	MARSH RUN CT (2040)	230.00	230.00	STEEL POLE		0.14	
18	MORRISVILLE	MARSH RUN CT (2040)	230.00	230.00	STEEL TWR		3.74	
19	HOPEWELL	HCF (2041)	230.00	230.00	CONC HFRM	0.03		1
20	OCCOQUAN	OGDEN MARTIN NUG (2042)	230.00	230.00	CONC HFRM	0.09		1
21	OCCOQUAN	OGDEN MARTIN NUG (2042)	230.00	230.00	STEEL HFRM	0.25		
22	OCCOQUAN	OGDEN MARTIN NUG (2042)	230.00	230.00	STEEL POLE	0.59		
23	OCCOQUAN	OGDEN MARTIN NUG (2042)	230.00	230.00	STEEL POLE	2.19		
24	OCCOQUAN	OGDEN MARTIN NUG (2042)	230.00	230.00	WOOD HFRM	0.08		
25	OCCOQUAN	OGDEN MARTIN NUG (2042)	230.00	230.00	WOOD POLE	0.10		
26	DISCOVERY	RESTON (2043)	230.00	230.00	CONC HFRM	0.07		1
27	DISCOVERY	RESTON (2043)	230.00	230.00	STEEL POLE		0.24	
28	DISCOVERY	RESTON (2043)	230.00	230.00	STEEL POLE		0.15	
29	DISCOVERY	RESTON (2043)	230.00	230.00	STEEL POLE		1.66	
30	DISCOVERY	RESTON (2043)	230.00	230.00	STEEL POLE	0.11		
31	DISCOVERY	RESTON (2043)	230.00	230.00	STEEL TWR		3.38	
32	DISCOVERY	RESTON (2043)	230.00	230.00	STEEL TWR		1.30	
33	FOUR RIVERS	BEAR ISLAND DP (2044)	230.00	230.00	CONC HFRM	0.10		1
34	LOUDOUN	BRAMBLETON (2045)	230.00	230.00	STEEL HFRM	0.05		1
35	LOUDOUN	BRAMBLETON (2045)	230.00	230.00	STEEL HFRM	0.08		
		- (/						
20					ΤΟΤΑΙ	E E A A 4 A	1 1/4 50	E 20
30						3,344.04	1,140.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	 I his Report Is: (1) X An Original (2) A Resubmission 	Date of Report (Mo, Da, Yr) / /	End of 2018/Q4
	TRANSMISSION LINE STATISTICS (C	ontinued)	
7. Do not report the same transmission line structu	re twice. Report Lower voltage Lines and h	higher voltage lines as one	line. Designate in a footnote if

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
2500 ACAR								1
2500 ACAR								2
2500 ACAR								3
795 ACSS								4
795 ACSS								5
795 ACSS								6
1109 ACAR								7
1033.5 ACSR								8
636 ACSR								9
1033.5 ACSR								10
1109 ACAR								11
636 ACSR								12
1033.5 ACSR								13
1109 ACAR								14
636 ACSR								15
795 ACSS								16
795 ACSS								17
795 ACSS								18
1534 ACAR								19
1534 ACAR								20
1534 ACAR								21
1033.5 ACSR								22
1534 ACAR								23
1534 ACAR								24
1534 ACAR								25
1590 ACSR								26
1033.5 ACSS								27
1192.5 ACSS								28
1590 ACSR								29
1590 ACSR								30
1033.5 ACSS								31
1192.5 ACSS								32
795 ACSR								33
1233.6 ACSS								34
636 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report	
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4	
TRANSMISSION LINE STATISTICS				

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	ON	VOLTAGE (K)	<u>/)</u>	Type of	LENGTH	(Pole miles)	Number
No.			other than		Currenting	undergro	ound lines	Of
		_	60 cycle, 3 pha	ase)	Supporting	On Structure	On Structures	Circuits
	From		Operating	Designed	Structure	of Line Designated	of Another Line	
	(a)	(b)	(C)	(d)	(e)	(f)	(g)	(h)
1		BRAMBLETON (2045)	230.00	230.00	STEEL POLE	0.40		
2	LOUDOUN	BRAMBLETON (2045)	230.00	230.00	STEEL TWR	4.46		
3	HOPEWELL	POLYESTER PWR STA	230.00	230.00	CONC HERM	0.04		1
4	HOPEWELL	POLYESTER PWR STA	230.00	230.00	STEEL POLE	0.68		
5	GRAVEL NECK	SURRY (2047)	230.00	230.00	CONC HFRM	0.07		1
6	GRAVEL NECK	SURRY (2047)	230.00	230.00	CONC POLE	0.21		
7	GRAVEL NECK	SURRY (2047)	230.00	230.00	STEEL TWR	0.03		
8	GRAVEL NECK	SURRY (2048)	230.00	230.00	CONC HFRM	0.07		1
9	GRAVEL NECK	SURRY (2048)	230.00	230.00	CONC POLE	0.23		
10	GRAVEL NECK	SURRY (2048)	230.00	230.00	STEEL TWR	0.13		
11	CHESTERFIELD 230	ALLIED (2049)	230.00	230.00	CONC HFRM	0.25		1
12	CHESTERFIELD 230	ALLIED (2049)	230.00	230.00	STEEL HFRM		2.13	
13	CHESTERFIELD 230	ALLIED (2049)	230.00	230.00	STEEL HFRM	0.06		
14	CHESTERFIELD 230	ALLIED (2049)	230.00	230.00	STEEL POLE		0.55	
15	CHESTERFIELD 230	ALLIED (2049)	230.00	230.00	STEEL POLE	2.16		
16	CHESTERFIELD 230	ALLIED (2049)	230.00	230.00	STEEL TWR	2.77		
17	CHESTERFIELD 230	ALLIED (2049)	230.00	230.00	WOOD HFRM	1.15		
18	CHESTERFIELD 230	ALLIED (2049)	230.00	230.00	WOOD POLE	0.07		
19	CHESTERFIELD 230	ALLIED (2049)	230.00	230.00	WOOD POLE	0.84		
20	CHESTERFIELD 230	LOCKS (205)	230.00	230.00	CONC HFRM	0.08		1
21	CHESTERFIELD 230	LOCKS (205)	230.00	230.00	CONC HFRM	0.06		
22	CHESTERFIELD 230	LOCKS (205)	230.00	230.00	STEEL POLE	0.03		
23	CHESTERFIELD 230	LOCKS (205)	230.00	230.00	STEEL TWR	9.18		
24	CHESTERFIELD 230	LOCKS (205)	230.00	230.00	STEEL TWR	3.04		
25	ALLIED	CHICKAHOMINY (2050)	230.00	230.00	CONC HFRM		0.03	1
26	ALLIED	CHICKAHOMINY (2050)	230.00	230.00	CONC HFRM	0.20		
27	ALLIED	CHICKAHOMINY (2050)	230.00	230.00	STEEL HFRM	0.10		
28	ALLIED	CHICKAHOMINY (2050)	230.00	230.00	STEEL POLE		0.43	
29	ALLIED	CHICKAHOMINY (2050)	230.00	230.00	STEEL POLE	1.96		
30	ALLIED	CHICKAHOMINY (2050)	230.00	230.00	STEEL TWR		2.03	
31	ALLIED	CHICKAHOMINY (2050)	230.00	230.00	STEEL TWR	3.78		
32	ALLIED	CHICKAHOMINY (2050)	230.00	230.00	WOOD HFRM	4.56		
33	ALLIED	CHICKAHOMINY (2050)	230.00	230.00	WOOD POLE	1.82		
34	PENDER	CLIFTON (2051)	230.00	230.00	CONC HFRM	0.04		1
35	PENDER	CLIFTON (2051)	230.00	230.00	STEEL HFRM		0.18	
					ΤΟΤΑΙ	E E A A 7 A	1 1 4 / 50	E 20
36					IUIAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Perio	od of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of _	2018/Q4
	TRANSMISSION LINE STATISTICS (C	ontinued)	•	
7. Do not report the same transmission line structure to	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights,	E (Include in Colum and clearing right-o	nn (j) Land, ıf-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(0)	(p)	NO.
636 ACSR								1
636 ACSR								2
1534 ACAR								3
1534 ACAR								4
2500 ACAR								5
1033.5 ACSR								6
1033.5 ACSR								7
2500 ACAR								8
1033.5 ACSR								9
1033.5 ACSR								10
636 ACSR								11
636 ACSR								12
636 ACSR								13
636 ACSR								14
636 ACSR								15
636 ACSR								16
636 ACSR								17
1109 ACAR								18
636 ACSR								19
1033.5 ACSR								20
1109 ACAR								21
1109 ACAR								22
1033.5 ACSR								23
1109 ACAR								24
636 ACSR								25
636 ACSR								26
636 ACSR								27
636 ACSR								28
636 ACSR								29
636 ACSR								30
636 ACSR								31
636 ACSR								32
636 ACSR								33
2500 ACAR								34
1033.5 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	TRANSMISSION LINE STATIST	ĊS	

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

	DECIONIATI			0	1			
Line No.	DESIGNATIO	N	VOLTAGE (KV (Indicate where other than 60 cycle, 3 pha	() e use)	Type of Supporting	LENGTH (In the undergro report cire	(Pole miles) case of bund lines cuit miles)	Number Of
	From	То	Operating	Designed	Structure	On Structure of Line	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated (f)	Line (g)	(h)
1	PENDER	CLIFTON (2051)	230.00	230.00	STEEL HFRM		2.67	
2	PENDER	CLIFTON (2051)	230.00	230.00	STEEL POLE		0.34	
3	PENDER	CLIFTON (2051)	230.00	230.00	STEEL POLE		3.90	
4	PENDER	CLIFTON (2051)	230.00	230.00	STEEL POLE	0.10		
5	PENDER	CLIFTON (2051)	230.00	230.00	STEEL POLE	0.04		
6	PENDER	CLIFTON (2051)	230.00	230.00	STEEL TWR		2.48	
7	LEXINGTON	CLIFTON FORGE (2052)	230.00	230.00	CONC HFRM	0.03		1
8	LEXINGTON	CLIFTON FORGE (2052)	230.00	230.00	STEEL POLE	0.05		
9	LEXINGTON	CLIFTON FORGE (2052)	230.00	230.00	STEEL POLE	0.06		
10	LEXINGTON	CLIFTON FORGE (2052)	230.00	230.00	STEEL TWR		0.08	
11	LEXINGTON	CLIFTON FORGE (2052)	230.00	230.00	STEEL TWR		10.08	
12	LEXINGTON	CLIFTON FORGE (2052)	230.00	230.00	STEEL TWR	23.16		
13	LEXINGTON	CLIFTON FORGE (2052)	230.00	230.00	WOOD HFRM	0.06		
14	LEXINGTON	CLIFTON FORGE (2052)	230.00	230.00	WOOD POLE		0.08	
15	NORTHEAST	DARBYTOWN (2053)	230.00	230.00	STEEL TWR	0.09		1
16	NORTHEAST	DARBYTOWN (2053)	230.00	230.00	STEEL TWR	0.08		
17	NORTHEAST	DARBYTOWN (2053)	230.00	230.00	STEEL TWR	3.53		
18	CHARLOTTESVILLE	HOLLYMEAD (2054)	230.00	230.00	STEEL HFRM	2.10		1
19	CHARLOTTESVILLE	HOLLYMEAD (2054)	230.00	230.00	STEEL HFRM	5.81		
20	CHARLOTTESVILLE	HOLLYMEAD (2054)	230.00	230.00	STEEL POLE	0.11		
21	CHARLOTTESVILLE	HOLLYMEAD (2054)	230.00	230.00	STEEL POLE	2.61		
22	CHARLOTTESVILLE	HOLLYMEAD (2054)	230.00	230.00	WOOD HFRM	5.52		
23	CHARLOTTESVILLE	HOLLYMEAD (2054)	230.00	230.00	WOOD HFRM	0.13		
24	CHARLOTTESVILLE	HOLLYMEAD (2054)	230.00	230.00	WOOD POLE	0.84		
25	BASIN	BELLEMEADE (2055)	230.00	230.00	STEEL HFRM	0.05		1
26	BASIN	BELLEMEADE (2055)	230.00	230.00	STEEL POLE	0.47		
27	BASIN	BELLEMEADE (2055)	230.00	230.00	STEEL TWR	0.04		
28	HORNERTOWN	HATHAWAY (2056)	230.00	230.00	CONC HFRM	0.05		1
29	HORNERTOWN	HATHAWAY (2056)	230.00	230.00	STEEL HFRM	1.98		
30	HORNERTOWN	HATHAWAY (2056)	230.00	230.00	STEEL POLE	0.06		
31	HORNERTOWN	HATHAWAY (2056)	230.00	230.00	STEEL TWR		1.31	
32	HORNERTOWN	HATHAWAY (2056)	230.00	230.00	STEEL TWR	1.43		
33	HORNERTOWN	HATHAWAY (2056)	230.00	230.00	WOOD HFRM		0.16	
34	HORNERTOWN	HATHAWAY (2056)	230.00	230.00	WOOD HFRM	23.63		
35	HORNERTOWN	HATHAWAY (2056)	230.00	230.00	WOOD POLE	0.35		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	TRANSMISSION LINE STATISTICS (C	ontinued)	
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	ligher voltage lines as one	line. Designate in a footnote if

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	F (Include in Colum	nn (i) Land.					Т
Size of	Land rights,	and clearing right-o	f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
and Material	(i)	Other Costs	(1)	Expenses	Expenses	(0)	Expenses	No.
	Ű	(K)	(1)	(m)	(n)	(0)	(þ)	1
								1
1033.5 AUSK								2
								3
1033.5 AUSR								4
								С 4
1033.3 ACSK								0
1022 E ACSD								0
1033.3 ACSK								0
1022 E ACSD								9
1033.3 ACSK								10
1022 E ACSD								12
1100 ACAD								12
								13
								15
								16
721 ACAR								17
477 ACSR								18
636 ACSR								19
477 ACSR								20
636 ACSR								21
477 ACSR								22
636 ACSR								23
477 ACSR								24
1534 ACAR								25
1534 ACAR								26
1534 ACAR								27
1033.5 ACSR								28
1033.5 ACSR								29
636 ACSR								30
1033.5 ACSR								31
1033.5 ACSR								32
1033.5 ACSR								33
1033.5 ACSR								34
1033.5 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	TRANSMISSION LINE STATIST	ĊS	

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATI	ON	VOLTAGE (KV)	Type of	LEŅGŢH	(Pole miles)	
No.			other than	9	Type of	(In the undergro	case of bund lines	Number
			60 cycle, 3 pha	ise)	Supporting	report circ	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated (f)	(g)	(h)
1	HORNERTOWN	ROSEMARY NUG (2057)	230.00	230.00	CONC HFRM	0.03		1
2	HORNERTOWN	ROSEMARY NUG (2057)	230.00	230.00	STEEL POLE	0.48		
3	EDGECOMBE NUG	ROCKY MOUNT (2058)	230.00	230.00	STEEL HFRM	0.05		1
4	EDGECOMBE NUG	ROCKY MOUNT (2058)	230.00	230.00	STEEL POLE	0.04		
5	EDGECOMBE NUG	ROCKY MOUNT (2058)	230.00	230.00	STEEL TWR	3.83		
6	CAROLINA	ROANOKE VALLEY NUG	230.00	230.00	CONC TWR	0.04		1
7	CAROLINA	ROANOKE VALLEY NUG	230.00	230.00	STEEL HFRM		1.26	
8	CAROLINA	ROANOKE VALLEY NUG	230.00	230.00	STEEL POLE		0.83	
9	CAROLINA	ROANOKE VALLEY NUG	230.00	230.00	STEEL TWR		1.96	
10	FOUR RIVERS	FOUR RIVERS NUG (2061)	230.00	230.00	CONC HFRM	0.13		1
11	FOUR RIVERS	FOUR RIVERS NUG (2061)	230.00	230.00	WOOD POLE	0.04		
12	RESTON	DRANESVILLE (2062)	230.00	230.00	CONC HFRM		0.07	1
13	RESTON	DRANESVILLE (2062)	230.00	230.00	CONC HFRM	0.06		
14	RESTON	DRANESVILLE (2062)	230.00	230.00	STEEL POLE		1.19	
15	RESTON	DRANESVILLE (2062)	230.00	230.00	STEEL POLE	0.11		
16	RESTON	DRANESVILLE (2062)	230.00	230.00	STEEL POLE	1.56		
17	CLIFTON	OX (2063)	230.00	230.00	CONC HFRM	0.11		1
18	CLIFTON	OX (2063)	230.00	230.00	STEEL HFRM	0.06		
19	CLIFTON	OX (2063)	230.00	230.00	STEEL POLE		0.95	
20	CLIFTON	OX (2063)	230.00	230.00	STEEL POLE	0.12		
21	CLIFTON	OX (2063)	230.00	230.00	STEEL TWR		5.77	
22	CLIFTON	OX (2063)	230.00	230.00	STEEL TWR	0.12		
23	SHAWBORO	KITTY HAWK (2064)	230.00	230.00	CONC HFRM	1.86		1
24	SHAWBORO	KITTY HAWK (2064)	230.00	230.00	CONC POLE	0.85		
25	SHAWBORO	KITTY HAWK (2064)	230.00	230.00	STEEL HFRM	23.38		
26	SHAWBORO	KITTY HAWK (2064)	230.00	230.00	STEEL POLE	3.06		
27	SHAWBORO	KITTY HAWK (2064)	230.00	230.00	STEEL POLE	0.08		
28	SHAWBORO	KITTY HAWK (2064)	230.00	230.00	STEEL POLE	4.75		
29	SHAWBORO	KITTY HAWK (2064)	230.00	230.00	STEEL POLE	3.01		
30	SHAWBORO	KITTY HAWK (2064)	230.00	230.00	WOOD POLE	0.05		
31	SPRUANCE NUG	BASIN (2065)	230.00	230.00	CONC HFRM	0.06		1
32	SPRUANCE NUG	BASIN (2065)	230.00	230.00	STEEL POLE	2.21		
33	SPRUANCE NUG	BASIN (2065)	230.00	230.00	STEEL POLE	0.12		
34	SPRUANCE NUG	BASIN (2065)	230.00	230.00	STEEL TWR	0.05		
35	SPRUANCE NUG	BASIN (2065)	230.00	230.00	STEEL TWR	1.22		
36					ΤΟΤΑΙ	5 5// 6/	1 1/6 50	520
- 50						J,J44.04	1,140.37	J27

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPAI	IY Inis Report Is: (1) XAn Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2018/Q4
	TRANSMISSION LINE STATISTICS (C	Continued)	
7. Do not report the same transmission line st	ucture twice. Report Lower voltage Lines and I	higher voltage lines as on	e line. Designate in a footnote if

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum and clearing right-o	nn (j) Land, f-wav)	EXPE	ENSES, EXCEPT DE	SES, EXCEPT DEPRECIATION AND TAXES		
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	Other Costs (k)	(I)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
1534 ACAR			.,					1
1534 ACAR								2
636 ACSR								3
1109 ACAR								4
1109 ACAR								5
1590 AAC								6
1534 ACAR								7
1534 ACAR								8
545.6 ACAR								9
1590 ACSR								10
1590 ACSR								11
1033.5 ACSS								12
1033.5 ACSS								13
1033.5 ACSS								14
1033.5 ACSS								15
1192.5 ACSS								16
1272 ACSR								17
1272 ACSR								18
1272 ACSR								19
1272 ACSR								20
1272 ACSR								21
1272 ACSR								22
545.6 ACAR								23
1033.5 ACSR								24
545.6 ACAR								25
1033.5 ACSR								26
1177 AAAC								27
545.6 ACAR								28
795 ACSS								29
545.6 ACAR								30
2500 ACAR								31
2500 ACAR								32
721 ACAR								33
2500 ACAR								34
721 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATI	ON	VOLTAGE (KV	()	Type of	LENGTH	(Pole miles)	
No.			other than	,		undergro	case of ound lines	Number
			60 cycle, 3 pha	ase)	Supporting	On Structure	On Structures	Circuits
	From	То	Operating	Designed	Structure	of Line Designated	of Another Line	Onouno
	(a)	(b)	(C)	(d)	(e)	(f)	(g)	(h)
1	MIDLOTHIAN	WINTERPOCK (2066)	230.00	230.00	CONC HFRM	0.17		1
2	MIDLOTHIAN	WINTERPOCK (2066)	230.00	230.00	STEEL HFRM	4.63		
3	MIDLOTHIAN	WINTERPOCK (2066)	230.00	230.00	STEEL POLE		0.04	
4	MIDLOTHIAN	WINTERPOCK (2066)	230.00	230.00	STEEL POLE		0.31	
5	MIDLOTHIAN	WINTERPOCK (2066)	230.00	230.00	STEEL POLE	13.38		
6	MIDLOTHIAN	WINTERPOCK (2066)	230.00	230.00	STEEL POLE	0.26		
7	MIDLOTHIAN	WINTERPOCK (2066)	230.00	230.00	STEEL TWR		0.64	
8	MIDLOTHIAN	WINTERPOCK (2066)	230.00	230.00	STEEL TWR		0.81	
9	MIDLOTHIAN	WINTERPOCK (2066)	230.00	230.00	STEEL TWR	2.10		
10	FOUR RIVERS	FOUR RIVERS NUG (2067)	230.00	230.00	CONC HFRM	0.06		1
11	CLOVER	SEDGE HILL (2068)	230.00	230.00	CONC POLE	0.18		1
12	CLOVER	SEDGE HILL (2068)	230.00	230.00	CONC POLE	0.11		
13	CLOVER	SEDGE HILL (2068)	230.00	230.00	STEEL HFRM	0.44		
14	CLOVER	SEDGE HILL (2068)	230.00	230.00	STEEL POLE	0.12		
15	CLOVER	SEDGE HILL (2068)	230.00	230.00	STEEL TWR	0.11		
16	CLOVER	SEDGE HILL (2068)	230.00	230.00	WOOD HFRM	11.89		
17	CLOVER	SEDGE HILL (2068)	230.00	230.00	WOOD HFRM	2.75		
18	CLOVER	SEDGE HILL (2068)	230.00	230.00	WOOD POLE	0.78		
19	CLOVER	SEDGE HILL (2068)	230.00	230.00	WOOD POLE	0.52		
20	BRADDOCK	IDYLWOOD (207)	230.00	230.00	CONC POLE	0.10		1
21	BRADDOCK	IDYLWOOD (207)	230.00	230.00	CONC TWR	0.06		
22	BRADDOCK	IDYLWOOD (207)	230.00	230.00	STEEL POLE	4.55		
23	BRADDOCK	IDYLWOOD (207)	230.00	230.00	STEEL TWR	0.04		
24	YADKIN	ELIZABETH RIVER NUG	230.00	230.00	CONC HFRM		0.06	1
25	YADKIN	ELIZABETH RIVER NUG	230.00	230.00	STEEL POLE		0.66	
26	YADKIN	ELIZABETH RIVER NUG	230.00	230.00	STEEL POLE	0.11		
27	YADKIN	ELIZABETH RIVER NUG	230.00	230.00	STEEL TWR	2.44		
28	ELIZABETH RIVER NUG	ELIZABETH RIVER NUG	230.00	230.00	CONC HFRM	0.03		1
29	ELIZABETH RIVER NUG	ELIZABETH RIVER NUG	230.00	230.00	STEEL POLE	0.05		
30	LYNNHAVEN	VIRGINIA BEACH (2072)	230.00	230.00	CONC POLE	3.18		1
31	LYNNHAVEN	VIRGINIA BEACH (2072)	230.00	230.00	STEEL HFRM		0.04	
32	LYNNHAVEN	VIRGINIA BEACH (2072)	230.00	230.00	STEEL POLE	1.15		
33	SHAWBORO	KITTY HAWK (2073)	230.00	230.00	CONC HFRM		0.53	1
34	SHAWBORO	KITTY HAWK (2073)	230.00	230.00	CONC POLE		0.85	
35	SHAWBORO	KITTY HAWK (2073)	230.00	230.00	STEEL HFRM		16.17	
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Peric	od of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of _	2018/Q4
	TRANSMISSION LINE STATISTICS (C	ontinued)	•	
7. Do not report the same transmission line structure to	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	on (i) Land					Т
Size of	ze of Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Ponte	Total	1
and Material	Land	Other Costs		Expenses	Expenses		Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(0)	(p)	INO.
636 ACSR								1
636 ACSR								2
636 ACSR								3
721 ACAR								4
636 ACSR								5
721 ACAR								6
636 ACSR								7
721 ACAR								8
636 ACSR								9
1590 ACSR								10
477 ACSR								11
636 ACSR								12
636 ACSR								13
636 ACSR								14
636 ACSR								15
477 ACSR								16
636 ACSR								17
477 ACSR								18
636 ACSR								19
2500 ACAR								20
2500 ACAR								21
2500 ACAR								22
2500 ACAR								23
1534 ACAR								24
1534 ACAR								25
636 ACSR								26
636 ACSR								27
1590 ACSR								28
1590 ACSR								29
2500 ACAR								30
2500 ACAR								31
2500 ACAR								32
545 6 ACAR								32
1033 5 ACSR								34
545 6 ACAR								35
545.0 ACAN								55
	E(1)(01.010	4 101 0/5 100	4 405 4/7 207	14 070 455	20.004.407	101 / 55	40.07/.00	7 65
	563,602,218	4,121,865,109	4,085,467,327	14,070,455	28,804,187	101,655	42,976,29	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(2) \square A Resubmission	/ /	End of 2018/Q4
	TRANSMISSION LINE STATISTI	CS	•

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

	DEGIONIA			^	1				
Line No.	DESIGNA	ΓΙΟΝ	VOLTAGE (KV (Indicate where other than	- (KV) where yhere yhere yhere yhere transformation tra		(Pole miles) case of ound lines cuit miles)	Number Of		
	From	То	Operating	Designed	Structure	On Structure of Line	On Structures of Another	Circuits	
	(a)	(b)	(c)	(d)	(e)	Designated (f)	Line (q)	(h)	
1	SHAWBORO	KITTY HAWK (2073)	230.00	230.00	STEEL HFRM	0.19			
2	SHAWBORO	KITTY HAWK (2073)	230.00	230.00	STEEL POLE		0.26		
3	SHAWBORO	KITTY HAWK (2073)	230.00	230.00	STEEL POLE		2.34		
4	SHAWBORO	KITTY HAWK (2073)	230.00	230.00	STEEL POLE		2.94		
5	SHAWBORO	KITTY HAWK (2073)	230.00	230.00	STEEL POLE	0.81			
6	SHAWBORO	KITTY HAWK (2073)	230.00	230.00	STEEL POLE	10.73			
7	SHAWBORO	KITTY HAWK (2073)	230.00	230.00	STEEL POLE	0.13			
8	SHAWBORO	KITTY HAWK (2073)	230.00	230.00	WOOD POLE	1.92			
9	LOUISA CT	SOUTH ANNA (2074)	230.00	230.00	CONC HFRM	0.11		1	
10	LOUISA CT	SOUTH ANNA (2074)	230.00	230.00	CONC POLE	0.10			
11	LOUISA CT	SOUTH ANNA (2074)	230.00	230.00	STEEL HFRM	0.07			
12	LOUISA CT	SOUTH ANNA (2074)	230.00	230.00	STEEL POLE	0.21			
13	LOUISA CT	SOUTH ANNA (2074)	230.00	230.00	WOOD HFRM	0.42			
14	LOUISA CT	SOUTH ANNA (2074)	230.00	230.00	WOOD POLE	0.12			
15	ELMONT	CHICKAHOMINY (2075)	230.00	230.00	CONC HFRM	0.13		1	
16	ELMONT	CHICKAHOMINY (2075)	230.00	230.00	STEEL HFRM	21.64			
17	ELMONT	CHICKAHOMINY (2075)	230.00	230.00	STEEL POLE		0.07		
18	ELMONT	CHICKAHOMINY (2075)	230.00	230.00	STEEL POLE	10.09			
19	DAHLGREN	NORTHERN NECK (2076)	230.00	230.00	CONC HFRM	0.16		1	
20	DAHLGREN	NORTHERN NECK (2076)	230.00	230.00	STEEL HFRM	0.31			
21	DAHLGREN	NORTHERN NECK (2076)	230.00	230.00	STEEL POLE	9.53			
22	DAHLGREN	NORTHERN NECK (2076)	230.00	230.00	WOOD HFRM	32.27			
23	DAHLGREN	NORTHERN NECK (2076)	230.00	230.00	WOOD POLE	1.16			
24	REMINGTON	REMINGTON CT (2077)	230.00	230.00	CONC HFRM	0.04		1	
25	REMINGTON	REMINGTON CT (2077)	230.00	230.00	STEEL HFRM	0.09			
26	REMINGTON	REMINGTON CT (2077)	230.00	230.00	STEEL POLE		0.35		
27	REMINGTON	REMINGTON CT (2077)	230.00	230.00	STEEL POLE	0.10			
28	POSSUM POINT 500	POSSUM POINT (2078)	230.00	230.00	CONC HFRM	0.34		1	
29	POSSUM POINT 500	POSSUM POINT (2078)	230.00	230.00	CONC POLE	0.11			
30	POSSUM POINT 500	POSSUM POINT (2078)	230.00	230.00	STEEL POLE	0.36			
31	DRANESVILLE	STERLING PARK (2079)	230.00	230.00	CONC HFRM	0.04		1	
32	DRANESVILLE	STERLING PARK (2079)	230.00	230.00	STEEL HFRM		0.04		
33	DRANESVILLE	STERLING PARK (2079)	230.00	230.00	STEEL POLE		0.05		
34	DRANESVILLE	STERLING PARK (2079)	230.00	230.00	STEEL POLE		1.66		
35	DRANESVILLE	STERLING PARK (2079)	230.00	230.00	STEEL POLE	0.39			
36					TOTAL	5,544.64	1,146.59	529	
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original	(Mo, Da, Yr)	Year/Period	of Report					
--	--------------------	--------------	-------------	-----------	--	--	--	--	--
	(2) A Resubmission	11		2010/04					
TRANSMISSION LINE STATISTICS (Continued)									
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if									

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LINE (Include in Column (i) Land.							
Size of	Land rights,	and clearing right-o	f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	DTAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	-
and Material		Other Costs		Expenses	Expenses		Expenses	Line
(1)	(J)	(K)	(1)	(m)	(n)	(0)	(p)	110.
636 ACSR								1
1033.5 ACSR								2
545.6 ACAR								3
795 ACSS								4
1033.5 ACSR								5
636 ACSR								6
795 AAC								7
1033.5 ACSR								8
1590 ACSR								9
1590 ACSR								10
477 ACSR								11
477 ACSR								12
1590 ACSR								13
477 ACSR								14
636 ACSR								15
636 ACSR								16
636 ACSR								17
636 ACSR								18
545.6 ACAR								19
545.6 ACAR								20
636 ACSR								21
545.6 ACAR								22
545.6 ACAR								23
636 ACSR								24
636 ACSR								25
636 ACSR								26
636 ACSR								27
636 ACSR								28
636 ACSR								29
636 ACSR								30
1192.5 ACSR								31
1192.5 ACSS								32
1192.5 ACSR								33
1192.5 ACSS								34
1192.5 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

I (Indicate where I i) ye of I (In the case of	Num
No. other than underground line:	
60 cycle, 3 phase) Supporting report circuit miles) Of
From To Operating Designed Structure of Structure	ther Circu
(a) (b) (c) (d) (e) $\begin{array}{c} \text{Designated} \\ (f) \\ (g) \end{array}$) (h)
1 DRANESVILLE STERLING PARK (2079) 230.00 STEEL TWR	3.13
2 DRANESVILLE STERLING PARK (2079) 230.00 STEEL TWR	0.12
3 DRANESVILLE STERLING PARK (2079) 230.00 STEEL TWR 0.03	
4 DRANESVILLE STERLING PARK (2079) 230.00 STEEL TWR 0.12	
5 SOUTHWEST CHESTERFIELD 230 (208) 230.00 STEEL POLE	0.11
6 SOUTHWEST CHESTERFIELD 230 (208) 230.00 STEEL POLE 0.61	
7 SOUTHWEST CHESTERFIELD 230 (208) 230.00 STEEL TWR	10.05
8 SOUTHWEST CHESTERFIELD 230 (208) 230.00 STEEL TWR 3.27	
9 SOUTHWEST CHESTERFIELD 230 (208) 230.00 STEEL TWR 0.36	
10 LIBERTY RAILROAD DP (2080) 230.00 STEEL HFRM 0.06	
11 LIBERTY RAILROAD DP (2080) 230.00 STEEL POLE 0.23	
12 STERLING PARK BEAUMEADE (2081) 230.00 CONC HFRM 0.12	
13 STERLING PARK BEAUMEADE (2081) 230.00 STEEL POLE 0.30	
14 STERLING PARK BEAUMEADE (2081) 230.00 STEEL POLE 0.28	
15 STERLING PARK BEAUMEADE (2081) 230.00 STEEL POLE 0.01	
16 STERLING PARK BEAUMEADE (2081) 230.00 STEEL TWR 0.30	
17 STERLING PARK BEAUMEADE (2081) 230.00 STEEL TWR 1.82	
18 STERLING PARK BEAUMEADE (2081) 230.00 STEEL TWR 0.14	
19 SEWELLS POINT NAVY NORTH (2082) 230.00 UG UG 2.17	
20 BIRCHWOOD NUG FREDERICKSBURG (2083) 230.00 230.00 CONC HFRM 0.04	
21 BIRCHWOOD NUG FREDERICKSBURG (2083) 230.00 CONC POLE 0.50	
22 BIRCHWOOD NUG FREDERICKSBURG (2083) 230.00 STEEL HFRM 2.31	
23 BIRCHWOOD NUG FREDERICKSBURG (2083) 230.00 STEEL POLE 0.23	
24 BIRCHWOOD NUG FREDERICKSBURG (2083) 230.00 STEEL POLE 1.74	
25 BIRCHWOOD NUG FREDERICKSBURG (2083) 230.00 STEEL POLE 0.74	
26 BIRCHWOOD NUG FREDERICKSBURG (2083) 230.00 230.00 WOOD HFRM 8.60	
27 BIRCHWOOD NUG FREDERICKSBURG (2083) 230.00 230.00 WOOD POLE 0.99	
28 LOW MOOR LEXINGTON (2084) 230.00 STEEL HFRM	0.09
29 LOW MOOR LEXINGTON (2084) 230.00 STEEL HFRM 14.22	
30 LOW MOOR LEXINGTON (2084) 230.00 STEEL HFRM 0.17	
31 LOW MOOR LEXINGTON (2084) 230.00 STEEL POLE 0.76	
32 LOW MOOR LEXINGTON (2084) 230.00 STEEL POLE 0.44	
33 LOW MOOR LEXINGTON (2084) 230.00 STEEL TWR	10.78
34 LOW MOOR LEXINGTON (2084) 230.00 STEEL TWR 0.16	
35 LOW MOOR LEXINGTON (2084) 230.00 STEEL TWR 0.26	
36 TOTAL 5,544.64	,146.59

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4					
TRANSMISSION LINE STATISTICS (Continued)									
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if					

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LINE (Include in Column (j) Land,						Т	
Size of	Land rights,	and clearing right-o	of-way)	LAT LINES, LAGET T DEFICEDIATION AND TAXES				
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
and Material	(i)	Other Costs		Expenses	Expenses	(0)	Expenses	No.
	0	(K)	(1)	(m)	(1)	(0)	(P)	1
1192.5 ACSR								2
1022 E ACSS								2
1033.3 ACSS								3
1022 E ACSD								4
1033.5 ACSR								6
1033.5 ACSR								7
1033.3 ACSR								0
2500 ACAD								0
								10
626 ACSR								10
								12
1192.5 ACSR								12
1192.5 ACSK								13
1172.3 ACSS								15
1233.0 ACSB								16
1192.5 ACSS								17
1233 6 ACSS								18
2500 CU								19
721 ACAR								20
1534 ACAR								20
1534 ACAR								22
1534 ACAR								23
545.6 ACAR								24
721 ACAR								25
545.6 ACAR								26
545.6 ACAR								27
545.6 ACAR								28
477 ACSR								29
636 ACSR								30
477 ACSR								31
636 ACSR								32
545.6 ACAR								33
477 ACSR								34
545.6 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	e DESIGNATION		VOLTAGE (KV)		Type of LENGTH (Pole		(Pole miles)	
No.			other than		Type of	(In the undergro	case of bund lines	Number
		1	60 cycle, 3 pha	ise)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	LOW MOOR	LEXINGTON (2084)	230.00	230.00	WOOD HFRM	7.24		
2	LOW MOOR	LEXINGTON (2084)	230.00	230.00	WOOD POLE		0.08	
3	LOW MOOR	LEXINGTON (2084)	230.00	230.00	WOOD POLE	3.18		
4	LANDSTOWN	WEST LANDING (2085)	230.00	230.00	CONC HFRM	0.05		1
5	LANDSTOWN	WEST LANDING (2085)	230.00	230.00	STEEL HFRM	0.55		
6	LANDSTOWN	WEST LANDING (2085)	230.00	230.00	STEEL POLE	7.29		
7	REMINGTON CT	WARRENTON (2086)	230.00	230.00	CONC HFRM		0.09	1
8	REMINGTON CT	WARRENTON (2086)	230.00	230.00	CONC HFRM	0.04		
9	REMINGTON CT	WARRENTON (2086)	230.00	230.00	STEEL HFRM	0.15		
10	REMINGTON CT	WARRENTON (2086)	230.00	230.00	STEEL POLE	11.73		
11	FENTRESS	SHAWBORO (2087)	230.00	230.00	CONC HFRM	0.04		1
12	FENTRESS	SHAWBORO (2087)	230.00	230.00	CONC HFRM	0.04		
13	FENTRESS	SHAWBORO (2087)	230.00	230.00	STEEL HFRM	0.04		
14	FENTRESS	SHAWBORO (2087)	230.00	230.00	STEEL POLE	13.50		
15	FENTRESS	SHAWBORO (2087)	230.00	230.00	STEEL TWR		4.01	
16	FENTRESS	SHAWBORO (2087)	230.00	230.00	STEEL TWR		0.14	
17	FENTRESS	SHAWBORO (2087)	230.00	230.00	STEEL TWR	0.08		
18	FENTRESS	SHAWBORO (2087)	230.00	230.00	STEEL TWR	0.04		
19	GORDONSVILLE	LOUISA CT (2088)	230.00	230.00	CONC HFRM		0.06	1
20	GORDONSVILLE	LOUISA CT (2088)	230.00	230.00	STEEL HFRM	0.14		
21	GORDONSVILLE	LOUISA CT (2088)	230.00	230.00	STEEL POLE		0.14	
22	GORDONSVILLE	LOUISA CT (2088)	230.00	230.00	STEEL POLE	0.07		
23	GORDONSVILLE	LOUISA CT (2088)	230.00	230.00	WOOD HFRM	0.32		
24	GORDONSVILLE	LOUISA CT (2088)	230.00	230.00	WOOD POLE	0.05		
25	LADYSMITH	LADYSMITH CT (2089)	230.00	230.00	CONC HFRM	0.10		1
26	LADYSMITH	LADYSMITH CT (2089)	230.00	230.00	CONC POLE	0.05		
27	LADYSMITH	LADYSMITH CT (2089)	230.00	230.00	STEEL POLE	0.10		
28	LADYSMITH	LADYSMITH CT (2089)	230.00	230.00	STEEL TWR	3.69		
29	SKIFFES CREEK	YORKTOWN (209)	230.00	230.00	STEEL HFRM	1.43		1
30	SKIFFES CREEK	YORKTOWN (209)	230.00	230.00	STEEL HFRM	0.13		
31	SKIFFES CREEK	YORKTOWN (209)	230.00	230.00	STEEL POLE	0.38		
32	SKIFFES CREEK	YORKTOWN (209)	230.00	230.00	STEEL POLE	0.05		
33	SKIFFES CREEK	YORKTOWN (209)	230.00	230.00	STEEL POLE	0.27		
34	SKIFFES CREEK	YORKTOWN (209)	230.00	230.00	STEEL TWR	0.09		
35	SKIFFES CREEK	YORKTOWN (209)	230.00	230.00	STEEL TWR	4.19		
					τοται	E E A 4 7 A	1 1 4 / 50	EDO
36	1					5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4					
TRANSMISSION LINE STATISTICS (Continued)									
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if					

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (Size of Land rights, and clearing right-of-w			EXPENSES, EXCEPT DEPRECIATION AND TAXES					
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line	
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.	
477 ACSR								1	
477 ACSR								2	
477 ACSR								3	
636 ACSR								4	
636 ACSR								5	
636 ACSR								6	
1109 ACAR								7	
636 ACSR								8	
636 ACSR								9	
636 ACSR								10	
2500 ACAR								11	
636 ACSR								12	
636 ACSR								13	
636 ACSR								14	
545.6 ACAR								15	
636 ACSR								16	
545.6 ACAR								17	
636 ACSR								18	
477 ACSR								19	
477 ACSR								20	
477 ACSR								21	
477 ACSR								22	
477 ACSR								23	
477 ACSR								24	
636 ACSR								25	
636 ACSR								26	
636 ACSR								27	
636 ACSR								28	
1033.5 ACSR								29	
636 ACSR								30	
1033.5 ACSR								31	
2500 ACAR								32	
636 ACSR								33	
2500 ACAR								34	
721 ACAR								35	
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36	

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2018/Q4				
TRANSMISSION LINE STATISTICS							

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	e DESIGNATION		VOLTAGE (KV)		Type of LENGTH (Pole miles)			
No.			other than		Type of	undergro	case of bund lines	Number
		1	60 cycle, 3 pha	ase)	Supporting	report cire	Cult miles)	Or
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	SKIFFES CREEK	YORKTOWN (209)	230.00	230.00	WOOD HFRM	3.55		
2	SKIFFES CREEK	YORKTOWN (209)	230.00	230.00	WOOD POLE	0.50		
3	FREDERICKSBURG	LADYSMITH CT (2090)	230.00	230.00	CONC HFRM	0.05		1
4	FREDERICKSBURG	LADYSMITH CT (2090)	230.00	230.00	STEEL HFRM	0.98		
5	FREDERICKSBURG	LADYSMITH CT (2090)	230.00	230.00	STEEL POLE	0.30		
6	FREDERICKSBURG	LADYSMITH CT (2090)	230.00	230.00	STEEL TWR	4.99		
7	FREDERICKSBURG	LADYSMITH CT (2090)	230.00	230.00	WOOD HFRM	9.93		
8	FREDERICKSBURG	LADYSMITH CT (2090)	230.00	230.00	WOOD POLE	0.90		
9	PORTUGEE	CHICKAHOMINY (2091)	230.00	230.00	CONC HFRM	0.07		1
10	PORTUGEE	CHICKAHOMINY (2091)	230.00	230.00	STEEL HFRM	0.05		
11	PORTUGEE	CHICKAHOMINY (2091)	230.00	230.00	STEEL POLE		0.06	
12	PORTUGEE	CHICKAHOMINY (2091)	230.00	230.00	STEEL POLE	2.92		
13	PORTUGEE	CHICKAHOMINY (2091)	230.00	230.00	STEEL TWR		3.51	
14	PORTUGEE	CHICKAHOMINY (2091)	230.00	230.00	STEEL TWR	0.10		
15	SEWELLS POINT	NAVY NORTH (2093)	230.00	230.00	UG UG	2.15		1
16	BRAMBLETON	LOUDOUN (2094)	230.00	230.00	CONC HFRM	0.04		1
17	BRAMBLETON	LOUDOUN (2094)	230.00	230.00	STEEL HFRM	0.18		
18	BRAMBLETON	LOUDOUN (2094)	230.00	230.00	STEEL POLE		0.06	
19	BRAMBLETON	LOUDOUN (2094)	230.00	230.00	STEEL POLE	0.45		
20	BRAMBLETON	LOUDOUN (2094)	230.00	230.00	STEEL TWR	4.30		
21	YARDLEY RIDGE	SHELLHORN (2095)	230.00	230.00	STEEL HFRM		0.07	1
22	YARDLEY RIDGE	SHELLHORN (2095)	230.00	230.00	STEEL POLE	5.69		
23	YARDLEY RIDGE	SHELLHORN (2095)	230.00	230.00	STEEL POLE	0.48		
24	CLARENDON	BALLSTON (2096)	230.00	230.00	UG UG		0.40	1
25	CLARENDON	BALLSTON (2096)	230.00	230.00	UG UG	0.02		
26	ОХ	IDYLWOOD (2097)	230.00	230.00	CONC HFRM	0.02		1
27	ОХ	IDYLWOOD (2097)	230.00	230.00	STEEL HFRM	0.09		
28	ОХ	IDYLWOOD (2097)	230.00	230.00	STEEL HFRM	0.09		
29	ОХ	IDYLWOOD (2097)	230.00	230.00	STEEL POLE	0.15		
30	ОХ	IDYLWOOD (2097)	230.00	230.00	STEEL POLE	0.05		
31	ОХ	IDYLWOOD (2097)	230.00	230.00	STEEL TWR	7.42		
32	ОХ	IDYLWOOD (2097)	230.00	230.00	STEEL TWR	0.21		
33	ОХ	IDYLWOOD (2097)	230.00	230.00	STEEL TWR	0.24		
34	ОХ	IDYLWOOD (2097)	230.00	230.00	STEEL TWR	4.44		
35	PLEASANT VIEW	HAMILTON (2098)	230.00	230.00	STEEL HFRM		0.06	1
36					TOTAL	5 544 64	1 146 59	529
00	1				1	0,011.04	1,110.07	52/

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colur	nn (i) Land.					
Size of	Land rights,	and clearing right-o	if-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Lina
and Material	(i)	Other Costs		Expenses	Expenses	(0)	Expenses	No.
	0)	(K)	(1)	(m)	(n)	(0)	(P)	1
1033.3 ACSR								2
								2
								3
								4
795 ACSR								5
795 ACSR								7
795 ACSR								2 0
626 ACSR								0
626 ACSR								7
721 ACAR								10
								12
								12
								1/
2500 CU								15
1233 6 ACSS								16
1233.0 ACSS								17
1233.0 ACSS								18
1233.0 ACSS								19
1233.6 ACSS								20
636 ACSR								21
636 ACSR								22
795 ACSR								23
1500 CU								24
1500 CU								25
1033.5 ACSS								26
1033.5 ACSR								27
1033.5 ACSS								28
1033.5 ACSR								29
1033.5 ACSS								30
1033.5 ACSR								31
1033.5 ACSS								32
636 ACSR								33
795 ACSR								34
636 ACSR								35
<u> </u>	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	e DESIGNATION		VOLTAGE (KV) (Indicate where other than		Type of	LENGTH (Pole miles) (In the case of underground lines		Number
110.		1	60 cycle, 3 pha	ase)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(C)	(d)	(e)	Designated (f)	(g)	(h)
1	PLEASANT VIEW	HAMILTON (2098)	230.00	230.00	STEEL HFRM			. ,
2	PLEASANT VIEW	HAMILTON (2098)	230.00	230.00	STEEL HFRM	0.13		
3	PLEASANT VIEW	HAMILTON (2098)	230.00	230.00	STEEL POLE		0.96	
4	PLEASANT VIEW	HAMILTON (2098)	230.00	230.00	STEEL POLE	8.77		
5	PLEASANT VIEW	HAMILTON (2098)	230.00	230.00	UG UG			
6	PLEASANT VIEW	HAMILTON (2098)	230.00	230.00	UG UG	2.16		
7	CHURCHLAND	SEWELLS POINT (2099)	230.00	230.00	STEEL HFRM			1
8	CHURCHLAND	SEWELLS POINT (2099)	230.00	230.00	STEEL HFRM	0.04		
9	CHURCHLAND	SEWELLS POINT (2099)	230.00	230.00	STEEL HFRM	0.01		
10	CHURCHLAND	SEWELLS POINT (2099)	230.00	230.00	STEEL POLE		3.25	
11	CHURCHLAND	SEWELLS POINT (2099)	230.00	230.00	STEEL POLE		1.71	
12	CHURCHLAND	SEWELLS POINT (2099)	230.00	230.00	STEEL POLE	0.05		
13	CHURCHLAND	SEWELLS POINT (2099)	230.00	230.00	UG UG		1.55	
14	VAN DORN	HAYFIELD (210)	230.00	230.00	CONC HFRM	0.03		1
15	VAN DORN	HAYFIELD (210)	230.00	230.00	CONC POLE	0.12		
16	VAN DORN	HAYFIELD (210)	230.00	230.00	STEEL POLE	0.67		
17	VAN DORN	HAYFIELD (210)	230.00	230.00	STEEL TWR	1.94		
18	BRISTERS	VINT HILL (2101)	230.00	230.00	STEEL HFRM		0.07	1
19	BRISTERS	VINT HILL (2101)	230.00	230.00	STEEL HFRM	1.02		
20	BRISTERS	VINT HILL (2101)	230.00	230.00	STEEL POLE		0.50	
21	BRISTERS	VINT HILL (2101)	230.00	230.00	STEEL POLE	0.30		
22	BRISTERS	VINT HILL (2101)	230.00	230.00	STEEL TWR		1.16	
23	BRISTERS	VINT HILL (2101)	230.00	230.00	STEEL TWR	9.32		
24	CHICKAHOMINY	WALLER (2102)	230.00	230.00	CONC HFRM	0.02		1
25	CHICKAHOMINY	WALLER (2102)	230.00	230.00	STEEL HFRM		0.04	
26	CHICKAHOMINY	WALLER (2102)	230.00	230.00	STEEL HFRM	0.27		
27	CHICKAHOMINY	WALLER (2102)	230.00	230.00	STEEL POLE		4.58	
28	CHICKAHOMINY	WALLER (2102)	230.00	230.00	STEEL POLE	0.21		
29	CHICKAHOMINY	WALLER (2102)	230.00	230.00	STEEL TWR		13.80	
30	CHICKAHOMINY	WALLER (2102)	230.00	230.00	STEEL TWR		9.56	
31	CHICKAHOMINY	WALLER (2102)	230.00	230.00	STEEL TWR	0.23		
32	SHORT PUMP	ELMONT (2103)	230.00	230.00	CONC HFRM	0.34		1
33	SHORT PUMP	ELMONT (2103)	230.00	230.00	CONC POLE		0.02	
34	SHORT PUMP	ELMONT (2103)	230.00	230.00	CONC POLE	0.15		
35	SHORT PUMP	ELMONT (2103)	230.00	230.00	STEEL HFRM	2.56		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	nn (j) Land,					Т
Size of	Land rights,	and clearing right-o	of-way)	EXPE	ENSES, EXCEPT DI	PRECIATION ANL	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	1
and Material (i)	(j)	Other Costs (k)	(I)	Expenses (m)	Expenses (n)	(0)	Expenses (p)	No.
3500 CU								1
636 ACSR								2
636 ACSR								3
636 ACSR								4
								5
3500 CU								6
721 ACAR								7
636 ACSR								8
721 ACAR								9
636 ACSR								10
721 ACAR								11
636 ACSR								12
2500 CU								13
1109 ACAR								14
1109 ACAR								15
1109 ACAR								16
1109 ACAR								17
636 ACSR								18
636 ACSR								19
636 ACSR								20
636 ACSR								21
636 ACSR								22
636 ACSR								23
721 ACAR								24
636 ACSR								25
636 ACSR								26
721 ACAR								27
721 ACAR								28
636 ACSR								29
721 ACAR								30
721 ACAR								31
1109 ACAR								32
636 ACSR								33
1109 ACAR								34
1109 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	NC	VOLTAGE (KV	() 2	Type of	LENGTH (In the	(Pole miles)	Number
No.			other than		Supporting	undergro report cire	ound lines cuit miles)	Of
	From	То	Operating	Dosignod	Oupporting	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	Structure (e)	Designated	Line	(b)
1		EL MONT (2103)	230.00	230.00		(1)	(9)	(1)
2		ELMONT (2103)	230.00	230.00	WOOD HERM	4 88		
3		ELMONT (2103)	230.00	230.00	WOOD POLE	0.78		
4	FREDERICKSBURG	AQUIA HARBOUR (2104)	230.00	230.00	CONC HERM	0.02		1
5	FREDERICKSBURG	AQUIA HARBOUR (2104)	230.00	230.00	CONC HFRM	0.06		
6	FREDERICKSBURG	AQUIA HARBOUR (2104)	230.00	230.00	STEEL HFRM	0.12		
7	FREDERICKSBURG	AQUIA HARBOUR (2104)	230.00	230.00	STEEL POLE	-	0.08	
8	FREDERICKSBURG	AQUIA HARBOUR (2104)	230.00	230.00	STEEL TWR	0.30		
9	FREDERICKSBURG	AQUIA HARBOUR (2104)	230.00	230.00	WOOD HFRM	7.07		
10	FREDERICKSBURG	AQUIA HARBOUR (2104)	230.00	230.00	WOOD POLE	0.06		
11	FREDERICKSBURG	AQUIA HARBOUR (2104)	230.00	230.00	WOOD POLE	0.40		
12	YADKIN	THRASHER (2105)	230.00	230.00	CONC HFRM	0.05		1
13	YADKIN	THRASHER (2105)	230.00	230.00	STEEL HFRM	1.62		
14	YADKIN	THRASHER (2105)	230.00	230.00	STEEL POLE	1.23		
15	YADKIN	THRASHER (2105)	230.00	230.00	STEEL POLE	0.46		
16	YADKIN	THRASHER (2105)	230.00	230.00	STEEL POLE	0.11		
17	YADKIN	THRASHER (2105)	230.00	230.00	STEEL TWR	0.15		
18	YADKIN	THRASHER (2105)	230.00	230.00	STEEL TWR	4.07		
19	BREMO	BEAR GARDEN (2106)	230.00	230.00	STEEL HFRM	0.47		1
20	BREMO	BEAR GARDEN (2106)	230.00	230.00	STEEL POLE	0.99		
21	SULLY	DISCOVERY (2107)	230.00	230.00	CONC HFRM	0.02		1
22	SULLY	DISCOVERY (2107)	230.00	230.00	STEEL POLE		0.11	
23	SULLY	DISCOVERY (2107)	230.00	230.00	STEEL POLE		1.59	
24	SULLY	DISCOVERY (2107)	230.00	230.00	STEEL POLE	1.03		
25	SULLY	DISCOVERY (2107)	230.00	230.00	STEEL POLE	0.05		
26	SWINKS MILL	TYSONS (2108)	230.00	230.00	CONC HFRM	0.07		1
27	SWINKS MILL	TYSONS (2108)	230.00	230.00	STEEL POLE	2.73		
28	HARRISONBURG	VALLEY (2109)	230.00	230.00	CONC HFRM	0.04		1
29	HARRISONBURG	VALLEY (2109)	230.00	230.00	CONC HFRM	0.11		
30	HARRISONBURG	VALLEY (2109)	230.00	230.00	STEEL POLE	0.18		
31	HARRISONBURG	VALLEY (2109)	230.00	230.00	STEEL TWR		9.89	
32	HARRISONBURG	VALLEY (2109)	230.00	230.00	STEEL TWR	0.13		
33	HARRISONBURG	VALLEY (2109)	230.00	230.00	STEEL TWR	0.10		
34	CHESTERFIELD 230	HOPEWELL (211)	230.00	230.00	STEEL HFRM	0.04		1
35	CHESTERFIELD 230	HOPEWELL (211)	230.00	230.00	STEEL POLE		0.03	
					TOTA			
36					IOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report				
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of	2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if							

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(i)	Other Costs (k)	(1)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
1109 ACAR	07	()	()	()	()			1
1109 ACAR								2
1109 ACAR								3
1109 ACAR								4
721 ACAR								5
721 ACAR								6
721 ACAR								7
721 ACAR								8
721 ACAR								9
1109 ACAR								10
721 ACAR								11
1033.5 ACSR								12
1033.5 ACSR								13
1033.5 ACSR								14
636 ACSR								15
768.2 ACSS								16
1033.5 ACSR								17
636 ACSR								18
636 ACSR								19
636 ACSR								20
1534 ACAR								21
1534 ACAR								22
1590 ACSR								23
1534 ACAR								24
1590 ACSR								25
1033.5 ACSS								26
1033.5 ACSS								27
636 ACSR								28
721 ACAR								29
636 ACSR								30
721 ACAR								31
636 ACSR								32
721 ACAR								33
1109 ACAR								34
1534 ACAR								35
	563 602 218	4 121 865 100	4 685 467 327	14 070 455	28 804 187	101 655	<u>1</u> 2 976 203	1 26
	303,002,210	7,121,003,107	7,000,707,027	17,070,433	20,007,107	101,033	72,770,271	50

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	NC	VOLTAGE (KV	′)	Type of	LEŅGŢH	(Pole miles)	
No.			other than		i ype oi	(In the undergro	case of bund lines	Number
			60 cycle, 3 pha	ise)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	CHESTERFIELD 230	HOPEWELL (211)	230.00	230.00	STEEL POLE	0.59		
2	CHESTERFIELD 230	HOPEWELL (211)	230.00	230.00	STEEL POLE	0.19		
3	CHESTERFIELD 230	HOPEWELL (211)	230.00	230.00	STEEL POLE	0.03		
4	CHESTERFIELD 230	HOPEWELL (211)	230.00	230.00	STEEL TWR		0.03	
5	CHESTERFIELD 230	HOPEWELL (211)	230.00	230.00	STEEL TWR	0.62		
6	CHESTERFIELD 230	HOPEWELL (211)	230.00	230.00	STEEL TWR	9.53		
7	CHESTERFIELD 230	HOPEWELL (211)	230.00	230.00	STEEL TWR	0.03		
8	SUFFOLK	THRASHER (2110)	230.00	230.00	CONC HFRM	0.06		1
9	SUFFOLK	THRASHER (2110)	230.00	230.00	STEEL HFRM	0.31		
10	SUFFOLK	THRASHER (2110)	230.00	230.00	STEEL POLE		0.73	
11	SUFFOLK	THRASHER (2110)	230.00	230.00	STEEL POLE	1.17		
12	SUFFOLK	THRASHER (2110)	230.00	230.00	STEEL TWR		4.16	
13	SUFFOLK	THRASHER (2110)	230.00	230.00	STEEL TWR	0.09		
14	SUFFOLK	THRASHER (2110)	230.00	230.00	STEEL TWR	15.19		
15	BREMO	BEAR GARDEN (2111)	230.00	230.00	STEEL HFRM		0.44	1
16	BREMO	BEAR GARDEN (2111)	230.00	230.00	STEEL HFRM	0.01		
17	BREMO	BEAR GARDEN (2111)	230.00	230.00	STEEL POLE		0.71	
18	NORTH ALEXANDRIA	JEFFERSON ST (2112)	230.00	230.00	CONC HFRM	0.02		1
19	NORTH ALEXANDRIA	JEFFERSON ST (2112)	230.00	230.00	STEEL HFRM		0.08	
20	NORTH ALEXANDRIA	JEFFERSON ST (2112)	230.00	230.00	STEEL POLE		0.14	
21	NORTH ALEXANDRIA	JEFFERSON ST (2112)	230.00	230.00	STEEL POLE		0.30	
22	NORTH ALEXANDRIA	JEFFERSON ST (2112)	230.00	230.00	STEEL POLE	0.10		
23	NORTH ALEXANDRIA	JEFFERSON ST (2112)	230.00	230.00	UG UG		1.33	
24	NORTH ALEXANDRIA	JEFFERSON ST (2112)	230.00	230.00	UG UG	0.31		
25	LANEXA	WALLER (2113)	230.00	230.00	CONC HFRM	0.44		1
26	LANEXA	WALLER (2113)	230.00	230.00	STEEL HFRM	0.74		
27	LANEXA	WALLER (2113)	230.00	230.00	STEEL POLE	1.04		
28	LANEXA	WALLER (2113)	230.00	230.00	WOOD HFRM	11.88		
29	LANEXA	WALLER (2113)	230.00	230.00	WOOD HFRM	0.08		
30	LANEXA	WALLER (2113)	230.00	230.00	WOOD POLE	0.31		
31	REMINGTON CT	GAINESVILLE (2114)	230.00	230.00	STEEL HFRM	0.66		1
32	REMINGTON CT	GAINESVILLE (2114)	230.00	230.00	STEEL POLE	1.23		
33	REMINGTON CT	GAINESVILLE (2114)	230.00	230.00	STEEL TWR	22.66		
34	ARLINGTON	GLEN CARLYN (2115)	230.00	230.00	CONC HFRM	0.05		1
35	ARLINGTON	GLEN CARLYN (2115)	230.00	230.00	STEEL POLE	2.34		
36					TOTAL	5,544.64	1,146.59	529
-		1			1			

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	1 his Report Is: (1) XIAn Original	(Mo, Da, Yr)	Year/Period of Report				
	(2) A Resubmission	11	End of				
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate in a footnote if				

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
1033.5 ACSR								1
1109 ACAR								2
636 ACSR								3
1109 ACAR								4
1033.5 ACSR								5
1109 ACAR								6
636 ACSR								7
1033.5 ACSR								8
768.2 ACSS								9
768.2 ACSS								10
768.2 ACSS								11
768.2 ACSS								12
1033.5 ACSR								13
768.2 ACSS								14
636 ACSR								15
636 ACSR								16
636 ACSR								17
2500 ACAR								18
2500 ACAR								19
2500 ACAR								20
636 ACSR								21
636 ACSR								22
2500 CU								23
2500 CU								24
1033.5 ACSR								25
1033.5 ACSR								26
1033.5 ACSR								27
1033.5 ACSR								28
2500 ACAR								29
1033.5 ACSR								30
636 ACSR								31
636 ACSR								32
636 ACSR								33
1192.5 ACSS								34
1192.5 ACSS								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

-				Λ				
Line No.	DESIGNATI	UN	VOLTAGE (KV (Indicate where other than	() 2 350)	Type of	LENGTH (In the undergro report cire	(Pole miles) case of ound lines cuit miles)	Number Of
	From	То	Operating	Designed	Structure	On Structure of Line	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated (f)	Line (g)	(h)
1	BEAUMEADE	NIVO (2116)	230.00	230.00	STEEL HFRM	0.01		1
2	BEAUMEADE	NIVO (2116)	230.00	230.00	UG UG		0.72	
3	BEAUMEADE	NIVO (2116)	230.00	230.00	UG UG	0.01		
4	LOUDOUN	NEW ROAD (2117)	230.00	230.00	STEEL HFRM	0.35		1
5	LOUDOUN	NEW ROAD (2117)	230.00	230.00	STEEL POLE	3.59		
6	LANDSTOWN	VIRGINIA BEACH (2118)	230.00	230.00	CONC HFRM		0.05	1
7	LANDSTOWN	VIRGINIA BEACH (2118)	230.00	230.00	CONC HFRM	0.05		
8	LANDSTOWN	VIRGINIA BEACH (2118)	230.00	230.00	CONC POLE		0.04	
9	LANDSTOWN	VIRGINIA BEACH (2118)	230.00	230.00	STEEL HFRM		9.20	
10	LANDSTOWN	VIRGINIA BEACH (2118)	230.00	230.00	STEEL HFRM	0.28		
11	LANDSTOWN	VIRGINIA BEACH (2118)	230.00	230.00	STEEL POLE		1.26	
12	LANDSTOWN	VIRGINIA BEACH (2118)	230.00	230.00	STEEL POLE	0.12		
13	AQUIA HARBOR	GARRISONVILLE (2119)	230.00	230.00	UG UG		5.63	1
14	SURRY	HOPEWELL (212)	230.00	230.00	CONC HFRM	0.06		1
15	SURRY	HOPEWELL (212)	230.00	230.00	STEEL HFRM	0.16		
16	SURRY	HOPEWELL (212)	230.00	230.00	STEEL POLE	0.06		
17	SURRY	HOPEWELL (212)	230.00	230.00	STEEL TWR	0.10		
18	SURRY	HOPEWELL (212)	230.00	230.00	STEEL TWR	42.56		
19	AQUIA HARBOR	GARRISONVILLE (2120)	230.00	230.00	UG UG		5.63	1
20	RADNOR HEIGHTS	PENTAGON (2121)	230.00	230.00	UG UG	2.63		1
21	HAYES	YORKTOWN (2122)	230.00	230.00	STEEL HFRM	0.06		1
22	HAYES	YORKTOWN (2122)	230.00	230.00	STEEL POLE	3.62		
23	HAYES	YORKTOWN (2122)	230.00	230.00	UG UG	3.62		
24	LOUDOUN	NEW ROAD (2123)	230.00	230.00	STEEL HFRM		0.28	1
25	LOUDOUN	NEW ROAD (2123)	230.00	230.00	STEEL POLE		3.53	
26	LOUDOUN	NEW ROAD (2123)	230.00	230.00	STEEL POLE	0.07		
27	PRINCE GEORGE	HOPEWELL (2124)	230.00	230.00	STEEL HFRM	0.03		1
28	PRINCE GEORGE	HOPEWELL (2124)	230.00	230.00	STEEL POLE	2.45		
29	ELMONT	ST JOHNS (2125)	230.00	230.00	STEEL TWR	0.01		1
30	MACKEYS	TROWBRIDGE (2126)	230.00	230.00	STEEL HFRM	0.14		1
31	MACKEYS	TROWBRIDGE (2126)	230.00	230.00	STEEL POLE	0.44		
32	MACKEYS	TROWBRIDGE (2126)	230.00	230.00	STEEL POLE	9.97		
33	MACKEYS	TROWBRIDGE (2126)	230.00	230.00	STEEL TWR	0.06		
34	NORTHWEST	LAKESIDE (2127)	230.00	230.00	CONC HFRM	0.08		1
35	NORTHWEST	LAKESIDE (2127)	230.00	230.00	STEEL HFRM	4.84		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent		1 his Report Is:	(Mo Da Xr)	Year/Period of Re	eport				
	VIRGINIA ELECTRIC AND POWER COMPANY	(1) A Resubmission	/ /	End of	;/Q4				
	TRANSMISSION LINE STATISTICS (Continued)								
	7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	ine. Designate in a fo	otnote if				

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colur	nn (i) Land.					Т
Size of	Land rights,	and clearing right-o	if-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
and Material (i)	(i)	Other Costs (k)	(1)	Expenses	Expenses	(0)	Expenses	No.
3500 CU	07		()	()	()		(17)	1
3500 CU								2
3500 CU								3
636 ACSR								4
636 ACSR								5
1351.5 ACSR								6
1351.5 ACSR								7
1351.5 ACSR								8
1351.5 ACSR								9
1351.5 ACSR								10
1351.5 ACSR								11
1351.5 ACSR								12
3500 CU								13
2500 ACAR								14
2500 ACAR								15
2500 ACAR								16
636 ACSR								17
721 ACAR								18
3500 CU								19
2500 CU								20
1033.5 ACSR								21
1033.5 ACSR								22
2500 CU								23
636 ACSR								24
636 ACSR								25
636 ACSR								26
636 ACSR								27
636 ACSR								28
1233.6 ACSS								29
1351.5 ACSR								30
1192.5 ACSR								31
1351.5 ACSR								32
1351.5 ACSR								33
1233.6 ACSS								34
1233.6 ACSS								35
	F / 0 / 00	4401 0/5 1						<u> </u>
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATION		VOLTAGE (KV)		Type of LENGTH (Pole miles)			
No.			other than	9	Type of	undergro	bund lines	Number
			60 cycle, 3 pha	ase)	Supporting	On Structure	On Structures	Circuito
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	NORTHWEST	LAKESIDE (2127)	230.00	230.00	STEEL POLE	1.75		
2	NORTHWEST	LAKESIDE (2127)	230.00	230.00	STEEL TWR	4.90		
3	FENTRESS	THRASHER (2128)	230.00	230.00	CONC HFRM	0.07		1
4	FENTRESS	THRASHER (2128)	230.00	230.00	STEEL POLE	0.09		
5	FENTRESS	THRASHER (2128)	230.00	230.00	STEEL POLE	0.03		
6	FENTRESS	THRASHER (2128)	230.00	230.00	STEEL POLE	5.71		
7	CHICKAHOMINY	LANEXA (2129)	230.00	230.00	STEEL HFRM	8.05		1
8	CHICKAHOMINY	LANEXA (2129)	230.00	230.00	WOOD HFRM	6.11		
9	CHICKAHOMINY	LANEXA (2129)	230.00	230.00	WOOD POLE	0.05		
10	THELMA	LAKEVIEW (213)	230.00	230.00	STEEL TWR	8.67		1
11	BEAUMEADE	NIVO (2130)	230.00	230.00	STEEL HFRM		0.01	1
12	BEAUMEADE	NIVO (2130)	230.00	230.00	UG UG		0.73	
13	WINFALL	MACKEYS (2131)	230.00	230.00	CONC POLE	0.03		1
14	WINFALL	MACKEYS (2131)	230.00	230.00	STEEL HFRM	0.08		
15	WINFALL	MACKEYS (2131)	230.00	230.00	STEEL HFRM	0.06		
16	WINFALL	MACKEYS (2131)	230.00	230.00	STEEL POLE		0.03	
17	WINFALL	MACKEYS (2131)	230.00	230.00	STEEL POLE	13.69		
18	WINFALL	MACKEYS (2131)	230.00	230.00	STEEL POLE	5.28		
19	WINFALL	MACKEYS (2131)	230.00	230.00	STEEL POLE	5.10		
20	CLOVER HILL	CANNON BRANCH (2132)	230.00	230.00	STEEL HFRM	0.37		1
21	CLOVER HILL	CANNON BRANCH (2132)	230.00	230.00	STEEL POLE	1.88		
22	CLOVER HILL	CANNON BRANCH (2132)	230.00	230.00	STEEL TWR	0.03		
23	HARRISONBURG	ENDLESS CAVERNS (2134)	230.00	230.00	CONC HFRM		0.03	1
24	HARRISONBURG	ENDLESS CAVERNS (2134)	230.00	230.00	STEEL HFRM		0.23	
25	HARRISONBURG	ENDLESS CAVERNS (2134)	230.00	230.00	STEEL POLE		19.53	
26	HOLLYMEAD	GORDONSVILLE (2135)	230.00	230.00	CONC HFRM	0.19		1
27	HOLLYMEAD	GORDONSVILLE (2135)	230.00	230.00	STEEL HFRM		5.83	
28	HOLLYMEAD	GORDONSVILLE (2135)	230.00	230.00	STEEL HFRM	1.31		
29	HOLLYMEAD	GORDONSVILLE (2135)	230.00	230.00	STEEL POLE		2.53	
30	HOLLYMEAD	GORDONSVILLE (2135)	230.00	230.00	STEEL POLE	0.31		
31	HOLLYMEAD	GORDONSVILLE (2135)	230.00	230.00	STEEL TWR		0.03	
32	HOLLYMEAD	GORDONSVILLE (2135)	230.00	230.00	WOOD HFRM	4.89		
33	HOLLYMEAD	GORDONSVILLE (2135)	230.00	230.00	WOOD POLE	0.47		
34	SHAWBORO	AYDLETT (2136)	230.00	230.00	CONC HFRM		1.50	1
35	SHAWBORO	AYDLETT (2136)	230.00	230.00	CONC HFRM	0.27		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is: (1) XAn Original	Date of Report (Mo, Da, Yr)	Year/Period of Report						
	VIRGINIA ELECTRIC AND POWER COMPANY	(2) A Resubmission	//						
	TRANSMISSION LINE STATISTICS (Continued)								
	7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate in a footnot	te if				

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colur	nn (i) Land.	EVE				Т
Size of	Land rights,	and clearing right-o	of-way)	EXPE	ENSES, EXCEPT DE	PRECIATION ANL	DIAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
and Material	(i)	Other Costs		Expenses	Expenses	(0)	Expenses	No.
(1)	0	(K)	(1)	(m)	(n)	(0)	(þ)	1
1233.0 ACSS								
1233.0 ACSS								2
								3
								4
030 AUSR								5
								0
1033.5 ACSR								/
1033.5 ACSR								8
1033.5 ACSR								9
1033.5 ACSR								10
3500 CU								11
3500 CU								12
1351.5 ACSR								13
1192.5 ACSR								14
1351.5 ACSR								15
1351.5 ACSR								16
1192.5 ACSR								17
1233.6 ACSS285								18
1351.5 ACSR								19
636 ACSR								20
636 ACSR								21
636 ACSR								22
636 ACSR								23
636 ACSR								24
636 ACSR								25
477 ACSR								26
636 ACSR								27
477 ACSR								28
636 ACSR								29
477 ACSR								30
477 ACSR								31
477 ACSR								32
477 ACSR								33
545.6 ACAR								34
477 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

ame of Respondent This Report Is: /IRGINIA ELECTRIC AND POWER COMPANY (1) X An Original (2) A Resubmission		Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

	DEQUQUATI			0				
Line No.	DESIGNATIO	VOLIAGE (K) (Indicate where other than	() 8 959)	Type of	LENGIH (Pole miles) (In the case of underground lines report circuit miles)		Number Of	
	From	То	Operating	Designed	Structure	On Structure of Line	On Structures of Another	Circuits
	(a)	(b)	(C)	(d)	(e)	Designated (f)	Line (a)	(h)
1	SHAWBORO	AYDLETT (2136)	230.00	230.00	CONC HFRM	(.)	(3)	()
2	SHAWBORO	AYDLETT (2136)	230.00	230.00	CONC POLE	0.08		
3	SHAWBORO	AYDLETT (2136)	230.00	230.00	STEEL HFRM		6.99	
4	SHAWBORO	AYDLETT (2136)	230.00	230.00	STEEL HFRM	0.03		
5	SHAWBORO	AYDLETT (2136)	230.00	230.00	STEEL POLE		2.30	
6	SHAWBORO	AYDLETT (2136)	230.00	230.00	STEEL TWR	0.02		
7	SHAWBORO	AYDLETT (2136)	230.00	230.00	WOOD HFRM	1.27		
8	POLAND ROAD	SHELLHORN (2137)	230.00	230.00	STEEL HFRM		0.03	1
9	POLAND ROAD	SHELLHORN (2137)	230.00	230.00	STEEL HFRM	0.09		
10	POLAND ROAD	SHELLHORN (2137)	230.00	230.00	STEEL POLE		5.48	
11	POLAND ROAD	SHELLHORN (2137)	230.00	230.00	STEEL POLE	0.03		
12	POLAND ROAD	SHELLHORN (2137)	230.00	230.00	STEEL POLE	3.69		
13	SKIFFES CREEK	WHEALTON (2138)	230.00	230.00	CONC HFRM	0.06		1
14	SKIFFES CREEK	WHEALTON (2138)	230.00	230.00	STEEL HFRM	0.59		
15	SKIFFES CREEK	WHEALTON (2138)	230.00	230.00	STEEL POLE	0.10		
16	SKIFFES CREEK	WHEALTON (2138)	230.00	230.00	STEEL POLE	15.56		
17	SKIFFES CREEK	WHEALTON (2138)	230.00	230.00	STEEL TWR	4.20		
18	WINCHESTER	SURRY (214)	230.00	230.00	CONC HFRM	0.05		1
19	WINCHESTER	SURRY (214)	230.00	230.00	CONC HFRM	0.15		
20	WINCHESTER	SURRY (214)	230.00	230.00	CONC POLE	0.02		
21	WINCHESTER	SURRY (214)	230.00	230.00	STEEL POLE	0.08		
22	WINCHESTER	SURRY (214)	230.00	230.00	STEEL TWR	13.90		
23	WINCHESTER	SURRY (214)	230.00	230.00	STEEL TWR	0.08		
24	WINCHESTER	SURRY (214)	230.00	230.00	STEEL TWR	23.36		
25	LAKEVIEW	CAROLINA (2141)	230.00	230.00	STEEL HFRM	0.07		1
26	LAKEVIEW	CAROLINA (2141)	230.00	230.00	STEEL HFRM	0.01		
27	LAKEVIEW	CAROLINA (2141)	230.00	230.00	STEEL POLE	0.02		
28	LAKEVIEW	CAROLINA (2141)	230.00	230.00	STEEL TWR	1.25		
29	BALLSTON	RADNOR HEIGHTS (2142)	230.00	230.00	UG UG		0.95	1
30	BECO	BEAUMEADE (2143)	230.00	230.00	CONC HFRM	0.13		1
31	BECO	BEAUMEADE (2143)	230.00	230.00	STEEL HFRM	0.03		
32	BECO	BEAUMEADE (2143)	230.00	230.00	STEEL POLE	1.41		
33	SWAMP	WINFALL (2144)	230.00	230.00	STEEL HFRM	0.26		1
34	SWAMP	WINFALL (2144)	230.00	230.00	STEEL POLE	0.04		
35	SWAMP	WINFALL (2144)	230.00	230.00	WOOD HFRM	3.75		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(0)	(p)	INO.
545.6 ACAR								1
545.6 ACAR								2
545.6 ACAR								3
545.6 ACAR								4
545.6 ACAR								5
545.6 ACAR								6
477 ACSR								7
636 ACSR								8
636 ACSR								9
636 ACSR								10
636 ACSR								11
795 ACSR								12
2156 ACSR								13
636 ACSR								14
2156 ACSR								15
636 ACSR								16
636 ACSR								17
1534 ACAR								18
721 ACAR								19
1534 ACAR								20
721 ACAR								21
1534 ACAR								22
2500 ACAR								23
721 ACAR								24
1033.5 ACSR								25
795 ACSR								26
795 ACSR								27
795 ACSR								28
3500 CU								29
636 ACSR								30
636 ACSR								31
636 ACSR								32
1109 ACAR								33
1109 ACAR								34
1109 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATION		VOLTAGE (KV)		Type of LENGTH (Pole miles)			
No.			other than	3	i ype or	(In the undergro	case of bund lines	Number
			60 cycle, 3 pha	ise)	Supporting	report cire	Cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	SWAMP	WINFALL (2144)	230.00	230.00	WOOD POLE	0.13		·
2	DAHLGREN	BIRCHWOOD NUG (2145)	230.00	230.00	CONC HFRM	0.12		1
3	DAHLGREN	BIRCHWOOD NUG (2145)	230.00	230.00	CONC POLE	0.46		
4	DAHLGREN	BIRCHWOOD NUG (2145)	230.00	230.00	CONC POLE	0.12		
5	DAHLGREN	BIRCHWOOD NUG (2145)	230.00	230.00	STEEL HFRM	2.21		
6	DAHLGREN	BIRCHWOOD NUG (2145)	230.00	230.00	STEEL HFRM	0.31		
7	DAHLGREN	BIRCHWOOD NUG (2145)	230.00	230.00	STEEL POLE		9.45	
8	DAHLGREN	BIRCHWOOD NUG (2145)	230.00	230.00	STEEL POLE	0.26		
9	DAHLGREN	BIRCHWOOD NUG (2145)	230.00	230.00	STEEL POLE	0.01		
10	DAHLGREN	BIRCHWOOD NUG (2145)	230.00	230.00	STEEL POLE	0.13		
11	DAHLGREN	BIRCHWOOD NUG (2145)	230.00	230.00	STEEL POLE	0.08		
12	DAHLGREN	BIRCHWOOD NUG (2145)	230.00	230.00	WOOD HFRM	6.19		
13	DAHLGREN	BIRCHWOOD NUG (2145)	230.00	230.00	WOOD POLE	0.10		
14	DAHLGREN	BIRCHWOOD NUG (2145)	230.00	230.00	WOOD POLE	0.33		
15	WALLER	SKIFFES CREEK (2146)	230.00	230.00	STEEL POLE		6.16	1
16	WALLER	SKIFFES CREEK (2146)	230.00	230.00	STEEL POLE	1.75		
17	WALLER	SKIFFES CREEK (2146)	230.00	230.00	STEEL TWR	0.09		
18	CLOVER HILL	LIBERTY (2148)	230.00	230.00	STEEL HFRM		0.39	1
19	CLOVER HILL	LIBERTY (2148)	230.00	230.00	STEEL POLE		4.93	
20	CLOVER HILL	LIBERTY (2148)	230.00	230.00	STEEL POLE	0.35		
21	ENTERPRISE	WAXPOOL (2149)	230.00	230.00	STEEL HFRM	0.04		1
22	ENTERPRISE	WAXPOOL (2149)	230.00	230.00	STEEL POLE		0.37	
23	ENTERPRISE	WAXPOOL (2149)	230.00	230.00	STEEL POLE	1.76		
24	POSSUM POINT	HAYFIELD (215)	230.00	230.00	CONC HFRM	0.14		1
25	POSSUM POINT	HAYFIELD (215)	230.00	230.00	STEEL HFRM	0.32		
26	POSSUM POINT	HAYFIELD (215)	230.00	230.00	STEEL HFRM	0.11		
27	POSSUM POINT	HAYFIELD (215)	230.00	230.00	STEEL POLE	7.58		
28	POSSUM POINT	HAYFIELD (215)	230.00	230.00	STEEL POLE	1.46		
29	POSSUM POINT	HAYFIELD (215)	230.00	230.00	STEEL POLE	0.76		
30	POSSUM POINT	HAYFIELD (215)	230.00	230.00	STEEL TWR	0.16		
31	POSSUM POINT	HAYFIELD (215)	230.00	230.00	STEEL TWR	11.50		
32	POSSUM POINT	HAYFIELD (215)	230.00	230.00	WOOD HFRM	0.07		
33	POSSUM POINT	HAYFIELD (215)	230.00	230.00	WOOD POLE	0.09		
34	STERLING PARK	BECO (2150)	230.00	230.00	CONC HFRM		0.03	1
35	STERLING PARK	BECO (2150)	230.00	230.00	STEEL POLE		0.71	
36	<u> </u>	<u>+</u>			TOTAL	5 544 64	1 146 59	529
00	1				-	0,011.01	1,110.07	027

	VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original	Date of Report (Mo, Da, Yr)	Find of 2018/Q4	t		
		(2) A Resubmission	//				
	TRANSMISSION LINE STATISTICS (Continued)						
1	7. Do not report the same transmission line structure to	wice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate in a footno	te if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

0. 1	COST OF LIN	E (Include in Colum	nn (j) Land,	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Size of	Land rights, a	and clearing right-o	or-way)					
and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(i)	Other Costs (k)	(I)	Expenses (m)	Expenses	(o)	Expenses	No.
1109 ACAR	07	()	()	()	(1)	. ,	(F7	1
1534 ACAR								2
1534 ACAR								3
545 6 ACAR								4
1534 ACAR								5
545.6 ACAR								6
636 ACSR								7
1534 ACAR								8
1590 AAC								9
545.6 ACAR								10
636 ACSR								11
545.6 ACAR								12
1590 AAC								13
545.6 ACAR								14
721 ACAR								15
721 ACAR								16
721 ACAR								17
636 ACSR								18
636 ACSR								19
636 ACSR								20
636 ACSR								21
636 ACSR								22
636 ACSR								23
721 ACAR								24
2500 ACAR								25
636 ACSR								26
2500 ACAR								27
636 ACSR								28
721 ACAR								29
2500 ACAR								30
721 ACAR								31
2500 ACAR								32
2500 ACAR								33
1033.5 ACSS								34
636 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

				Λ				
Line No.	DESIGNATI	ON	(Indicate where other than 60 cycle 3 phase)		Type of	LENGIH (Pole miles) (In the case of underground lines report circuit miles)		Number Of
	From	То	Operating	Designed	Structure	On Structure of Line	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated (f)	Line (g)	(h)
1	STERLING PARK	BECO (2150)	230.00	230.00	STEEL POLE	0.07		()
2	STERLING PARK	BECO (2150)	230.00	230.00	STEEL TWR		2.08	
3	RAILROAD DP	GAINESVILLE (2151)	230.00	230.00	STEEL POLE		1.75	1
4	RAILROAD DP	GAINESVILLE (2151)	230.00	230.00	STEEL POLE	0.37		
5	RAILROAD DP	GAINESVILLE (2151)	230.00	230.00	STEEL TWR	0.06		
6	WAXPOOL	BEAUMEADE (2152)	230.00	230.00	STEEL HFRM		0.04	1
7	WAXPOOL	BEAUMEADE (2152)	230.00	230.00	STEEL POLE		2.24	
8	WAXPOOL	BEAUMEADE (2152)	230.00	230.00	STEEL POLE	0.96		
9	WAXPOOL	BEAUMEADE (2152)	230.00	230.00	STEEL TWR		0.30	
10	WALLER	SKIFFES CREEK (2154)	230.00	230.00	CONC HFRM	0.05		1
11	WALLER	SKIFFES CREEK (2154)	230.00	230.00	STEEL HFRM	0.29		
12	WALLER	SKIFFES CREEK (2154)	230.00	230.00	STEEL POLE		0.40	
13	WALLER	SKIFFES CREEK (2154)	230.00	230.00	STEEL POLE	1.02		
14	WALLER	SKIFFES CREEK (2154)	230.00	230.00	STEEL TWR	0.10		
15	WALLER	SKIFFES CREEK (2154)	230.00	230.00	WOOD HFRM		0.09	
16	WALLER	SKIFFES CREEK (2154)	230.00	230.00	WOOD HFRM	5.51		
17	WALLER	SKIFFES CREEK (2154)	230.00	230.00	WOOD POLE	0.35		
18	REMINGTON CT	WARRENTON (2155)	230.00	230.00	STEEL HFRM		0.11	1
19	REMINGTON CT	WARRENTON (2155)	230.00	230.00	STEEL POLE		11.73	
20	DOOMS	STAUNTON (2156)	230.00	230.00	CONC HFRM	0.07		1
21	DOOMS	STAUNTON (2156)	230.00	230.00	STEEL HFRM	0.39		
22	DOOMS	STAUNTON (2156)	230.00	230.00	STEEL POLE		0.43	
23	DOOMS	STAUNTON (2156)	230.00	230.00	STEEL POLE	0.34		
24	DOOMS	STAUNTON (2156)	230.00	230.00	STEEL TWR		11.65	
25	FREDERICKSBURG	CRANES CORNER (2157)	230.00	230.00	CONC HFRM		0.04	1
26	FREDERICKSBURG	CRANES CORNER (2157)	230.00	230.00	STEEL HFRM	0.69		
27	FREDERICKSBURG	CRANES CORNER (2157)	230.00	230.00	STEEL POLE		0.73	
28	FREDERICKSBURG	CRANES CORNER (2157)	230.00	230.00	STEEL POLE	0.43		
29	FREDERICKSBURG	CRANES CORNER (2157)	230.00	230.00	STEEL POLE	0.06		
30	FREDERICKSBURG	CRANES CORNER (2157)	230.00	230.00	WOOD HFRM	2.46		
31	FREDERICKSBURG	CRANES CORNER (2157)	230.00	230.00	WOOD POLE	0.15		
32	CEC	YADKIN (2158)	230.00	230.00	STEEL HFRM		0.08	1
33	CEC	YADKIN (2158)	230.00	230.00	STEEL HFRM	0.05		
34	CEC	YADKIN (2158)	230.00	230.00	STEEL POLE	0.05		
35	CEC	YADKIN (2158)	230.00	230.00	STEEL POLE	0.10		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	1 his Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of 2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)						
'. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	nn (i) Land					Т
Size of	Size of Land rights, and clearing right-of-way)		of-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	-
and Material		Other Costs		Expenses	Expenses		Expenses	Line
(1)	(J)	(K)	(1)	(m)	(n)	(0)	(p)	110.
636 ACSR								1
1192.5 ACSR								2
636 ACSR								3
636 ACSR								4
636 ACSR								5
636 ACSR								6
636 ACSR								7
636 ACSR								8
636 ACSR								9
1033.5 ACSR								10
1033.5 ACSR								11
636 ACSR								12
1033.5 ACSR								13
1033.5 ACSR								14
636 ACSR								15
1033.5 ACSR								16
1033.5 ACSR								17
636 ACSR								18
636 ACSR								19
545.6 ACAR								20
545.6 ACAR								21
545.6 ACAR								22
545.6 ACAR								23
545.6 ACAR								24
636 ACSR								25
636 ACSR								26
636 ACSR								27
636 ACSR								28
721 ACAR								29
636 ACSR								30
636 ACSR								31
636 ACSR								32
1233 6 ACSS285								32
1233.0 ACSS285								34
636 ACSR								35
030 ACSI								33
								<u> </u>
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	NC	VOLTAGE (K)	/)]	Type of	LENGTH	(Pole miles)	Number
No.			other than		Supporting	undergro report cire	ound lines cuit miles)	Of
	Erom	То	Operating	Designed	Oupporting	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	Structure (e)	Designated	Line	(b)
1		(~) VADKIN (2158)	230.00	230.00	STEEL TWR	(1)	(9)	(11)
2	CEC	YADKIN (2158)	230.00	230.00	STEEL TWR	0.27	2.41	
2	CEC	YADKIN (2158)	230.00	230.00	STEEL TWR	0.27		
4		FLMONT (216)	230.00	230.00	CONC HERM	0.00	0.04	1
5		ELMONT (216)	230.00	230.00	STEEL HERM		4.63	
6		ELMONT (216)	230.00	230.00	STEEL POLE		0.01	
7	LAKESIDE	ELMONT (216)	230.00	230.00	STEEL POLE		1.01	
8	LAKESIDE	ELMONT (216)	230.00	230.00	STEEL POLE	0.02		
9	LAKESIDE	ELMONT (216)	230.00	230.00	STEEL TWR	0.01		
10	EVERETTS	CHINQUAPIN (2160)	230.00	230.00	STEEL HFRM	6.80		1
11	EVERETTS	CHINQUAPIN (2160)	230.00	230.00	STEEL POLE	0.80		
12	EVERETTS	CHINQUAPIN (2160)	230.00	230.00	STEEL TWR	0.02		
13	EVERETTS	CHINQUAPIN (2160)	230.00	230.00	WOOD HFRM	13.79		
14	EVERETTS	CHINQUAPIN (2160)	230.00	230.00	WOOD POLE	0.92		
15	WHEELER	GAINESVILLE (2161)	230.00	230.00	CONC POLE	2.01		1
16	WHEELER	GAINESVILLE (2161)	230.00	230.00	CONC POLE	0.01		
17	WHEELER	GAINESVILLE (2161)	230.00	230.00	STEEL HFRM	0.05		
18	WHEELER	GAINESVILLE (2161)	230.00	230.00	STEEL POLE	2.54		
19	WHEELER	GAINESVILLE (2161)	230.00	230.00	STEEL POLE	1.99		
20	WHEELER	GAINESVILLE (2161)	230.00	230.00	STEEL POLE	0.09		
21	WHEELER	GAINESVILLE (2161)	230.00	230.00	STEEL TWR	0.08		
22	LIBERTY	VINT HILL (2163)	230.00	230.00	STEEL HFRM		0.07	1
23	LIBERTY	VINT HILL (2163)	230.00	230.00	STEEL POLE		0.23	
24	LIBERTY	VINT HILL (2163)	230.00	230.00	STEEL POLE	2.06		
25	LIBERTY	VINT HILL (2163)	230.00	230.00	STEEL TWR	3.84		
26	BECO	PACIFIC (2165)	230.00	230.00	STEEL HFRM	0.08		1
27	BECO	PACIFIC (2165)	230.00	230.00	STEEL POLE		1.81	
28	BECO	PACIFIC (2165)	230.00	230.00	STEEL POLE	1.72		
29	EDGECOMBE	HATHAWAY (2167)	230.00	230.00	CONC HFRM	0.04		1
30	EDGECOMBE	HATHAWAY (2167)	230.00	230.00	STEEL HFRM		0.09	
31	EDGECOMBE	HATHAWAY (2167)	230.00	230.00	STEEL POLE		0.06	
32	EDGECOMBE	HATHAWAY (2167)	230.00	230.00	STEEL POLE	0.10		
33	EDGECOMBE	HATHAWAY (2167)	230.00	230.00	STEEL POLE	0.25		
34	EDGECOMBE	HATHAWAY (2167)	230.00	230.00	WOOD HFRM	0.19		
35	DOOMS	LEXINGTON (2168)	230.00	230.00	STEEL HFRM	0.15		1
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	'(m)	(n)	(0)	(p)	NO.
636 ACSR								1
1233.6 ACSS285								2
636 ACSR								3
2500 ACAR								4
2500 ACAR								5
1233.6 ACSS								6
2500 ACAR								7
2500 ACAR								8
2500 ACAR								9
1033.5 ACSR								10
1033.5 ACSR								11
1033.5 ACSR								12
1033.5 ACSR								13
1033.5 ACSR								14
1272 ACSR								15
795 ACSR								16
636 ACSR								17
1272 ACSR								18
636 ACSR								19
795 ACSR								20
1272 ACSR								21
636 ACSR								22
636 ACSR								23
636 ACSR								24
636 ACSR								25
636 ACSR								26
636 ACSR								27
636 ACSR								28
1534 ACAR								29
636 ACSR								30
636 ACSR								31
1033.5 ACSR								32
1534 ACAR								33
1033.5 ACSR								34
636 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	N	VOLTAGE (KV	/)	Type of	LEŅGŢH	(Pole miles)	
No.			other than	9	Type of	undergro	case of bund lines	Number
			60 cycle, 3 pha	ase)	Supporting	report cire	Cult miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	DOOMS	LEXINGTON (2168)	230.00	230.00	STEEL POLE	0.13		
2	DOOMS	LEXINGTON (2168)	230.00	230.00	STEEL TWR	38.89		
3	CHESTERFIELD 230	LAKESIDE (217)	230.00	230.00	CONC HFRM	0.03		1
4	CHESTERFIELD 230	LAKESIDE (217)	230.00	230.00	CONC HFRM	0.04		
5	CHESTERFIELD 230	LAKESIDE (217)	230.00	230.00	STEEL HFRM	6.21		
6	CHESTERFIELD 230	LAKESIDE (217)	230.00	230.00	STEEL POLE	0.33		
7	CHESTERFIELD 230	LAKESIDE (217)	230.00	230.00	STEEL TWR	0.03		
8	CHESTERFIELD 230	LAKESIDE (217)	230.00	230.00	STEEL TWR	1.17		
9	CHESTERFIELD 230	LAKESIDE (217)	230.00	230.00	WOOD HFRM	12.97		
10	CHESTERFIELD 230	LAKESIDE (217)	230.00	230.00	WOOD POLE	0.67		
11	SHELLHORN	PACIFIC (2170)	230.00	230.00	STEEL HFRM		0.07	1
12	SHELLHORN	PACIFIC (2170)	230.00	230.00	STEEL POLE		2.70	
13	BRAMBLETON	YARDLEY RIDGE (2172)	230.00	230.00	STEEL HFRM		0.04	1
14	BRAMBLETON	YARDLEY RIDGE (2172)	230.00	230.00	STEEL POLE		1.56	
15	BRAMBLETON	YARDLEY RIDGE (2172)	230.00	230.00	STEEL POLE		0.40	
16	BRAMBLETON	YARDLEY RIDGE (2172)	230.00	230.00	STEEL POLE	0.10		
17	LOUDOUN	ELKLICK (2173)	230.00	230.00	STEEL HFRM	0.04		1
18	LOUDOUN	ELKLICK (2173)	230.00	230.00	STEEL HFRM	0.08		
19	LOUDOUN	ELKLICK (2173)	230.00	230.00	STEEL POLE	0.21		
20	LOUDOUN	ELKLICK (2173)	230.00	230.00	STEEL POLE	0.09		
21	LOUDOUN	ELKLICK (2173)	230.00	230.00	STEEL POLE	0.11		
22	LOUDOUN	ELKLICK (2173)	230.00	230.00	STEEL TWR	3.59		
23	WHEELER DP	VINT HILL (2174)	230.00	230.00	STEEL HFRM		0.05	1
24	WHEELER DP	VINT HILL (2174)	230.00	230.00	STEEL POLE		5.39	
25	CHINQUAPIN	TARBORO (2177)	230.00	230.00	STEEL HFRM	1.16		1
26	CHINQUAPIN	TARBORO (2177)	230.00	230.00	STEEL TWR		0.43	
27	CHINQUAPIN	TARBORO (2177)	230.00	230.00	STEEL TWR	0.01		
28	CHINQUAPIN	TARBORO (2177)	230.00	230.00	WOOD HFRM	4.02		
29	CHINQUAPIN	TARBORO (2177)	230.00	230.00	WOOD POLE	0.11		
30	EVERETTS	GREENVILLE (CP&L) (218)	230.00	230.00	STEEL HFRM	2.04		1
31	EVERETTS	GREENVILLE (CP&L) (218)	230.00	230.00	STEEL POLE	0.07		
32	EVERETTS	GREENVILLE (CP&L) (218)	230.00	230.00	WOOD HFRM	17.14		
33	EVERETTS	GREENVILLE (CP&L) (218)	230.00	230.00	WOOD POLE	1.07		
34	BELMONT	PLEASANT VIEW (2180)	230.00	230.00	STEEL HFRM	0.09		1
35	BELMONT	PLEASANT VIEW (2180)	230.00	230.00	STEEL POLE	0.27		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colurr	nn (i) Land.	EXPENSES EXCEPT DEPRECIATION AND TAXES				1
Size of	Land rights,	and clearing right-o	if-way)	EXPE	NSES, EXCEPT DE	PRECIATION ANL	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
and Material		Other Costs		Expenses	Expenses		Expenses	Line
(1)	(J)	(K)	(1)	(m)	(n)	(0)	(p)	110.
636 ACSR								1
636 ACSR								2
1534 ACAR								3
795 ACSR								4
795 ACSR								5
795 ACSR								6
1534 ACAR								7
795 ACSR								8
795 ACSR								9
795 ACSR								10
636 ACSR								11
636 ACSR								12
795 ACSR								13
636 ACSR								14
795 ACSR								15
636 ACSR								16
1233.6 ACSS								17
636 ACSR								18
1033.5 ACSR								19
1233.6 ACSS								20
636 ACSR								21
1033.5 ACSR								22
636 ACSR								23
636 ACSR								24
1033.5 ACSR								25
1033.5 ACSR								26
1033.5 ACSR								27
1033 5 ACSR								28
1033 5 ACSR								29
1109 ACAR								30
								30
								37
								32
768 2 0 0 22								34
760.2 ACSS								25
700.2 AC33								30
								<u> </u>
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNAT	ION	VOLTAGE (KV	()	Type of	LENGTH	(Pole miles)	
No.			other than	2	Type of	undergro	case of bund lines	Number
			60 cycle, 3 pha	ise)	Supporting	On Structure	Cult miles)	Or
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	BELMONT	PLEASANT VIEW (2180)	230.00	230.00	STEEL TWR	1.11		
2	HATHAWAY	ROCKY MOUNT (2181)	230.00	230.00	CONC HFRM		0.17	1
3	HATHAWAY	ROCKY MOUNT (2181)	230.00	230.00	STEEL POLE		0.06	
4	HATHAWAY	ROCKY MOUNT (2181)	230.00	230.00	STEEL POLE		0.06	
5	HATHAWAY	ROCKY MOUNT (2181)	230.00	230.00	STEEL TWR		3.54	
6	HATHAWAY	ROCKY MOUNT (2181)	230.00	230.00	STEEL TWR	0.10		
7	WHEELER DP (NOVEC)	WHEELER (2182)	230.00	230.00	STEEL TWR	0.03		1
8	POLAND ROAD	BRAMBLETON (2183)	230.00	230.00	STEEL HFRM		0.05	1
9	POLAND ROAD	BRAMBLETON (2183)	230.00	230.00	STEEL POLE		0.09	
10	POLAND ROAD	BRAMBLETON (2183)	230.00	230.00	STEEL POLE		3.69	
11	POLAND ROAD	BRAMBLETON (2183)	230.00	230.00	STEEL POLE	1.50		
12	SHELLHORN	ENTERPRISE (2186)	230.00	230.00	STEEL HFRM		0.09	1
13	SHELLHORN	ENTERPRISE (2186)	230.00	230.00	STEEL POLE	0.57		
14	SHELLHORN	ROUNDTABLE (2188)	230.00	230.00	CONC HFRM		0.04	1
15	SHELLHORN	ROUNDTABLE (2188)	230.00	230.00	STEEL HFRM		0.11	
16	SHELLHORN	ROUNDTABLE (2188)	230.00	230.00	STEEL POLE		1.95	
17	WINTERPOCK	SOUTHWEST (219)	230.00	230.00	CONC HFRM	0.04		1
18	WINTERPOCK	SOUTHWEST (219)	230.00	230.00	STEEL HFRM	4.47		
19	WINTERPOCK	SOUTHWEST (219)	230.00	230.00	STEEL POLE	16.44		
20	WINTERPOCK	SOUTHWEST (219)	230.00	230.00	STEEL TWR	0.33		
21	MOYOCK	SHAWBORO (2192)	230.00	230.00	CONC HFRM	0.06		1
22	MOYOCK	SHAWBORO (2192)	230.00	230.00	STEEL HFRM	0.04		
23	MOYOCK	SHAWBORO (2192)	230.00	230.00	STEEL POLE	7.59		
24	DAVIDS DRIVE	STERLING PARK (2194)	230.00	230.00	STEEL HFRM		0.05	1
25	DAVIDS DRIVE	STERLING PARK (2194)	230.00	230.00	STEEL POLE		0.05	
26	DAVIDS DRIVE	STERLING PARK (2194)	230.00	230.00	STEEL POLE	0.01		
27	DAVIDS DRIVE	STERLING PARK (2194)	230.00	230.00	STEEL TWR	0.54		
28	PORTUGEE	WHITE OAK (2198)	230.00	230.00	CONC HFRM	0.13		1
29	PORTUGEE	WHITE OAK (2198)	230.00	230.00	STEEL POLE	0.39		
30	OX	GUM SPRINGS (220)	230.00	230.00	CONC HFRM	0.16		1
31	OX	GUM SPRINGS (220)	230.00	230.00	CONC HFRM			
32	OX	GUM SPRINGS (220)	230.00	230.00	STEEL POLE		0.06	
33	OX	GUM SPRINGS (220)	230.00	230.00	STEEL POLE	0.15		
34	OX	GUM SPRINGS (220)	230.00	230.00	STEEL POLE	0.35		
35	OX	GUM SPRINGS (220)	230.00	230.00	STEEL POLE	0.14		
36					ΤΟΤΑΙ	5 511 61	1 1/6 50	520
- 30	1					5,544.04	1,140.09	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original	(Mo, Da, Yr)	Year/Period	of Report		
	(2) A Resubmission	11		2010/04		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
768.2 ACSS								1
1109 ACAR								2
1109 ACAR								3
636 ACSR								4
1109 ACAR								5
1109 ACAR								6
636 ACSR								7
795 ACSR								8
636 ACSR								9
795 ACSR								10
636 ACSR								11
636 ACSR								12
636 ACSR								13
636 ACSR								14
636 ACSR								15
636 ACSR								16
721 ACAR								17
721 ACAR								18
721 ACAR								19
721 ACAR								20
636 ACSR								21
636 ACSR								22
636 ACSR								23
1233.6 ACSS								24
1192.5 ACSS								25
1033.5 ACSS								26
1192.5 ACSS								27
636 ACSR								28
636 ACSR								29
1033.5 ACSR								30
1109 ACAR								31
636 ACSR								32
1033.5 ACSR								33
1033.5 ACSS								34
1109 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	ine DESIGNATION No.		VOLTAGE (KV) (Indicate where other than 60 cvcle, 3 phase)		Type of Supporting	LENGTH (In the undergro report cire	Number Of	
	From	То	Operating	Designed	Structure	On Structure of Line	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line (a)	(h)
1	ох	GUM SPRINGS (220)	230.00	230.00	STEEL POLE	2.53	(3)	()
2	OX	GUM SPRINGS (220)	230.00	230.00	STEEL TWR		0.05	
3	ox	GUM SPRINGS (220)	230.00	230.00	STEEL TWR		1.69	
4	OX	GUM SPRINGS (220)	230.00	230.00	STEEL TWR	3.10		
5	OX	GUM SPRINGS (220)	230.00	230.00	STEEL TWR	5.74		
6	OX	GUM SPRINGS (220)	230.00	230.00	STEEL TWR	0.12		
7	NORTHWEST	ELMONT (221)	230.00	230.00	STEEL HFRM		0.25	1
8	NORTHWEST	ELMONT (221)	230.00	230.00	STEEL HFRM	0.11		
9	NORTHWEST	ELMONT (221)	230.00	230.00	STEEL POLE		0.61	
10	NORTHWEST	ELMONT (221)	230.00	230.00	STEEL TWR		4.90	
11	NORTHWEST	ELMONT (221)	230.00	230.00	STEEL TWR	0.10		
12	SOUTHWEST	NORTHWEST (222)	230.00	230.00	CONC HFRM	0.01		1
13	SOUTHWEST	NORTHWEST (222)	230.00	230.00	STEEL HFRM	0.01		
14	SOUTHWEST	NORTHWEST (222)	230.00	230.00	STEEL POLE		0.21	
15	SOUTHWEST	NORTHWEST (222)	230.00	230.00	STEEL POLE	0.18		
16	SOUTHWEST	NORTHWEST (222)	230.00	230.00	STEEL TWR		9.32	
17	SOUTHWEST	NORTHWEST (222)	230.00	230.00	STEEL TWR	0.61		
18	SURRY	YADKIN (223)	230.00	230.00	CONC HFRM	0.04		1
19	SURRY	YADKIN (223)	230.00	230.00	STEEL HFRM	0.05		
20	SURRY	YADKIN (223)	230.00	230.00	STEEL POLE	0.14		
21	SURRY	YADKIN (223)	230.00	230.00	STEEL POLE	0.44		
22	SURRY	YADKIN (223)	230.00	230.00	STEEL TWR	0.07		
23	SURRY	YADKIN (223)	230.00	230.00	STEEL TWR	42.33		
24	SURRY	YADKIN (223)	230.00	230.00	STEEL TWR	1.23		
25	LANEXA	NORTHERN NECK (224)	230.00	230.00	CONC HFRM	0.03		1
26	LANEXA	NORTHERN NECK (224)	230.00	230.00	CONC POLE	0.06		
27	LANEXA	NORTHERN NECK (224)	230.00	230.00	STEEL HFRM	0.32		
28	LANEXA	NORTHERN NECK (224)	230.00	230.00	STEEL HFRM	3.00		
29	LANEXA	NORTHERN NECK (224)	230.00	230.00	STEEL POLE	0.10		
30	LANEXA	NORTHERN NECK (224)	230.00	230.00	STEEL POLE	0.99		
31	LANEXA	NORTHERN NECK (224)	230.00	230.00	STEEL TWR	0.21		
32	LANEXA	NORTHERN NECK (224)	230.00	230.00	STEEL TWR	4.50		
33	LANEXA	NORTHERN NECK (224)	230.00	230.00	WOOD HFRM	0.21		
34	LANEXA	NORTHERN NECK (224)	230.00	230.00	WOOD HFRM	30.58		
35	LANEXA	NORTHERN NECK (224)	230.00	230.00	WOOD POLE	0.11		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of 2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate in a footnote if			

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights,	E (Include in Colum and clearing right-o	nn (j) Land, of-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(0)	(p)	INO.
636 ACSR								1
1033.5 ACSR								2
1109 ACAR								3
1033.5 ACSR								4
1033.5 ACSS								5
1109 ACAR								6
1233.6 ACSS								7
1233.6 ACSS								8
1233.6 ACSS								9
1233.6 ACSS								10
1233.6 ACSS								11
1033.5 ACSR								12
1033.5 ACSR								13
1033.5 ACSR								14
1033.5 ACSR								15
1033.5 ACSR								16
1033.5 ACSR								17
721 ACAR								18
721 ACAR								19
721 ACAR								20
768.2 ACSSUHS								21
2500 ACAR								22
721 ACAR								23
768.2 ACSSUHS								24
1109 ACAR								25
1033.5 ACSS								26
1033.5 ACSS								27
1109 ACAR								28
1033.5 ACSS								29
1109 ACAR								30
1033.5 ACSS								31
1109 ACAR								32
1033.5 ACSS								33
1109 ACAR								34
1033.5 ACSS								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

				Λ				
Line No.	DESIGNAT	IION	VOLTAGE (KV (Indicate where other than	() 8 358)	Type of	LENGTH (In the undergro report cire	(Pole miles) case of ound lines cuit miles)	Number Of
	From	То	Operating	Designed	Structure	On Structure	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated (f)	Line (g)	(h)
1	LANEXA	NORTHERN NECK (224)	230.00	230.00	WOOD POLE	1.25		. ,
2	THELMA	LAKEVIEW (225)	230.00	230.00	STEEL TWR		8.55	1
3	THELMA	LAKEVIEW (225)	230.00	230.00	STEEL TWR	0.13		
4	SURRY	CHURCHLAND (226)	230.00	230.00	CONC HFRM		0.11	1
5	SURRY	CHURCHLAND (226)	230.00	230.00	CONC HFRM		0.16	
6	SURRY	CHURCHLAND (226)	230.00	230.00	STEEL POLE		0.04	
7	SURRY	CHURCHLAND (226)	230.00	230.00	STEEL POLE		0.17	
8	SURRY	CHURCHLAND (226)	230.00	230.00	STEEL POLE	0.17		
9	SURRY	CHURCHLAND (226)	230.00	230.00	STEEL POLE	0.44		
10	SURRY	CHURCHLAND (226)	230.00	230.00	STEEL TWR		33.09	
11	SURRY	CHURCHLAND (226)	230.00	230.00	STEEL TWR	0.05		
12	SURRY	CHURCHLAND (226)	230.00	230.00	STEEL TWR	2.44		
13	SURRY	CHURCHLAND (226)	230.00	230.00	STEEL TWR	1.23		
14	BEAUMEADE	BRAMBLETON (227)	230.00	230.00	CONC HFRM	0.15		1
15	BEAUMEADE	BRAMBLETON (227)	230.00	230.00	CONC HFRM	0.04		
16	BEAUMEADE	BRAMBLETON (227)	230.00	230.00	STEEL HFRM	0.02		
17	BEAUMEADE	BRAMBLETON (227)	230.00	230.00	STEEL HFRM	0.02		
18	BEAUMEADE	BRAMBLETON (227)	230.00	230.00	STEEL POLE		0.04	
19	BEAUMEADE	BRAMBLETON (227)	230.00	230.00	STEEL POLE	0.20		
20	BEAUMEADE	BRAMBLETON (227)	230.00	230.00	STEEL POLE	0.28		
21	BEAUMEADE	BRAMBLETON (227)	230.00	230.00	STEEL POLE	0.14		
22	BEAUMEADE	BRAMBLETON (227)	230.00	230.00	STEEL POLE	0.14		
23	BEAUMEADE	BRAMBLETON (227)	230.00	230.00	STEEL POLE	0.08		
24	BEAUMEADE	BRAMBLETON (227)	230.00	230.00	STEEL TWR	4.84		
25	BEAUMEADE	BRAMBLETON (227)	230.00	230.00	STEEL TWR	7.29		
26	CHESTERFIELD 230	HOPEWELL (228)	230.00	230.00	STEEL POLE		0.59	1
27	CHESTERFIELD 230	HOPEWELL (228)	230.00	230.00	STEEL POLE		0.19	
28	CHESTERFIELD 230	HOPEWELL (228)	230.00	230.00	STEEL POLE	0.11		
29	CHESTERFIELD 230	HOPEWELL (228)	230.00	230.00	STEEL TWR		0.29	
30	CHESTERFIELD 230	HOPEWELL (228)	230.00	230.00	STEEL TWR		9.68	
31	CHESTERFIELD 230	HOPEWELL (228)	230.00	230.00	STEEL TWR	0.22		
32	TARBORO	EDGECOMBE NUG (229)	230.00	230.00	STEEL HFRM	3.82		1
33	TARBORO	EDGECOMBE NUG (229)	230.00	230.00	STEEL POLE	0.23		
34	TARBORO	EDGECOMBE NUG (229)	230.00	230.00	STEEL TWR	2.10		
35	TARBORO	EDGECOMBE NUG (229)	230.00	230.00	WOOD HFRM	10.02		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
1109 ACAR								1
1033.5 ACSR								2
1033.5 ACSR								3
2500 ACAR								4
721 ACAR								5
2500 ACAR								6
721 ACAR								7
2500 ACAR								8
768.2 ACSSUHS								9
721 ACAR								10
2500 ACAR								11
721 ACAR								12
768.2 ACSSUHS								13
1192.5 ACSS								14
1590 ACSR								15
1233.6 ACSS								16
636 ACSR								17
768.2 ACSS								18
1192.5 ACSS								19
1233.6 ACSS								20
1590 ACSR								21
636 ACSR								22
768.2 ACSS								23
1192.5 ACSS								24
1233.6 ACSS								25
1033.5 ACSR								26
1109 ACAR								27
1109 ACAR								28
1033.5 ACSR								29
1109 ACAR								30
1109 ACAR								31
1033.5 ACSR								32
1534 ACAR								33
1033.5 ACSR								34
1033.5 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(2) \square A Resubmission	/ /	End of 2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	N	VOLTAGE (KV	()	Type of	LENGTH	(Pole miles)	Number
No.			other than	, ,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	undergro	ound lines	
			60 cycle, 3 pha	ise)	Supporting	On Structure	On Structures	Circuite
	From	То	Operating	Designed	Structure	of Line Designated	of Another Line	Circuits
	(a)	(b)	(C)	(d)	(e)	(f)	(g)	(h)
1	TARBORO	EDGECOMBE NUG (229)	230.00	230.00	WOOD HFRM	0.10		
2	TARBORO	EDGECOMBE NUG (229)	230.00	230.00	WOOD POLE	0.12		
3	THRASHER	LANDSTOWN (231)	230.00	230.00	CONC HFRM		0.08	1
4	THRASHER	LANDSTOWN (231)	230.00	230.00	CONC HFRM	0.05		
5	THRASHER	LANDSTOWN (231)	230.00	230.00	CONC HFRM	0.03		
6	THRASHER	LANDSTOWN (231)	230.00	230.00	STEEL HFRM	0.04		
7	THRASHER	LANDSTOWN (231)	230.00	230.00	STEEL HFRM	0.17		
8	THRASHER	LANDSTOWN (231)	230.00	230.00	STEEL POLE	0.09		
9	THRASHER	LANDSTOWN (231)	230.00	230.00	STEEL POLE	0.05		
10	THRASHER	LANDSTOWN (231)	230.00	230.00	STEEL POLE	0.38		
11	THRASHER	LANDSTOWN (231)	230.00	230.00	STEEL TWR	0.09		
12	THRASHER	LANDSTOWN (231)	230.00	230.00	STEEL TWR	0.19		
13	THRASHER	LANDSTOWN (231)	230.00	230.00	STEEL TWR	7.59		
14	GASTON HYDRO	THELMA (232)	230.00	230.00	STEEL TWR	0.15		1
15	CHARLOTTESVILLE	DOOMS (233)	230.00	230.00	CONC HFRM	0.17		1
16	CHARLOTTESVILLE	DOOMS (233)	230.00	230.00	CONC HFRM	0.20		
17	CHARLOTTESVILLE	DOOMS (233)	230.00	230.00	STEEL HFRM	0.20		
18	CHARLOTTESVILLE	DOOMS (233)	230.00	230.00	STEEL HFRM	0.07		
19	CHARLOTTESVILLE	DOOMS (233)	230.00	230.00	STEEL POLE	4.67		
20	CHARLOTTESVILLE	DOOMS (233)	230.00	230.00	STEEL POLE	0.28		
21	CHARLOTTESVILLE	DOOMS (233)	230.00	230.00	STEEL TWR	9.13		
22	CHARLOTTESVILLE	DOOMS (233)	230.00	230.00	STEEL TWR	8.05		
23	CHARLOTTESVILLE	DOOMS (233)	230.00	230.00	WOOD POLE	0.09		
24	WHEALTON	WINCHESTER (234)	230.00	230.00	CONC POLE	0.04		1
25	WHEALTON	WINCHESTER (234)	230.00	230.00	STEEL HFRM	0.14		
26	WHEALTON	WINCHESTER (234)	230.00	230.00	STEEL TWR	0.04		
27	FARMVILLE	CLOVER (235)	230.00	230.00	CONC HFRM		0.07	1
28	FARMVILLE	CLOVER (235)	230.00	230.00	CONC POLE	0.06		
29	FARMVILLE	CLOVER (235)	230.00	230.00	STEEL HFRM	5.17		
30	FARMVILLE	CLOVER (235)	230.00	230.00	STEEL POLE	0.45		
31	FARMVILLE	CLOVER (235)	230.00	230.00	STEEL POLE	0.10		
32	FARMVILLE	CLOVER (235)	230.00	230.00	STEEL TWR		4.05	
33	FARMVILLE	CLOVER (235)	230.00	230.00	STEEL TWR	0.35		
34	FARMVILLE	CLOVER (235)	230.00	230.00	WOOD HFRM		0.15	
35	FARMVILLE	CLOVER (235)	230.00	230.00	WOOD HFRM	38.54		
36					TOTAL	5 544 64	1 146 50	520
50	1				_	5,577.04	1,170.37	527

VIRGINIA ELECTRIC AND POWER COMPANY	(1) XAn Original	(Mo, Da, Yr)	End of	of Report 2018/Q4		
	(2) A Resubmission	//				
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate in	a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	line
(i)	(i)	Other Costs	(I)	Expenses	Expenses	(o)	Expenses	No.
1534 ACAR	07	(,	(1)	()	(1)	. ,	(P)	1
1033 5 ACSR								2
1177 AAAC								3
1033.5 ACSR								4
1177 AAAC								5
1033.5 ACSR								6
1109 ACAR								7
1033.5 ACSR								8
1109 ACAR								9
1177 AAAC								10
1033.5 ACSR								11
1109 ACAR								12
1177 AAAC								13
795 ACSR								14
545.6 ACAR								15
636 ACSR								16
545.6 ACAR								17
636 ACSR								18
545.6 ACAR								19
636 ACSR								20
545.6 ACAR								21
636 ACSR								22
545.6 ACAR								23
1534 ACAR								24
1534 ACAR								25
1534 ACAR								26
545.6 ACAR								27
545.6 ACAR								28
545.6 ACAR								29
545.6 ACAR								30
636 ACSR								31
545.6 ACAR								32
545.6 ACAR								33
545.6 ACAR								34
545.6 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	/ 36

me of Respondent RGINIA ELECTRIC AND POWER COMPANY This Report Is: (1) X An Original (2) A Resubmission		Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	NC	VOLTAGE (K\	/)	Type of	LENGTH	(Pole miles)	
No.			other than	9	Type of	undergro	case of bund lines	Number
		1	60 cycle, 3 pha	ase)	Supporting	report circ	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	FARMVILLE	CLOVER (235)	230.00	230.00	WOOD HFRM	2.90		
2	FARMVILLE	CLOVER (235)	230.00	230.00	WOOD POLE	3.21		
3	FARMVILLE	CLOVER (235)	230.00	230.00	WOOD POLE	0.46		
4	SOUTHWEST	PLAZA (236)	230.00	230.00	STEEL POLE		0.55	1
5	SOUTHWEST	PLAZA (236)	230.00	230.00	STEEL POLE	3.18		
6	SOUTHWEST	PLAZA (236)	230.00	230.00	STEEL POLE	0.08		
7	SOUTHWEST	PLAZA (236)	230.00	230.00	STEEL TWR		0.02	
8	SOUTHWEST	PLAZA (236)	230.00	230.00	WOOD POLE	0.11		
9	POSSUM POINT	BRADDOCK (237)	230.00	230.00	CONC HFRM	0.09		1
10	POSSUM POINT	BRADDOCK (237)	230.00	230.00	STEEL HFRM	0.16		
11	POSSUM POINT	BRADDOCK (237)	230.00	230.00	STEEL POLE	1.01		
12	POSSUM POINT	BRADDOCK (237)	230.00	230.00	STEEL POLE	0.53		
13	POSSUM POINT	BRADDOCK (237)	230.00	230.00	STEEL TWR	12.49		
14	POSSUM POINT	BRADDOCK (237)	230.00	230.00	STEEL TWR	7.54		
15	POSSUM POINT	BRADDOCK (237)	230.00	230.00	WOOD POLE	0.11		
16	CARSON	CLUBHOUSE (238)	230.00	230.00	CONC HFRM	0.23		1
17	CARSON	CLUBHOUSE (238)	230.00	230.00	STEEL HFRM	0.32		
18	CARSON	CLUBHOUSE (238)	230.00	230.00	STEEL TWR	0.91		
19	CARSON	CLUBHOUSE (238)	230.00	230.00	WOOD HFRM	26.41		
20	CARSON	CLUBHOUSE (238)	230.00	230.00	WOOD POLE	0.46		
21	LAKEVIEW	HORNERTOWN (239)	230.00	230.00	STEEL POLE	0.02		1
22	LAKEVIEW	HORNERTOWN (239)	230.00	230.00	STEEL TWR		2.10	
23	LAKEVIEW	HORNERTOWN (239)	230.00	230.00	STEEL TWR	0.16		
24	LAKEVIEW	HORNERTOWN (239)	230.00	230.00	WOOD HFRM	1.32		
25	LAKEVIEW	HORNERTOWN (239)	230.00	230.00	WOOD POLE	0.43		
26	SURRY	HOPEWELL (240)	230.00	230.00	CONC HFRM	0.06		1
27	SURRY	HOPEWELL (240)	230.00	230.00	STEEL HFRM	0.15		
28	SURRY	HOPEWELL (240)	230.00	230.00	STEEL POLE		0.08	
29	SURRY	HOPEWELL (240)	230.00	230.00	STEEL TWR		42.63	
30	SURRY	HOPEWELL (240)	230.00	230.00	STEEL TWR	0.04		
31	HAYFIELD	JEFFERSON STREET (241)	230.00	230.00	CONC HFRM	0.02		1
32	HAYFIELD	JEFFERSON STREET (241)	230.00	230.00	STEEL HFRM		0.04	
33	HAYFIELD	JEFFERSON STREET (241)	230.00	230.00	STEEL HFRM		0.11	
34	HAYFIELD	JEFFERSON STREET (241)	230.00	230.00	STEEL HFRM	0.21		
35	HAYFIELD	JEFFERSON STREET (241)	230.00	230.00	STEEL POLE		0.60	
		, , , , , , , , , , , , , , , , , , ,						
26					ΤΟΤΑΙ	551161	1 1/6 50	520
30			1			0,044.04	1,140.39	529
Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4				
--	---	---------------------------------------	-----------------	------------------	--	--		
TRANSMISSION LINE STATISTICS (Continued)								
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if				

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights,	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	INSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
636 ACSR								1
545.6 ACAR								2
636 ACSR								3
721 ACAR								4
2500 ACAR								5
721 ACAR								6
721 ACAR								7
2500 ACAR								8
1033.5 ACSR								9
1033.5 ACSR								10
1033.5 ACSR								11
721 ACAR								12
1033.5 ACSR								13
1033.5 ACSS								14
1033.5 ACSS								15
721 ACAR								16
721 ACAR								17
721 ACAR								18
721 ACAR								19
721 ACAR								20
1033.5 ACSR								21
1033.5 ACSR								22
1033.5 ACSR								23
1033.5 ACSR								24
1033.5 ACSR								25
2500 ACAR								26
2500 ACAR								27
2500 ACAR								28
721 ACAR								29
721 ACAR								30
1033.5 ACSR								31
1033.5 ACSR								32
636 ACSR								33
1033.5 ACSR								34
1033.5 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATION		VOLTAGE (KV)		Type of	LENGTH	(Pole miles)	
No.			(Indicate where other than	Э	Type of	(In the undergro	case of ound lines	Number
			60 cycle, 3 pha	ase)	Supporting	report čir	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	HAYFIELD	JEFFERSON STREET (241)	230.00	230.00	STEEL POLE		1.03	
2	HAYFIELD	JEFFERSON STREET (241)	230.00	230.00	STEEL POLE	0.04		
3	HAYFIELD	JEFFERSON STREET (241)	230.00	230.00	STEEL TWR		4.06	
4	HAYFIELD	JEFFERSON STREET (241)	230.00	230.00	STEEL TWR	0.23		
5	MIDLOTHIAN	COALFIELD RD(STR 16)	230.00	230.00	CONC HFRM	0.08		1
6	MIDLOTHIAN	COALFIELD RD(STR 16)	230.00	230.00	STEEL TWR		0.18	
7	MIDLOTHIAN	COALFIELD RD(STR 16)	230.00	230.00	STEEL TWR	2.82		
8	OX	VAN DORN (243)	230.00	230.00	CONC HFRM		0.15	1
9	OX	VAN DORN (243)	230.00	230.00	STEEL POLE		0.15	
10	OX	VAN DORN (243)	230.00	230.00	STEEL POLE		0.22	
11	OX	VAN DORN (243)	230.00	230.00	STEEL POLE		0.67	
12	OX	VAN DORN (243)	230.00	230.00	STEEL POLE	0.13		
13	OX	VAN DORN (243)	230.00	230.00	STEEL TWR		3.15	
14	OX	VAN DORN (243)	230.00	230.00	STEEL TWR		5.61	
15	ох	VAN DORN (243)	230.00	230.00	STEEL TWR		1.95	
16	ох	VAN DORN (243)	230.00	230.00	STEEL TWR	0.14		
17	BULL RUN	BURKE (244)	230.00	230.00	CONC HFRM	0.02		1
18	BULL RUN	BURKE (244)	230.00	230.00	STEEL HFRM		2.78	
19	BULL RUN	BURKE (244)	230.00	230.00	STEEL HFRM	0.01		
20	BULL RUN	BURKE (244)	230.00	230.00	STEEL HFRM	0.03		
21	BULL RUN	BURKE (244)	230.00	230.00	STEEL POLE		0.01	
22	BULL RUN	BURKE (244)	230.00	230.00	STEEL POLE	6.20		
23	GREEN RUN	GREENWICH (245)	230.00	230.00	CONC HFRM	0.10		1
24	GREEN RUN	GREENWICH (245)	230.00	230.00	CONC POLE	4.12		
25	GREEN RUN	GREENWICH (245)	230.00	230.00	STEEL POLE	0.89		
26	SUFFOLK	FARLEYS (246)	230.00	230.00	CONC HERM	0.05		1
27	SUFFOLK	EARLEYS (246)	230.00	230.00	CONC HERM	0.05		
28	SUFFOLK	EARLEYS (246)	230.00	230.00	CONC POLE	0.04		
29	SUFFOLK	EARLEYS (246)	230.00	230.00	STEEL HERM	0.03		
30	SUFFOLK	EARLEYS (246)	230.00	230.00	STEEL HERM	1.35		
31	SUFFOLK	EARLEYS (246)	230.00	230.00	STEEL POLE		0.21	
32	SUFFOLK	EARLEYS (246)	230.00	230.00	STEEL POLE	0.08		
33	SUFFOLK	EARLEYS (246)	230.00	230.00	STEEL POLE	0.28		
34	SUFFOLK	FARLEYS (246)	230.00	230.00	STEEL POLE	5.37		
35	SUFFOLK	FARLEYS (246)	230.00	230.00	STEEL TWR	3.05		
00			200100	200100		0.00		
					TOTAL			
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights,	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	EXPENSES, EXCEPT DEPRECIATION AND TAXES			
Conductor	.		,,					
and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	_ Total	Line
(i)	(i)	Other Costs (k)	(1)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
636 ACSR	0,	()	()	()	()		(17	1
1033.5 ACSR								2
1033.5 ACSR								3
1033.5 ACSR								4
721 ACAR								5
721 ACAR								6
721 ACAR								7
1033.5 ACSR								8
1033.5 ACSR								9
1033.5 ACSS								10
1109 ACAR								11
1033.5 ACSS								12
1033.5 ACSR								13
1033.5 ACSS								14
1109 ACAR								15
1033.5 ACSS								16
1534 ACAR								17
2500 ACAR								18
1534 ACAR								19
2500 ACAR								20
2500 ACAR								21
1534 ACAR								22
1590 ACSS								23
1590 ACSS								24
1590 ACSS								25
545.6 ACAR								26
636 ACSR								27
636 ACSR								28
1233.6 ACSS285								29
545.6 ACAR								30
545.6 ACAR								31
1233.6 ACSS285								32
545.6 ACAR								33
636 ACSR								34
545.6 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	N	VOLTAGE (K)	/)	Type of	LEŅGŢH	(Pole miles)	
No.			(Indicate where other than	e	i ype oi	(In the undergro	case of bund lines	Number
			60 cycle, 3 pha	ase)	Supporting	report čire	cuit miles)	Of
	From	То	Operating	Designed	Structure		of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated (f)	(g)	(h)
1	SUFFOLK	EARLEYS (246)	230.00	230.00	WOOD HFRM		0.18	
2	SUFFOLK	EARLEYS (246)	230.00	230.00	WOOD HFRM	36.14		
3	SUFFOLK	EARLEYS (246)	230.00	230.00	WOOD POLE	2.81		
4	SUFFOLK	SWAMP (247)	230.00	230.00	CONC HFRM	0.04		1
5	SUFFOLK	SWAMP (247)	230.00	230.00	STEEL HFRM	1.05		
6	SUFFOLK	SWAMP (247)	230.00	230.00	STEEL POLE	0.42		
7	SUFFOLK	SWAMP (247)	230.00	230.00	WOOD HFRM	28.97		
8	SUFFOLK	SWAMP (247)	230.00	230.00	WOOD POLE	0.65		
9	OX	GLEBE (248)	230.00	230.00	CONC HFRM		0.03	1
10	OX	GLEBE (248)	230.00	230.00	CONC HFRM	0.22		
11	OX	GLEBE (248)	230.00	230.00	CONC POLE	0.02		
12	OX	GLEBE (248)	230.00	230.00	STEEL HFRM		0.31	
13	OX	GLEBE (248)	230.00	230.00	STEEL HFRM	0.14		
14	OX	GLEBE (248)	230.00	230.00	STEEL HFRM			
15	OX	GLEBE (248)	230.00	230.00	STEEL POLE		7.31	
16	OX	GLEBE (248)	230.00	230.00	STEEL POLE	6.95		
17	OX	GLEBE (248)	230.00	230.00	STEEL TWR		0.08	
18	OX	GLEBE (248)	230.00	230.00	STEEL TWR	0.04		
19	OX	GLEBE (248)	230.00	230.00	UG UG		0.04	
20	OX	GLEBE (248)	230.00	230.00	UG UG	3.06		
21	LOCKS	CARSON (249)	230.00	230.00	CONC HFRM	0.08		1
22	LOCKS	CARSON (249)	230.00	230.00	CONC HFRM	0.14		
23	LOCKS	CARSON (249)	230.00	230.00	STEEL HFRM	0.12		
24	LOCKS	CARSON (249)	230.00	230.00	STEEL HFRM	1.84		
25	LOCKS	CARSON (249)	230.00	230.00	STEEL POLE		0.03	
26	LOCKS	CARSON (249)	230.00	230.00	STEEL POLE	0.25		
27	LOCKS	CARSON (249)	230.00	230.00	STEEL TWR		0.78	
28	LOCKS	CARSON (249)	230.00	230.00	STEEL TWR		2.46	
29	LOCKS	CARSON (249)	230.00	230.00	STEEL TWR	0.11		
30	LOCKS	CARSON (249)	230.00	230.00	STEEL TWR	0.07		
31	LOCKS	CARSON (249)	230.00	230.00	WOOD HFRM	0.25		
32	LOCKS	CARSON (249)	230.00	230.00	WOOD HFRM	4.57		
33	LOCKS	CARSON (249)	230.00	230.00	WOOD POLE	0.04		
34	LOCKS	CARSON (249)	230.00	230.00	WOOD POLE	0.08		
35	GLEBE	ARLINGTON (250)	230.00	230.00	CONC HFRM	0.04		1
36					TOTAL	5,544.64	1,146.59	529
36					IUIAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	nn (i) Land					Т
Size of	Land rights,	and clearing right-o	f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	-
and Material	(i)	Other Costs		Expenses	Expenses	(0)	Expenses	No
(1)	0)	(К)	(1)	(m)	(n)	(0)	(p)	110.
545.6 ACAR								1
545.6 ACAR								2
545.6 ACAR								3
1109 ACAR	-							4
1109 ACAR	-							5
1109 ACAR	-							6
1109 ACAR								7
1109 ACAR								8
2500 ACAR								9
2500 ACAR								10
2500 ACAR								11
2500 ACAR								12
2500 ACAR								13
2500 CU								14
2500 ACAR								15
2500 ACAR								16
2500 ACAR								17
2500 ACAR								18
2500 CU								19
2500 CU								20
1033.5 ACSR								21
795 ACSR								22
721 ACAR								23
795 ACSR								24
795 ACSR								25
721 ACAR								26
721 ACAR								27
795 ACSR								28
721 ACAR								29
795 ACSR								30
1033.5 ACSR								31
795 ACSR								32
1033.5 ACSR								33
721 ACAR								34
2500 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNATI	ON	VOLTAGE (KV (Indicate where other than 60 cycle, 3 pha	() e use)	Type of Supporting	LENGTH (In the undergro report circ	Number Of	
	From	То	Operating	Designed	Structuro	On Structure	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line	(h)
1	GLEBE	ARLINGTON (250)	230.00	230.00	STEEL POLE	2 55	(9)	(1)
2		GLEN CARLYN (251)	230.00	230.00	CONC HERM	0.02		1
3		GLEN CARLYN (251)	230.00	230.00	CONC POLE	0.03		
4		GLEN CARLYN (251)	230.00	230.00	STEEL POLE	5.07		
5	IDYLWOOD	GLEN CARLYN (251)	230.00	230.00	STEEL POLE	0.01		
6	IDYLWOOD	GLEN CARLYN (251)	230.00	230.00	STEEL TWR	0.15		
7	AQUIA HARBOUR	POSSUM POINT (252)	230.00	230.00	CONC HFRM	0.03		1
8	AQUIA HARBOUR	POSSUM POINT (252)	230.00	230.00	CONC POLE	0.11		
9	AQUIA HARBOUR	POSSUM POINT (252)	230.00	230.00	STEEL HFRM		0.08	
10	AQUIA HARBOUR	POSSUM POINT (252)	230.00	230.00	STEEL HFRM	0.06		
11	AQUIA HARBOUR	POSSUM POINT (252)	230.00	230.00	STEEL POLE	0.15		
12	AQUIA HARBOUR	POSSUM POINT (252)	230.00	230.00	STEEL TWR		10.65	
13	AQUIA HARBOUR	POSSUM POINT (252)	230.00	230.00	STEEL TWR	0.62		
14	AQUIA HARBOUR	POSSUM POINT (252)	230.00	230.00	WOOD HFRM	0.17		
15	HARRISONBURG	VALLEY (253)	230.00	230.00	CONC HFRM	0.05		1
16	HARRISONBURG	VALLEY (253)	230.00	230.00	STEEL POLE		0.05	
17	HARRISONBURG	VALLEY (253)	230.00	230.00	STEEL POLE	0.13		
18	HARRISONBURG	VALLEY (253)	230.00	230.00	STEEL TWR	7.89		
19	HARRISONBURG	VALLEY (253)	230.00	230.00	STEEL TWR	2.50		
20	CLUBHOUSE	LAKEVIEW (254)	230.00	230.00	STEEL HFRM	2.32		1
21	CLUBHOUSE	LAKEVIEW (254)	230.00	230.00	STEEL POLE	0.05		
22	CLUBHOUSE	LAKEVIEW (254)	230.00	230.00	STEEL TWR	0.10		
23	CLUBHOUSE	LAKEVIEW (254)	230.00	230.00	WOOD HFRM	15.10		
24	CLUBHOUSE	LAKEVIEW (254)	230.00	230.00	WOOD POLE	0.44		
25	NORTH ANNA	SOUTH ANNA (255)	230.00	230.00	CONC HFRM	0.04		1
26	NORTH ANNA	SOUTH ANNA (255)	230.00	230.00	CONC HFRM	0.10		
27	NORTH ANNA	SOUTH ANNA (255)	230.00	230.00	CONC POLE	0.10		
28	NORTH ANNA	SOUTH ANNA (255)	230.00	230.00	STEEL HFRM	0.52		
29	NORTH ANNA	SOUTH ANNA (255)	230.00	230.00	STEEL HFRM	22.73		
30	NORTH ANNA	SOUTH ANNA (255)	230.00	230.00	STEEL POLE	7.14		
31	NORTH ANNA	SOUTH ANNA (255)	230.00	230.00	STEEL TWR	0.07		
32	FOUR RIVERS	LADYSMITH CT (256)	230.00	230.00	CONC HFRM	0.17		1
33	FOUR RIVERS	LADYSMITH CT (256)	230.00	230.00	CONC POLE	0.11		
34	FOUR RIVERS	LADYSMITH CT (256)	230.00	230.00	STEEL HFRM	1.91		
35	FOUR RIVERS	LADYSMITH CT (256)	230.00	230.00	STEEL POLE	0.51		
36					IOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	Inis Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of <u>2018/Q4</u>			
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate in a footnote if			

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	nn (j) Land,					Т
Size of	Land rights,	and clearing right-o	if-way)	EXPE	ENSES, EXCEPT DI	PRECIATION ANL	TAXES	
	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	ling
(i)	(i)	Other Costs	(1)	Expenses (m)	Expenses (n)	(0)	Expenses	No.
2500 ACAR	07		()	()	()		(17)	1
1192.5 ACSS								2
1192.5 ACSS								3
1192.5 ACSS								4
1600 AAAC								5
1192.5 ACSS								6
721 ACAR								7
721 ACAR								8
721 ACAR								9
721 ACAR								10
721 ACAR								11
721 ACAR								12
721 ACAR								13
721 ACAR								14
636 ACSR								15
636 ACSR								16
636 ACSR								17
636 ACSR								18
721 ACAR								19
795 ACSR								20
795 ACSR								21
795 ACSR								22
795 ACSR								23
795 ACSR								24
1590 ACSR								25
477 ACSR								26
1590 ACSR								27
1590 ACSR								28
477 ACSR								29
477 ACSR								30
477 ACSR								31
795 ACSR								32
795 ACSR								33
795 ACSR								34
795 ACSR								35
								<u> </u>
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	GINIA ELECTRIC AND POWER COMPANY (1) X An Original (2) A Resubmission		End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNATION VOLTAGE (KV) (Indicate where other than		Type of	Type of LENGTH (Pole miles) (In the case of underground lines report circuit miles)		Number		
			60 cycle, 3 pha	ise)	Supporting	On Structure	On Structures	Circuits
	(a)	10 (b)	Operating (c)	Uesigned (d)	Structure	Designated	Line	(b)
1			230.00	230.00	STEEL TWR	(1)	(g)	(1)
2			230.00	230.00	WOOD HERM	17 99		
3		LADYSMITH CT (256)	230.00	230.00	WOOD POLE	1.69		
4		SEWELLS POINT (257)	230.00	230.00	CONC HERM	0.05		1
5		SEWELLS POINT (257)	230.00	230.00	STEEL HERM	0.06		
6		SEWELLS POINT (257)	230.00	230.00	STEEL POLE	0.01		
7		SEWELLS POINT (257)	230.00	230.00	STEEL POLE	5.07		
. 8		SEWELLS POINT (257)	230.00	230.00	UGUG	1.53		
9	ARLINGTON	GLEBE (258)	230.00	230.00	CONC HERM	0.03		1
10	ARLINGTON	GLEBE (258)	230.00	230.00	STEEL POLE	0.00	2.38	
11	ARLINGTON	GLEBE (258)	230.00	230.00	STEEL POLE	0.06	2100	
12	BASIN	CHESTEREIELD (259)	230.00	230.00	STEEL HERM	0.09		1
13	BASIN	CHESTERFIELD (259)	230.00	230.00	STEEL POLE	0.07	0.50	
14	BASIN	CHESTERFIELD (259)	230.00	230.00	STEEL POLE	4.55		
15	BASIN	CHESTERFIELD (259)	230.00	230.00	STEEL POLE	0.21		
16	BASIN	CHESTERFIELD (259)	230.00	230.00	STEEL POLE	0.27		
17	BASIN	CHESTERFIELD (259)	230.00	230.00	STEEL TWR		3.25	
18	BASIN	CHESTERFIELD (259)	230.00	230.00	STEEL TWR		0.32	
19	BASIN	CHESTERFIELD (259)	230.00	230.00	STEEL TWR	0.18		
20	BASIN	CHESTERFIELD (259)	230.00	230.00	STEEL TWR	0.12		
21	BASIN	CHESTERFIELD (259)	230.00	230.00	STEEL TWR	3.08		
22	GROTTOES	HARRISONBURG (260)	230.00	230.00	STEEL HFRM	3.40		1
23	GROTTOES	HARRISONBURG (260)	230.00	230.00	STEEL HFRM	0.06		
24	GROTTOES	HARRISONBURG (260)	230.00	230.00	STEEL POLE	0.17		
25	GROTTOES	HARRISONBURG (260)	230.00	230.00	WOOD HFRM	6.73		
26	GROTTOES	HARRISONBURG (260)	230.00	230.00	WOOD POLE	0.42		
27	NEWPORT NEWS	SHELLBANK (261)	230.00	230.00	CONC HFRM	0.03		1
28	NEWPORT NEWS	SHELLBANK (261)	230.00	230.00	STEEL HFRM	0.36		
29	NEWPORT NEWS	SHELLBANK (261)	230.00	230.00	STEEL POLE	4.57		
30	NEWPORT NEWS	SHELLBANK (261)	230.00	230.00	STEEL TWR	0.02		
31	GREENWICH	YADKIN (262)	230.00	230.00	CONC HFRM	0.02		1
32	GREENWICH	YADKIN (262)	230.00	230.00	STEEL HFRM	0.15		
33	GREENWICH	YADKIN (262)	230.00	230.00	STEEL POLE	0.43		
34	GREENWICH	YADKIN (262)	230.00	230.00	STEEL POLE	0.04		
35	GREENWICH	YADKIN (262)	230.00	230.00	STEEL TWR	9.92		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights,	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	INSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(0)	. (b)	INO.
795 ACSR								1
795 ACSR								2
795 ACSR								3
2500 ACAR								4
721 ACAR								5
2500 ACAR								6
721 ACAR								7
1250 CU								8
2500 ACAR								9
2500 ACAR								10
2500 ACAR								11
2500 ACAR								12
1033.5 ACSR								13
2500 ACAR								14
636 ACSR								15
721 ACAR								16
1033.5 ACSR								17
2500 ACAR								18
2500 ACAR								19
636 ACSR								20
721 ACAR								21
1109 ACAR								22
636 ACSR								23
1109 ACAR								24
1109 ACAR								25
1109 ACAR								26
1109 ACAR								27
1109 ACAR								28
1109 ACAR								29
1109 ACAR								30
1033.5 ACSR								31
1033 5 ACSR								32
1033 5 ACSR								33
								34
1033 5 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

ame of Respondent This Report Is: IRGINIA ELECTRIC AND POWER COMPANY (1) X An Original (2) A Resubmission		Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

-				()				1
Line No.	DESIGNATIO	JN	VOLTAGE (KV (Indicate where other than		Type of	LENGTH (In the undergro report cire	(Pole miles) case of ound lines cuit miles)	Number Of
	From	То	Operating	Designed	Structure	On Structure of Line	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated (f)	Line (g)	(h)
1	GREENWICH	YADKIN (262)	230.00	230.00	STEEL TWR	0.06		
2	CHUCKATUCK	NEWPORT NEWS (263)	230.00	230.00	CONC HFRM	0.07		1
3	CHUCKATUCK	NEWPORT NEWS (263)	230.00	230.00	STEEL HFRM		0.32	
4	CHUCKATUCK	NEWPORT NEWS (263)	230.00	230.00	STEEL HFRM	0.07		
5	CHUCKATUCK	NEWPORT NEWS (263)	230.00	230.00	STEEL POLE		0.41	
6	CHUCKATUCK	NEWPORT NEWS (263)	230.00	230.00	STEEL POLE		0.15	
7	CHUCKATUCK	NEWPORT NEWS (263)	230.00	230.00	STEEL POLE	0.04		
8	CHUCKATUCK	NEWPORT NEWS (263)	230.00	230.00	STEEL TWR		1.48	
9	CHUCKATUCK	NEWPORT NEWS (263)	230.00	230.00	STEEL TWR		12.50	
10	CHUCKATUCK	NEWPORT NEWS (263)	230.00	230.00	STEEL TWR	0.45		
11	HUNTER	RESTON (264)	230.00	230.00	CONC HFRM	0.05		1
12	HUNTER	RESTON (264)	230.00	230.00	STEEL POLE	0.11		
13	HUNTER	RESTON (264)	230.00	230.00	STEEL TWR	2.61		
14	CLIFTON	SULLY (265)	230.00	230.00	CONC HFRM	0.10		1
15	CLIFTON	SULLY (265)	230.00	230.00	CONC HFRM	0.07		
16	CLIFTON	SULLY (265)	230.00	230.00	CONC POLE	0.14		
17	CLIFTON	SULLY (265)	230.00	230.00	STEEL HFRM	0.17		
18	CLIFTON	SULLY (265)	230.00	230.00	STEEL POLE	0.43		
19	CLIFTON	SULLY (265)	230.00	230.00	STEEL POLE	1.16		
20	CLIFTON	SULLY (265)	230.00	230.00	STEEL POLE	4.91		
21	CLIFTON	SULLY (265)	230.00	230.00	STEEL TWR		0.79	
22	CLIFTON	SULLY (265)	230.00	230.00	STEEL TWR	6.00		
23	CLIFTON	SULLY (265)	230.00	230.00	STEEL TWR	0.10		
24	CLIFTON	SULLY (265)	230.00	230.00	STEEL TWR	0.10		
25	CLIFTON	GLEN CARLYN (266)	230.00	230.00	CONC HFRM	0.11		1
26	CLIFTON	GLEN CARLYN (266)	230.00	230.00	CONC HFRM	0.02		
27	CLIFTON	GLEN CARLYN (266)	230.00	230.00	CONC HFRM	0.11		
28	CLIFTON	GLEN CARLYN (266)	230.00	230.00	CONC POLE		0.02	
29	CLIFTON	GLEN CARLYN (266)	230.00	230.00	CONC POLE	0.02		
30	CLIFTON	GLEN CARLYN (266)	230.00	230.00	STEEL HFRM	0.07		
31	CLIFTON	GLEN CARLYN (266)	230.00	230.00	STEEL HFRM	0.03		
32	CLIFTON	GLEN CARLYN (266)	230.00	230.00	STEEL POLE		4.99	
33	CLIFTON	GLEN CARLYN (266)	230.00	230.00	STEEL POLE		4.46	
34	CLIFTON	GLEN CARLYN (266)	230.00	230.00	STEEL POLE	0.99		
35	CLIFTON	GLEN CARLYN (266)	230.00	230.00	STEEL POLE	0.06		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	nn (j) Land,	EVDE				Τ
Size of	Land rights,	and clearing right-o	if-way)	EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Lino
and Material	(i)	Other Costs	(1)	Expenses	Expenses	(0)	Expenses	No
(1)	0	(K)	(1)	(m)	(n)	(0)	(þ)	1
030 AUSR								1
1534 ACAR								2
1033.5 ACSR								3
1033.5 ACSR								4
1033.5 ACSR								5
1534 ACAR								6
1033.5 ACSR								/
1033.5 ACSR								8
1534 ACAR								9
1033.5 ACSR								10
1192.5 ACSR								11
1192.5 ACSR								12
1192.5 ACSR								13
1033.5 ACSR								14
1590 ACSR								15
1033.5 ACSR								16
1590 ACSR								17
1033.5 ACSR								18
1534 ACAR								19
1590 ACSR								20
1033.5 ACSR								21
1033.5 ACSR								22
1033.5 ACSS								23
1590 ACSR								24
1033.5 ACSR								25
1600 AAAC								26
2500 ACAR								27
1600 AAAC								28
1600 AAAC								29
1033.5 ACSR								30
2500 ACAR								31
1600 AAAC								32
2500 ACAR								33
1033.5 ACSR								34
1600 AAAC								35
100070010								00
	542 402 210	1 121 045 100	1 605 167 227	14 070 455	20 00/ 107	101 / 55	12 074 20	7 00
	000,002,218	4,121,000,109	4,000,407,327	14,070,433	20,004,187	101,000	42,970,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	GINIA ELECTRIC AND POWER COMPANY (1) X An Original (2) A Resubmission		End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATION		VOLTAGE (KV)		Type of	LENGTH (Pole miles)		New 1
No.			(Indicate where other than	e	i ype oi	(In the undergro	case of bund lines	Number
			60 cycle, 3 pha	ase)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	CLIFTON	GLEN CARLYN (266)	230.00	230.00	STEEL POLE	7.67		
2	CLIFTON	GLEN CARLYN (266)	230.00	230.00	STEEL TWR		0.11	
3	CLIFTON	GLEN CARLYN (266)	230.00	230.00	STEEL TWR	6.05		
4	CLIFTON	GLEN CARLYN (266)	230.00	230.00	STEEL TWR	0.07		
5	YADKIN	CHURCHLAND (267)	230.00	230.00	CONC HFRM		0.08	1
6	YADKIN	CHURCHLAND (267)	230.00	230.00	STEEL HFRM		0.05	
7	YADKIN	CHURCHLAND (267)	230.00	230.00	STEEL POLE		0.06	
8	YADKIN	CHURCHLAND (267)	230.00	230.00	STEEL TWR		0.05	
9	YADKIN	CHURCHLAND (267)	230.00	230.00	STEEL TWR		11.08	
10	YADKIN	CHURCHLAND (267)	230.00	230.00	STEEL TWR	0.09		
11	HOPEWELL	COGENTRIX (268)	230.00	230.00	CONC HFRM	0.04		1
12	HOPEWELL	COGENTRIX (268)	230.00	230.00	CONC POLE	0.58		
13	HOPEWELL	COGENTRIX (268)	230.00	230.00	STEEL POLE	0.38		
14	FENTRESS	SHAWBORO (269)	230.00	230.00	CONC HFRM	0.12		1
15	FENTRESS	SHAWBORO (269)	230.00	230.00	CONC HFRM	0.12		
16	FENTRESS	SHAWBORO (269)	230.00	230.00	STEEL HFRM	0.54		
17	FENTRESS	SHAWBORO (269)	230.00	230.00	STEEL POLE	0.36		
18	FENTRESS	SHAWBORO (269)	230.00	230.00	STEEL TWR	4.22		
19	FENTRESS	SHAWBORO (269)	230.00	230.00	WOOD HFRM	18.94		
20	FENTRESS	SHAWBORO (269)	230.00	230.00	WOOD POLE	1.05		
21	BURKE	RAVENSWORTH (270)	230.00	230.00	CONC HFRM	0.01		1
22	BURKE	RAVENSWORTH (270)	230.00	230.00	STEEL POLE	2.95		
23	BURKE	RAVENSWORTH (270)	230.00	230.00	UG UG	0.01		
24	BURKE	RAVENSWORTH (270)	230.00	230.00	UG UG	2.17		
25	FENTRESS	LANDSTOWN (271)	230.00	230.00	CONC HFRM	0.04		1
26	FENTRESS	LANDSTOWN (271)	230.00	230.00	STEEL POLE	0.20		
27	FENTRESS	LANDSTOWN (271)	230.00	230.00	STEEL TWR	8.75		
28	DOOMS	GROTTOES (272)	230.00	230.00	CONC HFRM			1
29	DOOMS	GROTTOES (272)	230.00	230.00	STEEL HFRM	0.21		
30	DOOMS	GROTTOES (272)	230.00	230.00	STEEL POLE	0.06		
31	DOOMS	GROTTOES (272)	230.00	230.00	STEEL POLE	0.17		
32	DOOMS	GROTTOES (272)	230.00	230.00	STEEL TWR	10.99		
33	DOOMS	GROTTOES (272)	230.00	230.00	WOOD HFRM		0.04	
34	GLEN CARLYN	ARLINGTON (273)	230.00	230.00	CONC POLE		0.02	1
35	GLEN CARLYN	ARLINGTON (273)	230.00	230.00	STEEL POLE		2.31	
26					ΤΟΤΑΙ	5 511 61	1 1/6 50	520
30						5,544.04	1,140.09	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if			

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights,	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
2500 ACAR								1
1600 AAAC								2
1033.5 ACSR								3
2500 ACAR								4
2500 ACAR								5
721 ACAR								6
2500 ACAR								7
2500 ACAR								8
721 ACAR								9
721 ACAR								10
1109 ACAR								11
1109 ACAR								12
1109 ACAR								13
2500 ACAR								14
545.6 ACAR								15
545.6 ACAR								16
545.6 ACAR								17
545.6 ACAR								18
545.6 ACAR								19
545.6 ACAR								20
1534 ACAR								21
1534 ACAR								22
1534 ACAR								23
1750 CU								24
2500 ACAR								25
721 ACAR								26
721 ACAR								27
2500 ACAR								28
2500 ACAR								29
2500 ACAR								30
721 ACAR								31
721 ACAR								32
2500 ACAR								33
								34
								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	TRANSMISSION LINE STATIST	ĊS	

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	e DESIGNATION		VOLTAGE (KV)		Type of LENGTH (Pole miles)			
No.			other than	9	Type of	(In the undergro	case of bund lines	Number
		1	60 cycle, 3 pha	ase)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	GLEN CARLYN	ARLINGTON (273)	230.00	230.00	STEEL POLE	0.03		
2	BEAUMEADE	PLEASANT VIEW (274)	230.00	230.00	CONC HFRM		0.16	1
3	BEAUMEADE	PLEASANT VIEW (274)	230.00	230.00	CONC HFRM		0.04	
4	BEAUMEADE	PLEASANT VIEW (274)	230.00	230.00	STEEL POLE		0.20	
5	BEAUMEADE	PLEASANT VIEW (274)	230.00	230.00	STEEL POLE		0.10	
6	BEAUMEADE	PLEASANT VIEW (274)	230.00	230.00	STEEL POLE	0.04		
7	BEAUMEADE	PLEASANT VIEW (274)	230.00	230.00	STEEL TWR		4.90	
8	GLEBE	CRYSTAL (275)	230.00	230.00	UG UG	1.15		1
9	GLEBE	CRYSTAL (276)	230.00	230.00	UG UG		1.17	1
10	GLEN CARLYN	CLARENDON (277)	230.00	230.00	UG UG	1.93		1
11	GLEN CARLYN	CLARENDON (278)	230.00	230.00	UG UG		1.93	1
12	THRASHER	REEVES AVENUE (279)	230.00	230.00	CONC HFRM		0.06	1
13	THRASHER	REEVES AVENUE (279)	230.00	230.00	CONC HFRM		0.04	
14	THRASHER	REEVES AVENUE (279)	230.00	230.00	CONC HFRM	0.05		
15	THRASHER	REEVES AVENUE (279)	230.00	230.00	STEEL HFRM	0.08		
16	THRASHER	REEVES AVENUE (279)	230.00	230.00	STEEL HFRM	0.03		
17	THRASHER	REEVES AVENUE (279)	230.00	230.00	STEEL HFRM	0.22		
18	THRASHER	REEVES AVENUE (279)	230.00	230.00	STEEL POLE		3.42	
19	THRASHER	REEVES AVENUE (279)	230.00	230.00	STEEL POLE	0.08		
20	THRASHER	REEVES AVENUE (279)	230.00	230.00	STEEL POLE	2.14		
21	THRASHER	REEVES AVENUE (279)	230.00	230.00	STEEL TWR		0.39	
22	MARSH RUN CT	REMINGTON (280)	230.00	230.00	CONC HFRM	0.08		1
23	MARSH RUN CT	REMINGTON (280)	230.00	230.00	STEEL POLE	0.06		
24	MARSH RUN CT	REMINGTON (280)	230.00	230.00	STEEL TWR	0.34		
25	MARSH RUN CT	REMINGTON (280)	230.00	230.00	STEEL TWR	0.73		
26	RAVENSWORTH	BRADDOCK (281)	230.00	230.00	CONC HFRM		0.11	1
27	RAVENSWORTH	BRADDOCK (281)	230.00	230.00	STEEL POLE		1.81	
28	RAVENSWORTH	BRADDOCK (281)	230.00	230.00	STEEL POLE	0.12		
29	MIDLOTHIAN	SPRUANCE NUG (282)	230.00	230.00	CONC HFRM		0.05	1
30	MIDLOTHIAN	SPRUANCE NUG (282)	230.00	230.00	CONC HFRM	0.07		
31	MIDLOTHIAN	SPRUANCE NUG (282)	230.00	230.00	STEEL HFRM		0.08	
32	MIDLOTHIAN	SPRUANCE NUG (282)	230.00	230.00	STEEL HFRM		0.14	
33	MIDLOTHIAN	SPRUANCE NUG (282)	230.00	230.00	STEEL POLE		2.81	
34	MIDLOTHIAN	SPRUANCE NUG (282)	230.00	230.00	STEEL POLE		7.12	
35	MIDLOTHIAN	SPRUANCE NUG (282)	230.00	230.00	STEEL POLE	0.59		
26					ΤΟΤΑΙ	5 511 61	1 1/6 50	520
- 50						J,J44.04	1,140.07	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if			

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights,	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	INSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Lino
(i)	(i)	Other Costs	Ф	Expenses (m)	Expenses	(o)	Expenses	No.
1600 AAAC	0,	()	(7	(,	(1)		(F7	1
1192.5 ACSS								2
1590 ACSR								3
1192.5 ACSR								4
1590 ACSR								5
1590 ACSR								6
1192.5 ACSR								7
1750 CU								8
1750 CU								9
1750 CU								10
1750 CU								11
2500 ACAR								12
721 ACAR								13
2500 ACAR								14
2500 ACAR								15
636 ACSR								16
721 ACAR								17
721 ACAR								18
2500 ACAR								19
721 ACAR								20
721 ACAR								21
795 ACSS								22
795 ACSS								23
795 ACSR								24
795 ACSS								25
2500 ACAR								26
2500 ACAR								27
2500 ACAR								28
721 ACAR								29
721 ACAR								30
2500 ACAR								31
721 ACAR								32
2500 ACAR								33
721 ACAR								34
2500 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	TRANSMISSION LINE STATIST	ĊS	

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATION		DESIGNATION VOLTAGE (KV)		Type of	LENGTH (Pole miles)		Number
No.			other than	e	Type of	(In the undergro	case of bund lines	Number
			60 cycle, 3 pha	ase)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	MIDLOTHIAN	SPRUANCE NUG (282)	230.00	230.00	STEEL POLE	0.44		
2	MIDLOTHIAN	SPRUANCE NUG (282)	230.00	230.00	STEEL TWR		0.30	
3	MIDLOTHIAN	SPRUANCE NUG (282)	230.00	230.00	STEEL TWR		4.83	
4	MIDLOTHIAN	SPRUANCE NUG (282)	230.00	230.00	STEEL TWR	5.32		
5	NORTHEAST	ELMONT (283)	230.00	230.00	STEEL HFRM	0.15		1
6	NORTHEAST	ELMONT (283)	230.00	230.00	STEEL HFRM	1.87		
7	NORTHEAST	ELMONT (283)	230.00	230.00	STEEL POLE	0.05		
8	NORTHEAST	ELMONT (283)	230.00	230.00	STEEL POLE	0.07		
9	NORTHEAST	ELMONT (283)	230.00	230.00	STEEL TWR	5.31		
10	NORTHEAST	ELMONT (283)	230.00	230.00	WOOD HFRM	5.21		
11	NORTHEAST	ELMONT (283)	230.00	230.00	WOOD POLE	0.62		
12	BASIN	NORTHEAST (284)	230.00	230.00	STEEL POLE	0.06		1
13	BASIN	NORTHEAST (284)	230.00	230.00	STEEL POLE	0.13		
14	BASIN	NORTHEAST (284)	230.00	230.00	STEEL TWR	0.04		
15	BASIN	NORTHEAST (284)	230.00	230.00	STEEL TWR	0.07		
16	BASIN	NORTHEAST (284)	230.00	230.00	STEEL TWR	5.06		
17	BASIN	NORTHEAST (284)	230.00	230.00	STEEL TWR	1.06		
18	BASIN	NORTHEAST (284)	230.00	230.00	WOOD HFRM	1.93		
19	BASIN	NORTHEAST (284)	230.00	230.00	WOOD POLE	0.22		
20	WALLER	YORKTOWN (285)	230.00	230.00	STEEL HFRM	0.15		1
21	WALLER	YORKTOWN (285)	230.00	230.00	STEEL POLE		0.22	
22	WALLER	YORKTOWN (285)	230.00	230.00	STEEL POLE	3.22		
23	WALLER	YORKTOWN (285)	230.00	230.00	STEEL TWR		0.09	
24	WALLER	YORKTOWN (285)	230.00	230.00	STEEL TWR		0.17	
25	WALLER	YORKTOWN (285)	230.00	230.00	STEEL TWR		7.05	
26	WALLER	YORKTOWN (285)	230.00	230.00	STEEL TWR	0.05		
27	WALLER	YORKTOWN (285)	230.00	230.00	STEEL TWR	0.24		
28	WALLER	YORKTOWN (285)	230.00	230.00	STEEL TWR	0.06		
29	DARBYTOWN	WHITE OAK (286)	230.00	230.00	CONC HFRM	0.11		1
30	DARBYTOWN	WHITE OAK (286)	230.00	230.00	CONC HFRM	0.08		
31	DARBYTOWN	WHITE OAK (286)	230.00	230.00	CONC POLE	0.03		
32	DARBYTOWN	WHITE OAK (286)	230.00	230.00	CONC POLE	0.05		
33	DARBYTOWN	WHITE OAK (286)	230.00	230.00	STEEL POLE	3.43		
34	DARBYTOWN	WHITE OAK (286)	230.00	230.00	STEEL POLE	0.17		
35	DARBYTOWN	WHITE OAK (286)	230.00	230.00	STEEL TWR		4.40	
36					TOTAL	5,544.64	1,146.59	529
29 30 31 32 33 34 35 35	DARBYTOWN DARBYTOWN DARBYTOWN DARBYTOWN DARBYTOWN DARBYTOWN DARBYTOWN	WHITE OAK (286) WHITE OAK (286)	230.00 230.00 230.00 230.00 230.00 230.00 230.00	230.00 230.00 230.00 230.00 230.00 230.00 230.00	CONC HFRM CONC HFRM CONC POLE CONC POLE STEEL POLE STEEL POLE STEEL TWR	0.11 0.08 0.03 0.05 3.43 0.17 5,544.64	4.40	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	Inis Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of <u>2018/Q4</u>					
TRANSMISSION LINE STATISTICS (Continued)								
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate in a footnote if					

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights, a	E (Include in Colum and clearing right-o	nn (j) Land, ıf-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	_ Total	Line
(i)	(j)	Other Costs (k)	(1)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
721 ACAR		. ,	()	· · ·	()		,	1
2500 ACAR								2
721 ACAR								3
721 ACAR								4
636 ACSR								5
721 ACAR								6
636 ACSR								7
721 ACAR								8
721 ACAR								9
721 ACAR								10
721 ACAR								11
1033.5 ACSS								12
721 ACAR								13
1033.5 ACSS								14
636 ACSR								15
721 ACAR								16
874.5 ACSS								17
721 ACAR								18
721 ACAR								19
636 ACSR								20
721 ACAR								21
721 ACAR								22
2500 ACAR								23
636 ACSR								24
721 ACAR								25
2500 ACAR								26
636 ACSR								27
721 ACAR								28
2500 ACAR								29
636 ACSR								30
2500 ACAR								31
721 ACAR								32
636 ACSR								33
721 ACAR								34
721 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2018/Q4
	TRANSMISSION LINE STATISTI	CS	

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line DESIGNATION VOLTAGE (KV) Type of LENGTH	Type of LENGTH (Pole miles)	
No. (Indicate where (Indicate where undergr	underground lines	
60 cycle, 3 phase) Supporting report cir	cuit miles)	Of
From To Operating Designed Structure of Line	of Another	Circuits
(a) (b) (c) (d) (e) Designated (f)	(g)	(h)
1 DARBYTOWN WHITE OAK (286) 230.00 STEEL TWR 5.68	}	
2 CHESTERFIELD 230 CHICKAHOMINY (287) 230.00 CONC POLE 0.12	,	1
3 CHESTERFIELD 230 CHICKAHOMINY (287) 230.00 STEEL HFRM 2.27	/	
4 CHESTERFIELD 230 CHICKAHOMINY (287) 230.00 STEEL POLE 0.15)	
5 CHESTERFIELD 230 CHICKAHOMINY (287) 230.00 STEEL TWR	0.59	
6 CHESTERFIELD 230 CHICKAHOMINY (287) 230.00 STEEL TWR 0.07	/	
7 CHESTERFIELD 230 CHICKAHOMINY (287) 230.00 STEEL TWR 0.06)	
8 CHESTERFIELD 230 CHICKAHOMINY (287) 230.00 230.00 WOOD HFRM	0.05	
9 CHESTERFIELD 230 CHICKAHOMINY (287) 230.00 230.00 WOOD HFRM 10.95)	
10 CHESTERFIELD 230 CHICKAHOMINY (287) 230.00 230.00 WOOD HFRM 0.05)	
11 CHESTERFIELD 230 CHICKAHOMINY (287) 230.00 WOOD POLE 0.40)	
12 YORKTOWN PENINSULA (288) 230.00 CONC HFRM 0.06)	1
13 YORKTOWN PENINSULA (288) 230.00 STEEL HFRM 0.47	,	
14 YORKTOWN PENINSULA (288) 230.00 STEEL POLE 0.53	\$	
15 YORKTOWN PENINSULA (288) 230.00 STEEL TWR 7.78	}	
16 YORKTOWN PENINSULA (288) 230.00 WOOD HFRM 2.05)	
17 YORKTOWN PENINSULA (288) 230.00 WOOD POLE 0.26)	
18 SUFFOLK CHUCKATUCK (289) 230.00 CONC HFRM 0.05		1
19 SUFFOLK CHUCKATUCK (289) 230.00 CONC HFRM 0.03	\$	
20 SUFFOLK CHUCKATUCK (289) 230.00 CONC HFRM 0.04	ł	
21 SUFFOLK CHUCKATUCK (289) 230.00 CONC POLE 0.03	\$	
22 SUFFOLK CHUCKATUCK (289) 230.00 STEEL POLE 0.11	1	
23 SUFFOLK CHUCKATUCK (289) 230.00 STEEL TWR	4.48	
24 SUFFOLK CHUCKATUCK (289) 230.00 STEEL TWR 9.93	\$	
25 SUFFOLK CHUCKATUCK (289) 230.00 WOOD POLE 0.04	ł	
26 SUFFOLK CHUCKATUCK (289) 230.00 WOOD POLE 0.14	ł	
27 SURRY CHUCKATUCK (290) 230.00 CONC HFRM 0.07	/	1
28 SURRY CHUCKATUCK (290) 230.00 CONC POLE	0.10	
29 SURRY CHUCKATUCK (290) 230.00 STEEL POLE	0.12	
30 SURRY CHUCKATUCK (290) 230.00 STEEL TWR	22.83	
31 SURRY CHUCKATUCK (290) 230.00 STEEL TWR 0.64	Ĺ	
32 CHARLOTTESVILLE DOOMS (291) 230.00 CONC HFRM 0.30)	1
33 CHARLOTTESVILLE DOOMS (291) 230.00 CONC POLE 0.06)	
34 CHARLOTTESVILLE DOOMS (291) 230.00 STEEL HFRM 0.04	ł	
35 CHARLOTTESVILLE DOOMS (291) 230.00 STEEL POLE	4.90	
36 TOTAL 5.544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if							

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	nn (j) Land,					Т
Size of	Land rights,	and clearing right-o	of-way)	EXPE	ENSES, EXCEPT DE	PRECIATION ANL	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	ling
and Material	(i)	Other Costs	(1)	Expenses	Expenses	(0)	Expenses	No.
(1)	0	(K)	(1)	(m)	(n)	(0)	(þ)	1
								1
1033.5 ACSR								2
1033.5 ACSR								3
1033.5 ACSR								4
1033.5 ACSR								5
1033.5 ACSR								6
795 ACSR								/
1033.5 ACSR								8
1033.5 ACSR								9
795 ACSR								10
1033.5 ACSR								11
2500 ACAR								12
721 ACAR								13
721 ACAR								14
721 ACAR								15
721 ACAR								16
721 ACAR								17
1033.5 ACSR								18
2500 ACAR								19
721 ACAR								20
1033.5 ACSR								21
2500 ACAR								22
721 ACAR								23
721 ACAR								24
2500 ACAR								25
721 ACAR								26
2500 ACAR								27
721 ACAR								28
721 ACAR								29
721 ACAR								30
721 ACAR								31
545.6 ACAR								32
545.6 ACAR								33
545.6 ACAR								34
545 6 ACAR								35
	F/0 /00 010	4 104 0/5 4 22	1/05 1/3 003	44.070	00.004.607	404 (55	10.077.001	
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(2) A Resubmission	/ /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	NC	VOLTAGE (K	/)	Type of	LEŅGŢH	(Pole miles)	
No.			other than	e	Type of	(In the case of underground lines		Number
		1	60 cycle, 3 pha	ase)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(C)	(d)	(e)	(f)	(g)	(h)
1	CHARLOTTESVILLE	DOOMS (291)	230.00	230.00	STEEL POLE	0.30		
2	CHARLOTTESVILLE	DOOMS (291)	230.00	230.00	STEEL TWR		16.75	
3	CHARLOTTESVILLE	DOOMS (291)	230.00	230.00	STEEL TWR	0.22		
4	CHARLOTTESVILLE	DOOMS (291)	230.00	230.00	WOOD POLE	0.03		
5	CHARLOTTESVILLE	DOOMS (291)	230.00	230.00	WOOD POLE	0.02		
6	YORKTOWN	WHEALTON (292)	230.00	230.00	CONC HFRM		0.06	1
7	YORKTOWN	WHEALTON (292)	230.00	230.00	STEEL HFRM		0.21	
8	YORKTOWN	WHEALTON (292)	230.00	230.00	STEEL HFRM	0.34		
9	YORKTOWN	WHEALTON (292)	230.00	230.00	STEEL HFRM	0.60		
10	YORKTOWN	WHEALTON (292)	230.00	230.00	STEEL POLE		9.00	
11	YORKTOWN	WHEALTON (292)	230.00	230.00	STEEL POLE	0.22		
12	YORKTOWN	WHEALTON (292)	230.00	230.00	STEEL TWR		0.07	
13	YORKTOWN	WHEALTON (292)	230.00	230.00	STEEL TWR		1.36	
14	YORKTOWN	WHEALTON (292)	230.00	230.00	WOOD HFRM	1.92		
15	YORKTOWN	WHEALTON (292)	230.00	230.00	WOOD POLE		0.10	
16	YORKTOWN	WHEALTON (292)	230.00	230.00	WOOD POLE	0.26		
17	STAUNTON	VALLEY (293)	230.00	230.00	CONC POLE	0.13		1
18	STAUNTON	VALLEY (293)	230.00	230.00	STEEL HFRM	1.04		
19	STAUNTON	VALLEY (293)	230.00	230.00	STEEL POLE		1.23	
20	STAUNTON	VALLEY (293)	230.00	230.00	STEEL POLE	0.68		
21	STAUNTON	VALLEY (293)	230.00	230.00	STEEL TWR		2.67	
22	STAUNTON	VALLEY (293)	230.00	230.00	STEEL TWR	0.16	-	
23	STAUNTON	VALLEY (293)	230.00	230.00	WOOD HFRM	14.08		
24	STAUNTON	VALLEY (293)	230.00	230.00	WOOD POLE	1.49		
25		BRADDOCK (294)	230.00	230.00	UGUG	3.53		1
26		BULL RUN (295)	230.00	230.00	CONC POLE		0.08	1
27		BULL RUN (295)	230.00	230.00	CONC POLE	0.05		
28		BULL RUN (295)	230.00	230.00	STEEL HERM	0.04		
29		BULL RUN (295)	230.00	230.00	STEEL POLE		0.08	
30		BULL RUN (295)	230.00	230.00	STEEL POLE	0.09		
31		BULL RUN (295)	230.00	230.00	STEEL TWR	0.07	3 77	
32		BULL RUN (295)	230.00	230.00	STEEL TWR	0.60		
33		PERSON (CP&I.) (296)	230.00	230.00	STEEL HERM	4 60		1
34	SEDGE HILL	PERSON (CP&I.) (296)	230.00	230.00	STEEL HERM	0.06		
35	SEDGE HILL	PERSON (CP&I.) (296)	230.00	230.00	STEEL POLE	1.38		
00			200100	200100				
					TOTAL			F.0.2
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original	(Mo, Da, Yr)	Year/Period	of Report		
	(2) A Resubmission	11		2010/04		
TRANSMISSION LINE STATISTICS (Continued)						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	on (i) Land					1
Size of Land rights, and clearing right-			f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	DTAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	1
and Material (i)	(j)	Other Costs (k)	(I)	Expenses (m)	Expenses	(0)	Expenses	No.
545.6 ACAR			()	()	()		(17)	1
545.6 ACAR								2
545.6 ACAR								3
1033.5 ACSR								4
545.6 ACAR								5
2500 ACAR								6
636 ACSR								7
636 ACSR								8
721 ACAR								9
636 ACSR								10
721 ACAR								11
636 ACSR								12
721 ACAR								13
721 ACAR								14
721 ACAR								15
721 ACAR								16
545.6 ACAR								17
545.6 ACAR								18
545.6 ACAR								19
545.6 ACAR								20
545.6 ACAR								21
545.6 ACAR								22
545.6 ACAR								23
545.6 ACAR								24
2500 CU								25
1033.5 ACSR								26
1033.5 ACSR								27
1233.6 ACSS								28
1033.5 ACSR								29
1233.6 ACSS								30
1033.5 ACSR								31
1033.5 ACSR								32
571.7 ACSS								33
636 ACSR								34
571.7 ACSS								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	NC	VOLTAGE (KV	′)	Type of	LEŅGŢH	(Pole miles)	
No.			(Indicate where other than	e	i ype oi	(In the undergro	case of ound lines	Number
			60 cycle, 3 pha	ase)	Supporting	report čiro	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(C)	(d)	(e)	Designated (f)	(g)	(h)
1	SEDGE HILL	PERSON (CP&L) (296)	230.00	230.00	WOOD HFRM	13.96		
2	ANNANDALE	BRADDOCK (297)	230.00	230.00	UG UG		3.51	1
3	ANNANDALE	BRADDOCK (297)	230.00	230.00	UG UG	0.03		
4	BREMO	FARMVILLE (298)	230.00	230.00	CONC HFRM	14.89		1
5	BREMO	FARMVILLE (298)	230.00	230.00	CONC POLE	0.57		
6	BREMO	FARMVILLE (298)	230.00	230.00	STEEL HFRM	1.39		
7	BREMO	FARMVILLE (298)	230.00	230.00	STEEL POLE	0.10		
8	BREMO	FARMVILLE (298)	230.00	230.00	STEEL TWR		0.04	
9	BREMO	FARMVILLE (298)	230.00	230.00	WOOD HFRM	11.06		
10	BREMO	FARMVILLE (298)	230.00	230.00	WOOD POLE	0.02		
11	BREMO	FARMVILLE (298)	230.00	230.00	WOOD POLE	0.23		
12	MARSH RUN CT	REMINGTON CT (299)	230.00	230.00	CONC HFRM		0.08	1
13	MARSH RUN CT	REMINGTON CT (299)	230.00	230.00	STEEL POLE		0.03	
14	MARSH RUN CT	REMINGTON CT (299)	230.00	230.00	STEEL POLE	0.52		
15	MARSH RUN CT	REMINGTON CT (299)	230.00	230.00	STEEL TWR		1.04	
16	MARSH RUN CT	REMINGTON CT (299)	230.00	230.00	STEEL TWR		0.03	
17								
18	TOTAL					2,121.37	806.06	267
19								
20	EAST MILL	WESTVACO (109)	138.00	138.00	CONC TWR	0.09		1
21	EAST MILL	WESTVACO (109)	138.00	138.00	STEEL POLE	0.80		
22	LOW MOOR	FUDGE HOLLOW (112)	138.00	138.00	CONC POLE	0.04		1
23	LOW MOOR	FUDGE HOLLOW (112)	138.00	138.00	STEEL POLE	1.40		
24	LOW MOOR	FUDGE HOLLOW (112)	138.00	138.00	STEEL TWR	0.57		
25	LOW MOOR	FUDGE HOLLOW (112)	138.00	138.00	STEEL TWR	1.27		
26	LOW MOOR	FUDGE HOLLOW (112)	138.00	138.00	STEEL TWR	3.91		
27	LOW MOOR	FUDGE HOLLOW (112)	138.00	138.00	STEEL TWR	0.02		
28	LOW MOOR	FUDGE HOLLOW (112)	138.00	138.00	WOOD POLE	0.11		
29	CLIFTON FORGE	LOW MOOR (133)	138.00	230.00	STEEL POLE	0.03		1
30	CLIFTON FORGE	LOW MOOR (133)	138.00	230.00	STEEL TWR		0.57	
31	CLIFTON FORGE	LOW MOOR (133)	138.00	230.00	STEEL TWR	4.39		
32	CLIFTON FORGE	LOW MOOR (133)	138.00	230.00	STEEL TWR	0.08		
33	FUDGE HOLLOW	HINTON (14)	138.00	138.00	CONC TWR	0.11		1
34	FUDGE HOLLOW	HINTON (14)	138.00	138.00	STEEL HFRM	0.12		
35	FUDGE HOLLOW	HINTON (14)	138.00	138.00	STEEL HFRM	0.02		
36					ΤΟΤΑΙ	5 5// 6/	1 1/6 50	520
50	1				· · · · · -	5,577.04	1,140.37	527

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate i	n a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

		E (Include in Colum	an (i) Lond					1
Size of	Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor	Land	Construction and	Total Cost	Operation	Maintonanco	Ponts	Total	
and Material	Lanu	Other Costs	TOTAL COST	Expenses	Expenses	Kenis	Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(0)	. (b)	INO.
571.7 ACSS								1
2500 CU								2
2500 CU								3
545.6 ACAR								4
545.6 ACAR								5
545.6 ACAR								6
545.6 ACAR								7
1590 AAC								8
545.6 ACAR								9
1590 AAC								10
545.6 ACAR								11
795 ACSS								12
545.6 ACAR								13
636 ACSR								14
545.6 ACAR								15
795 ACSS								16
	240,527,552	1,959,130,567	2,199,658,119	6,166,046	12,622,758	44,548	18.833.352	17
	240,527,552	1,959,130,567	2,199,658,119	6,166,046	12,622,758	44,548	18.833.352	18
								19
636 ACSR								20
636 ACSR								21
336.4 ACSR								22
721 ACAR								23
1109 ACAR								24
336.4 ACSR								25
36617 ACSR								26
477 ACSR								27
336.4 ACSR								28
1033.5 ACSR								29
1109 ACAR								30
1033.5 ACSR								31
1109 ACAR								32
36617 ACSR								33
36617 ACSR								34
636 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	ON	VOLTAGE (KV	()	Type of	LENGTH	(Pole miles)	
No.			other than		Type of	(In the undergro	case of bund lines	Number
		1	60 cycle, 3 pha	ase)	Supporting	report circ	Cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	FUDGE HOLLOW	HINTON (14)	138.00	138.00	STEEL TWR	14.79		
2	EDINBURG	STRASBURG (152)	138.00	138.00	CONC HFRM	0.04		1
3	EDINBURG	STRASBURG (152)	138.00	138.00	STEEL HFRM	0.22		
4	EDINBURG	STRASBURG (152)	138.00	138.00	STEEL POLE	1.58		
5	EDINBURG	STRASBURG (152)	138.00	138.00	WOOD HFRM	0.57		
6	EDINBURG	STRASBURG (152)	138.00	138.00	WOOD POLE	14.20		
7	WESTVACO	FUDGE HOLLOW (155)	138.00	138.00	CONC POLE	0.04		1
8	WESTVACO	FUDGE HOLLOW (155)	138.00	138.00	STEEL POLE		0.03	
9	WESTVACO	FUDGE HOLLOW (155)	138.00	138.00	STEEL POLE		0.23	
10	WESTVACO	FUDGE HOLLOW (155)	138.00	138.00	STEEL POLE	1.30		
11	WESTVACO	FUDGE HOLLOW (155)	138.00	138.00	STEEL POLE	0.24		
12	WESTVACO	FUDGE HOLLOW (155)	138.00	138.00	STEEL TWR	0.03		
13	LOW MOOR	EAST MILL (161)	138.00	138.00	CONC HFRM		0.04	1
14	LOW MOOR	EAST MILL (161)	138.00	138.00	CONC HFRM	0.02		
15	LOW MOOR	EAST MILL (161)	138.00	138.00	CONC POLE			
16	LOW MOOR	EAST MILL (161)	138.00	138.00	CONC POLE	0.12		
17	LOW MOOR	EAST MILL (161)	138.00	138.00	CONC TWR	0.05		
18	LOW MOOR	EAST MILL (161)	138.00	138.00	STEEL POLE		1.61	
19	LOW MOOR	EAST MILL (161)	138.00	138.00	STEEL POLE		1.35	
20	LOW MOOR	EAST MILL (161)	138.00	138.00	STEEL POLE		0.16	
21	LOW MOOR	EAST MILL (161)	138.00	138.00	STEEL POLE	0.09		
22	LOW MOOR	EAST MILL (161)	138.00	138.00	STEEL POLE	0.04		
23	LOW MOOR	EAST MILL (161)	138.00	138.00	STEEL POLE	0.06		
24	LOW MOOR	EAST MILL (161)	138.00	138.00	STEEL TWR		1.12	
25	LOW MOOR	EAST MILL (161)	138.00	138.00	STEEL TWR	0.11		
26	LOW MOOR	EAST MILL (161)	138.00	138.00	WOOD HFRM		0.06	
27	LOW MOOR	EAST MILL (161)	138.00	138.00	WOOD HFRM	0.66		
28	LOW MOOR	EAST MILL (161)	138.00	138.00	WOOD POLE		0.11	
29	LOW MOOR	EAST MILL (161)	138.00	138.00	WOOD POLE	4.04		
30	BREMO	SCOTTSVILLE (8)	138.00	138.00	STEEL TWR	7.10		1
31	BREMO	SCOTTSVILLE (8)	138.00	138.00	WOOD POLE	0.18		
32								
33	TOTAL					58.44	5.28	8
34	LONE PINE	FORT PICKETT (1)	115.00	115.00	STEEL HFRM	11.31		1
35	LONE PINE	FORT PICKETT (1)	115.00	115.00	STEEL HFRM	0.04		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	 I his Report Is: (1) X An Original (2) A Resubmission 	Date of Report (Mo, Da, Yr) / /	End of 2018/Q4				
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structu	re twice. Report Lower voltage Lines and h	higher voltage lines as one	line. Designate in a footnote if				

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	n (j) Land,	EXPE	NSES, EXCEPT DE	EPRECIATION AND	TAXES	
Size of	Land rights,	and clearing right-of	f-way)					
and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(i)	Other Costs (k)	(1)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
36617 ACSR			()	()	()			1
396.3 ACAR								2
396.3 ACAR								3
396.3 ACAR								4
396.3 ACAR								5
396.3 ACAR								6
636 ACSR								7
636 ACSR								8
795 ACSR								9
636 ACSR								10
795 ACSR								11
636 ACSR								12
336.4 ACSR								13
721 ACAR								14
336.4 ACSR								15
636 ACSR								16
721 ACAR								17
636 ACSR								18
721 ACAR								19
795 ACSR								20
636 ACSR								21
721 ACAR								22
795 ACSR								23
336.4 ACSR								24
336.4 ACSR								25
721 ACAR								26
721 ACAR								27
336.4 ACSR								28
721 ACAR								29
397.5 ACSR								30
397.5 ACSR								31
	13,804,434	62,561,047	76,365,481	134,011	274,341	968	409,320) 32
	13,804,434	62,561,047	76,365,481	134,011	274,341	968	409,320) 33
1033.5 ACSR								34
768.2 ACSS								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

OFFICIAL COPY

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	DESIGNATION VOLTAGE (KV)		Type of	LENGTH (Pole miles)		Number	
No.			other than	,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	undergro	ound lines	
			60 cycle, 3 pha	ise)	Supporting	On Structure	On Structures	Circuite
	From	То	Operating	Designed	Structure	of Line Designated	of Another Line	Circuits
	(a)	(b)	(C)	(d)	(e)	(f)	(g)	(h)
1	LONE PINE	FORT PICKETT (1)	115.00	115.00	STEEL POLE	0.92		
2	LONE PINE	FORT PICKETT (1)	115.00	115.00	STEEL POLE	0.13		
3	LONE PINE	FORT PICKETT (1)	115.00	115.00	STEEL TWR	0.06		
4	LEXINGTON	CRAIGSVILLE (10)	115.00	115.00	CONC HFRM	0.01		1
5	LEXINGTON	CRAIGSVILLE (10)	115.00	115.00	STEEL HFRM	0.06		
6	LEXINGTON	CRAIGSVILLE (10)	115.00	115.00	STEEL POLE	0.11		
7	LEXINGTON	CRAIGSVILLE (10)	115.00	115.00	STEEL POLE	0.02		
8	LEXINGTON	CRAIGSVILLE (10)	115.00	115.00	STEEL TWR	10.27		
9	LEXINGTON	CRAIGSVILLE (10)	115.00	115.00	STEEL TWR	10.80		
10	LEXINGTON	CRAIGSVILLE (10)	115.00	115.00	WOOD HFRM	0.06		
11	LEXINGTON	CRAIGSVILLE (10)	115.00	115.00	WOOD POLE	0.07		
12	LEXINGTON	CRAIGSVILLE (10)	115.00	115.00	WOOD POLE	0.02		
13	LEXINGTON	CRAIGSVILLE (10)	115.00	115.00	WOOD POLE	0.04		
14	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	STEEL HFRM	3.72		1
15	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	STEEL HFRM	0.05		
16	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	STEEL HFRM	2.14		
17	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	STEEL HFRM	0.16		
18	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	STEEL POLE	0.44		
19	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	STEEL POLE	0.13		
20	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	STEEL POLE	0.45		
21	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	STEEL POLE	0.02		
22	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	STEEL TWR	0.15		
23	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	STEEL TWR	0.06		
24	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	WOOD HFRM	4.89		
25	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	WOOD POLE	0.01		
26	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	WOOD POLE	0.25		
27	CHESTERFIELD 115	LOCKS (100)	115.00	115.00	WOOD POLE	0.15		
28	SOUTH JUSTICE BRANCH	BATTLEBORO (1001)	115.00	115.00	CONC POLE	0.20		1
29	SOUTH JUSTICE BRANCH	BATTLEBORO (1001)	115.00	115.00	CONC POLE	0.18		
30	SOUTH JUSTICE BRANCH	BATTLEBORO (1001)	115.00	115.00	STEEL HFRM	0.94		
31	SOUTH JUSTICE BRANCH	BATTLEBORO (1001)	115.00	115.00	STEEL POLE	3.25		
32	SOUTH JUSTICE BRANCH	BATTLEBORO (1001)	115.00	115.00	STEEL TWR	0.17		
33	SOUTH JUSTICE BRANCH	BATTLEBORO (1001)	115.00	115.00	WOOD HFRM	10.65		
34	SOUTH JUSTICE BRANCH	BATTLEBORO (1001)	115.00	115.00	WOOD POLE	1.03		
35	SOUTH JUSTICE BRANCH	BATTLEBORO (1001)	115.00	115.00	WOOD POLE	0.27		
		````						
26					ΤΟΤΑΙ	5 5 1 1 6 1	1 1/6 50	520
30						5,544.04	1,140.39	529

Name of Respondent	This Report Is:	Date of Report	Year/Perio	od of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original ( (2) A Resubmission TRANSMISSION LINE STATISTICS (Continu	(Mo, Da, Yr) / /	End of	2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure t	7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	(k)	(I)	(m)	expenses (n)	(o)	expenses (p)	No.
1033.5 ACSR								1
768.2 ACSS								2
1033.5 ACSR								3
336.4 ACSR								4
1109 ACAR								5
1109 ACAR								6
336.4 ACSR								7
1109 ACAR								8
36617 ACSR								9
1109 ACAR								10
1109 ACAR								11
336.4 ACSR								12
795 AAC								13
1033.5 ACSR								14
477 ACSR								15
636 ACSR								16
795 ACSR								17
1033.5 ACSR								18
36617 ACSR								19
636 ACSR								20
795 ACSR								21
1033.5 ACSR								22
477 ACSR								23
477 ACSR								24
336.4 ACSR								25
36617 ACSR								26
477 ACSR								27
336.4 ACSR								28
636 ACSR								29
636 ACSR								30
636 ACSR								31
636 ACSR								32
636 ACSR								33
336.4 ACSR								34
636 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATI	ON	VOLTAGE (K)	/) e	Type of	LENGTH (In the	(Pole miles)	Number
No.			other than 60 cycle, 3 pha	ase)	Supporting	undergro report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	On Structure of Line	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated (f)	Line (g)	(h)
1	PALMER SPRINGS	BEECHWOOD (1004)	115.00	115.00	STEEL HFRM	0.07		1
2	PALMER SPRINGS	BEECHWOOD (1004)	115.00	115.00	STEEL POLE	4.52		
3	LUNENBURG	NUTBUSH DP (1005)	115.00	115.00	STEEL HFRM	0.02		1
4	LUNENBURG	NUTBUSH DP (1005)	115.00	115.00	STEEL POLE	5.34		
5	LUNENBURG	NUTBUSH DP (1005)	115.00	115.00	STEEL POLE	0.02		
6	PAMPLIN	SOUTH CREEK (1006)	115.00	115.00	CONC POLE	0.28		1
7	PAMPLIN	SOUTH CREEK (1006)	115.00	115.00	CONC POLE	0.10		
8	PAMPLIN	SOUTH CREEK (1006)	115.00	115.00	STEEL HFRM	0.05		
9	PAMPLIN	SOUTH CREEK (1006)	115.00	115.00	STEEL HFRM	0.06		
10	PAMPLIN	SOUTH CREEK (1006)	115.00	115.00	STEEL POLE	2.03		
11	PAMPLIN	SOUTH CREEK (1006)	115.00	115.00	STEEL POLE	5.11		
12	PAMPLIN	SOUTH CREEK (1006)	115.00	115.00	STEEL POLE	0.01		
13	PAMPLIN	SOUTH CREEK (1006)	115.00	115.00	WOOD HFRM	0.21		
14	PAMPLIN	SOUTH CREEK (1006)	115.00	115.00	WOOD POLE	9.97		
15	LONE PINE	PONTON DP (1007)	115.00	115.00	CONC POLE	0.36		1
16	LONE PINE	PONTON DP (1007)	115.00	115.00	STEEL HFRM	1.53		
17	LONE PINE	PONTON DP (1007)	115.00	115.00	STEEL HFRM	6.20		
18	LONE PINE	PONTON DP (1007)	115.00	115.00	STEEL HFRM	0.03		
19	LONE PINE	PONTON DP (1007)	115.00	115.00	STEEL POLE	0.08		
20	LONE PINE	PONTON DP (1007)	115.00	115.00	STEEL POLE	1.80		
21	LONE PINE	PONTON DP (1007)	115.00	115.00	STEEL POLE	1.39		
22	LONE PINE	PONTON DP (1007)	115.00	115.00	STEEL TWR	0.11		
23	LONE PINE	PONTON DP (1007)	115.00	115.00	WOOD HFRM	4.63		
24	LONE PINE	PONTON DP (1007)	115.00	115.00	WOOD POLE	1.08		
25	FOUR RIVERS	PINEWOOD (1008)	115.00	115.00	CONC HFRM	0.12		1
26	FOUR RIVERS	PINEWOOD (1008)	115.00	115.00	STEEL HFRM	3.53		
27	FOUR RIVERS	PINEWOOD (1008)	115.00	115.00	STEEL POLE	1.76		
28	CHASE CITY	RIDGE ROAD (1009)	115.00	115.00	STEEL HFRM	0.12		1
29	CHASE CITY	RIDGE ROAD (1009)	115.00	115.00	STEEL POLE	11.12		
30	MACKEYS	RIDERS CREEK (101)	115.00	115.00	STEEL HFRM	1.02		1
31	MACKEYS	RIDERS CREEK (101)	115.00	115.00	STEEL HFRM	0.31		
32	MACKEYS	RIDERS CREEK (101)	115.00	115.00	STEEL TWR	0.08		
33	MACKEYS	RIDERS CREEK (101)	115.00	115.00	WOOD HFRM	18.19		
34	MACKEYS	RIDERS CREEK (101)	115.00	115.00	WOOD HFRM	1.40		
35	MACKEYS	RIDERS CREEK (101)	115.00	115.00	WOOD POLE	1.63		
36					TOTAL	5,544.64	1,146.59	529

	This Report Is: (1) IXTAn Original	Date of Report (Mo. Da. Yr)	Year/Period of Report				
VIRGINIA ELECTRIC AND POWER COMPANY	(2) A Resubmission	/ /	End of				
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure to	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate in a footnote if				

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	F (Include in Colum	nn (i) Land.					Т
Size of	Land rights,	and clearing right-o	f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
and Material	(1)	Other Costs	(1)	Expenses	Expenses	(0)	Expenses	No
(1)	0)	(к)	(1)	(m)	(n)	(0)	(p)	1.10.
636 ACSR								1
636 ACSR								2
768.2 ACSS								3
336.4 ACSR								4
768.2 ACSS								5
545.6 ACAR								6
636 ACSR								7
336.4 ACSR								8
768.2 ACSS								9
545.6 ACAR								10
636 ACSR								11
768.2 ACSS								12
545.6 ACAR								13
545.6 ACAR								14
396.3 ACAR								15
396.3 ACAR								16
636 ACSR								17
768.2 ACSS								18
396.3 ACAR								19
636 ACSR								20
768.2 ACSS								21
396.3 ACAR								22
396.3 ACAR								23
396.3 ACAR								24
1033.5 ACSR								25
1033.5 ACSR								26
1033.5 ACSR								27
768.2 ACSS								28
768.2 ACSS								29
545.6 ACAR								30
795 ACSR								31
545.6 ACAR								32
545.6 ACAR								33
795 ACSR								34
545 6 ACAR								35
5-5.0 ACAN								55
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(2) $\square$ A Resubmission	/ /	End of 2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

	DEOLONIATI			0	1			
Line No.	DESIGNATIO	ON	VOLTAGE (K) (Indicate when other than	/) e 250)	Type of	LENGTH (In the undergro report cire	(Pole miles) case of ound lines cuit miles)	Number Of
	From	То	Operating	Designed	Structure	On Structure	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line	(h)
1	MACKEYS	RIDERS CREEK (101)	115.00	115.00	WOOD POLE	0.22	(3)	()
2	CAROLINA	PECAN (1010)	115.00	230.00	CONC TWR	0.04		1
3	CAROLINA	PECAN (1010)	115.00	230.00	STEEL HFRM	0.03		
4	CAROLINA	PECAN (1010)	115.00	230.00	STEEL TWR	10.60		
5	TWITTYS CREEK	CHASE CITY (1012)	115.00	115.00	CONC HFRM	0.05		1
6	TWITTYS CREEK	CHASE CITY (1012)	115.00	115.00	STEEL HFRM	15.03		
7	TWITTYS CREEK	CHASE CITY (1012)	115.00	115.00	STEEL HFRM	0.51		
8	TWITTYS CREEK	CHASE CITY (1012)	115.00	115.00	STEEL POLE	0.32		
9	TWITTYS CREEK	CHASE CITY (1012)	115.00	115.00	STEEL POLE	0.10		
10	TWITTYS CREEK	CHASE CITY (1012)	115.00	115.00	STEEL POLE	0.07		
11	TWITTYS CREEK	CHASE CITY (1012)	115.00	115.00	STEEL TWR	0.78		
12	TWITTYS CREEK	CHASE CITY (1012)	115.00	115.00	WOOD POLE	0.03		
13	PINEWOOD	NORTH DOSWELL (1013)	115.00	115.00	STEEL HFRM	0.34		1
14	BATTLEBORO	HATHAWAY (1014)	115.00	115.00	STEEL HFRM	0.11		1
15	BATTLEBORO	HATHAWAY (1014)	115.00	115.00	STEEL POLE	0.09		
16	BATTLEBORO	HATHAWAY (1014)	115.00	115.00	STEEL TWR	0.63		
17	SOUTH JUSTICE BRANCH	SCOTLAND NECK (1015)	115.00	115.00	STEEL HFRM	14.27		1
18	SOUTH JUSTICE BRANCH	SCOTLAND NECK (1015)	115.00	115.00	STEEL POLE	2.81		
19	SOUTH JUSTICE BRANCH	SCOTLAND NECK (1015)	115.00	115.00	STEEL TWR	0.02		
20	PERTH	SEDGE HILL (1016)	115.00	115.00	CONC HFRM	0.08		1
21	PERTH	SEDGE HILL (1016)	115.00	115.00	STEEL HFRM	6.83		
22	PERTH	SEDGE HILL (1016)	115.00	115.00	STEEL HFRM	0.04		
23	PERTH	SEDGE HILL (1016)	115.00	115.00	STEEL POLE	0.28		
24	PERTH	SEDGE HILL (1016)	115.00	115.00	STEEL POLE	0.13		
25	PERTH	SEDGE HILL (1016)	115.00	115.00	WOOD HFRM	8.53		
26	PERTH	SEDGE HILL (1016)	115.00	115.00	WOOD POLE	0.90		
27	NEWSOMS	BOYKINS (1017)	115.00	115.00	STEEL HFRM	0.12		1
28	NEWSOMS	BOYKINS (1017)	115.00	115.00	STEEL TWR	0.22		
29	NEWSOMS	BOYKINS (1017)	115.00	115.00	STEEL TWR	1.39		
30	WHEELER	GAINESVILLE (1018)	115.00	115.00	CONC POLE	1.24		1
31	WHEELER	GAINESVILLE (1018)	115.00	115.00	CONC POLE	0.05		
32	WHEELER	GAINESVILLE (1018)	115.00	115.00	STEEL POLE	0.70		
33	WHEELER	GAINESVILLE (1018)	115.00	115.00	STEEL TWR	0.03		
34	PALMER SPRINGS	KERR DAM (1019)	115.00	115.00	STEEL HFRM	0.32		1
35	PALMER SPRINGS	KERR DAM (1019)	115.00	115.00	STEEL TWR		0.56	
36					TOTAL	5,544.64	1,146.59	529

	1 his Report Is: (1) XIAn Original	(Mo, Da, Yr)	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(2) A Resubmission	11	End of			
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate in a footnote if			

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(I)	(J)	(K)	(1)	(m)	(n)	(0)	(p)	110.
795 ACSR								1
1590 AAC								2
545.6 ACAR								3
545.6 ACAR								4
1033.5 ACSR								5
1033.5 ACSR								6
636 ACSR								7
1033.5 ACSR								8
36557 CU								9
636 ACSR								10
1033.5 ACSR								11
36557 CU								12
636 ACSR								13
636 ACSR								14
636 ACSR								15
636 ACSR								16
768.2 ACSS								17
768.2 ACSS								18
768.2 ACSS								19
545.6 ACAR								20
545.6 ACAR								21
636 ACSR								22
545.6 ACAR								23
636 ACSR								24
545.6 ACAR								25
545.6 ACAR								26
545.6 ACAR								27
1590 AAC								28
545.6 ACAR								29
1272 ACSR								30
795 ACSR								31
1272 ACSR								32
795 ACSR								33
477 ACSR								34
477 ACSS								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	POWER COMPANY This Report Is: (1) X An Original (2) A Resubmission		Year/Period of Report End of 2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	NC	VOLTAGE (KV	/)	Type of	LENGTH	(Pole miles)	
No.			(Indicate where other than	Э	Type of	(In the undergro	case of ound lines	Number
		T	60 cycle, 3 pha	ase)	Supporting	report čire	cuit miles)	Of
	From	То	Operating	Designed	Structure	on Structure of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	PALMER SPRINGS	KERR DAM (1019)	115.00	115.00	STEEL TWR	0.05		
2	PALMER SPRINGS	KERR DAM (1019)	115.00	115.00	WOOD HFRM	5.11		
3	PALMER SPRINGS	KERR DAM (1019)	115.00	115.00	WOOD POLE	0.11		
4	PALMER SPRINGS	KERR DAM (1019)	115.00	115.00	WOOD POLE	0.10		
5	DOOMS	STAUNTON (102)	115.00	230.00	STEEL HFRM	0.10		1
6	DOOMS	STAUNTON (102)	115.00	230.00	STEEL POLE	0.37		
7	DOOMS	STAUNTON (102)	115.00	230.00	STEEL POLE	0.12		
8	DOOMS	STAUNTON (102)	115.00	230.00	STEEL TWR	0.24		
9	DOOMS	STAUNTON (102)	115.00	230.00	STEEL TWR	0.07		
10	DOOMS	STAUNTON (102)	115.00	230.00	STEEL TWR	11.45		
11	DOOMS	STAUNTON (102)	115.00	230.00	WOOD HFRM	0.60		
12	DOOMS	STAUNTON (102)	115.00	230.00	WOOD POLE	0.32		
13	PANTEGO	TROWBRIDGE (1020)	115.00	115.00	STEEL HFRM	22.79		1
14	PANTEGO	TROWBRIDGE (1020)	115.00	115.00	STEEL POLE	1.84		
15	PERTH	HICKORY GROVE DP (1022)	115.00	115.00	STEEL HFRM	0.39		1
16	PERTH	HICKORY GROVE DP (1022)	115.00	115.00	STEEL HFRM	0.06		
17	PERTH	HICKORY GROVE DP (1022)	115.00	115.00	STEEL POLE	0.24		
18	PERTH	HICKORY GROVE DP (1022)	115.00	115.00	STEEL TWR	0.06		
19	PERTH	HICKORY GROVE DP (1022)	115.00	115.00	WOOD HFRM	6.47		
20	PERTH	HICKORY GROVE DP (1022)	115.00	115.00	WOOD POLE	1.32		
21	LUNENBURG	KENBRIDGE (1023)	115.00	115.00	STEEL HFRM	11.60		1
22	LUNENBURG	KENBRIDGE (1023)	115.00	115.00	STEEL HFRM	0.06		
23	LUNENBURG	KENBRIDGE (1023)	115.00	115.00	STEEL POLE	0.83		
24	LUNENBURG	KENBRIDGE (1023)	115.00	115.00	STEEL POLE	0.12		
25	LUNENBURG	KENBRIDGE (1023)	115.00	115.00	STEEL TWR	0.12		
26	CAROLINA	OCCONEECHEE (1028)	115.00	230.00	CONC TWR	0.01		1
27	CAROLINA	OCCONEECHEE (1028)	115.00	230.00	STEEL HFRM	4.16		
28	CAROLINA	OCCONEECHEE (1028)	115.00	230.00	STEEL HFRM	1.78		
29	CAROLINA	OCCONEECHEE (1028)	115.00	230.00	STEEL POLE	0.30		
30	CAROLINA	OCCONEECHEE (1028)	115.00	230.00	STEEL POLE	0.15		
31	CAROLINA	OCCONEECHEE (1028)	115.00	230.00	STEEL TWR	0.32		
32	SHELLBANK	MERCURY (103)	115.00	115.00	CONC HFRM	0.02		1
33	SHELLBANK	MERCURY (103)	115.00	115.00	STEEL POLE	0.32		
34	SHELLBANK	MERCURY (103)	115.00	115.00	STEEL POLE	2.52		
35	LUNENBURG	LONE PINE (1034)	115.00	115.00	CONC HFRM	0.15		1
		, , , , , , , , , , , , , , , , , , ,						
20					ΤΟΤΑΙ	E E A A 4 A	1 1/4 50	EJO
30					IUIAL	3,344.64	1,140.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colur	nn (i) Land.					Т
Size of	Land rights,	and clearing right-o	if-way)	EXPE	NSES, EXCEPT DE	PRECIATION ANL	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	1 :00
and Material	(i)	Other Costs		Expenses	Expenses	(0)	Expenses	No.
(1)	0	(K)	(1)	(m)	(n)	(0)	(P)	1
477 ACSS								2
477 ACSR								2
477 ACSR								3
477 AC33								4
								6
705 ACSP								7
								0
246.0 AAAC								0
545.6 ACAP								10
246.0 ACAR								10
240.9 AAAC								12
240.7 AAAC 768.2 ACSS								12
768.2 ACSS								14
396 3 ACAR								15
636 ACSR								16
636 ACSR								17
396 3 ACAR								18
396.3 ACAR								19
396.3 ACAR								20
636 ACSR								21
768.2 ACSS								22
636 ACSR								23
768.2 ACSS								24
636 ACSR								25
1033.5 ACSR								26
1033.5 ACSR								27
636 ACSR								28
1033.5 ACSR								29
636 ACSR								30
1033.5 ACSR								31
1109 ACAR								32
1109 ACAR								33
721 ACAR								34
336.4 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	ON	VOLTAGE (KV	()	Type of	LENGTH	(Pole miles)	
No.			other than	9	Type of	undergro	case of bund lines	Number
		1	60 cycle, 3 pha	ase)	Supporting	report cire	Cult miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	LUNENBURG	LONE PINE (1034)	115.00	115.00	STEEL HFRM	0.70		
2	LUNENBURG	LONE PINE (1034)	115.00	115.00	STEEL HFRM	0.88		
3	LUNENBURG	LONE PINE (1034)	115.00	115.00	STEEL HFRM	0.07		
4	LUNENBURG	LONE PINE (1034)	115.00	115.00	STEEL POLE		0.11	
5	LUNENBURG	LONE PINE (1034)	115.00	115.00	STEEL POLE	14.50		
6	LUNENBURG	LONE PINE (1034)	115.00	115.00	STEEL POLE	0.14		
7	LUNENBURG	LONE PINE (1034)	115.00	115.00	STEEL POLE	0.06		
8	LUNENBURG	LONE PINE (1034)	115.00	115.00	STEEL TWR		0.01	
9	LUNENBURG	LONE PINE (1034)	115.00	115.00	STEEL TWR	0.02		
10	TARBORO	PARMELE (105)	115.00	115.00	CONC POLE	0.01		1
11	TARBORO	PARMELE (105)	115.00	115.00	STEEL HFRM	1.01		
12	TARBORO	PARMELE (105)	115.00	115.00	STEEL POLE	1.39		
13	TARBORO	PARMELE (105)	115.00	115.00	STEEL POLE	5.44		
14	TARBORO	PARMELE (105)	115.00	115.00	STEEL TWR	0.09		
15	TARBORO	PARMELE (105)	115.00	115.00	STEEL TWR	0.01		
16	TARBORO	PARMELE (105)	115.00	115.00	STEEL TWR	0.55		
17	TARBORO	PARMELE (105)	115.00	115.00	WOOD POLE	13.35		
18	TARBORO	PARMELE (105)	115.00	115.00	WOOD POLE	0.24		
19	TARBORO	PARMELE (105)	115.00	115.00	WOOD POLE	0.03		
20	POE	BELL AVENUE (106)	115.00	115.00	CONC HFRM	0.06		1
21	POE	BELL AVENUE (106)	115.00	115.00	CONC HFRM	0.01		
22	POE	BELL AVENUE (106)	115.00	115.00	STEEL POLE		0.09	
23	POE	BELL AVENUE (106)	115.00	115.00	STEEL POLE	0.13		
24	POE	BELL AVENUE (106)	115.00	115.00	STEEL POLE	0.06		
25	POE	BELL AVENUE (106)	115.00	115.00	STEEL POLE	0.01		
26	POE	BELL AVENUE (106)	115.00	115.00	STEEL TWR		31.41	
27	POE	BELL AVENUE (106)	115.00	115.00	STEEL TWR	0.68		
28	POE	BELL AVENUE (106)	115.00	115.00	STEEL TWR	0.07		
29	POE	BELL AVENUE (106)	115.00	115.00	WOOD POLE	0.20		
30	SEWELLS POINT	OAKWOOD (107)	115.00	115.00	CONC POLE	0.19		1
31	SEWELLS POINT	OAKWOOD (107)	115.00	115.00	CONC POLE	0.05		
32	SEWELLS POINT	OAKWOOD (107)	115.00	115.00	STEEL HFRM	0.02		
33	SEWELLS POINT	OAKWOOD (107)	115.00	115.00	STEEL POLE	0.41		
34	SEWELLS POINT	OAKWOOD (107)	115.00	115.00	STEEL POLE	0.56		
35	SEWELLS POINT	OAKWOOD (107)	115.00	115.00	STEEL POLE	0.89		
26					τοται	5 5 1 1 6 1	1 1/4 50	500
30	1		1			0,044.04	1,140.39	529

Name of Respondent		This Report Is: (1) IXTAn Original	Date of Report (Mo. Da. Yr)	Year/Period of Report				
	VIRGINIA ELECTRIC AND POWER COMPANY	(2) A Resubmission	/ /	End of				
	TRANSMISSION LINE STATISTICS (Continued)							
	7. Do not report the same transmission line structure to	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate in a footnote if				

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
336.4 ACSR								1
636 ACSR								2
768.2 ACSS								3
768.2 ACSS								4
336.4 ACSR								5
636 ACSR								6
768.2 ACSS								7
768.2 ACSS								8
336.4 ACSR								9
36557 CU								10
636 ACSR								11
36557 CU								12
636 ACSR								13
36557 CU								14
396.3 ACAR								15
740.8 AAAC								16
36557 CU								17
336.4 ACSR								18
396.3 ACAR								19
336.4 ACSR								20
795 ACSR								21
336.4 ACSR								22
336.4 ACSR								23
636 ACSR								24
795 ACSR								25
336.4 ACSR								26
336.4 ACSR								27
795 ACSR								28
336.4 ACSR								29
1033.5 ACSR								30
768.2 ACSS								31
768.2 ACSS								32
1033.5 ACSR								33
1351.5 ACSR								34
2500 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATION		VOLTAGE (KV)		Type of LENGTH (Pole miles)			
No.			other than	9	Type of	undergro	case of bund lines	Number
			60 cycle, 3 pha	ase)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	SEWELLS POINT	OAKWOOD (107)	115.00	115.00	STEEL POLE	3.92		
2	SEWELLS POINT	OAKWOOD (107)	115.00	115.00	STEEL TWR	0.03		
3	SEWELLS POINT	OAKWOOD (107)	115.00	115.00	STEEL TWR	0.03		
4	SEWELLS POINT	OAKWOOD (107)	115.00	115.00	STEEL TWR	0.02		
5	BOYKINS	TUNIS (108)	115.00	115.00	CONC POLE	0.06		1
6	BOYKINS	TUNIS (108)	115.00	115.00	STEEL POLE	0.61		
7	BOYKINS	TUNIS (108)	115.00	115.00	STEEL POLE	1.49		
8	BOYKINS	TUNIS (108)	115.00	115.00	STEEL TWR	0.28		
9	BOYKINS	TUNIS (108)	115.00	115.00	WOOD HFRM	0.17		
10	BOYKINS	TUNIS (108)	115.00	115.00	WOOD POLE	0.26		
11	BOYKINS	TUNIS (108)	115.00	115.00	WOOD POLE	23.74		
12	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	CONC HFRM	0.03		1
13	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	CONC HFRM	0.09		
14	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	STEEL HFRM	1.84		
15	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	STEEL HFRM	0.15		
16	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	STEEL HFRM	1.64		
17	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	STEEL POLE	0.27		
18	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	STEEL POLE	0.14		
19	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	STEEL POLE	7.48		
20	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	WOOD HFRM	0.05		
21	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	WOOD HFRM	0.17		
22	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	WOOD HFRM	11.65		
23	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	WOOD POLE	0.02		
24	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	WOOD POLE	0.06		
25	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	WOOD POLE	1.04		
26	OAK GREEN	GORDONSVILLE (11)	115.00	115.00	WOOD POLE	0.56		
27	CRADOCK	SHEA (110)	115.00	115.00	CONC HFRM	0.01		1
28	CRADOCK	SHEA (110)	115.00	115.00	STEEL POLE	1.10		
29	CRADOCK	SHEA (110)	115.00	115.00	STEEL POLE	0.01		
30	CRADOCK	SHEA (110)	115.00	115.00	STEEL TWR	0.01		
31	CRADOCK	SHEA (110)	115.00	115.00	WOOD POLE	3.06		
32	ACCA	LAKESIDE (111)	115.00	115.00	STEEL POLE		3.09	1
33	ACCA	LAKESIDE (111)	115.00	115.00	STEEL POLE	0.01		
34	ACCA	LAKESIDE (111)	115.00	115.00	STEEL TWR		0.07	
35	ACCA	LAKESIDE (111)	115.00	115.00	STEEL TWR	0.07		
		, , ,						
26					ΤΟΤΑΙ	5 5 1 1 6 1	1 1/6 50	520
- 50	1					5,544.04	1,140.37	J27
Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4				
----------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------	---------------------------------------	--------	------------------------	--	--	--	
TRANSMISSION LINE STATISTICS (Continued)								
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if								

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colur	nn (i) Land.					Т
Size of	e of Land rights, and clearing right-of-way)			EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
and Material	(i)	Other Costs		Expenses	Expenses	(0)	Expenses	No.
(1)	0)	(K)	(1)	(11)	(11)	(0)	(P)	1
1022 5 ACSD								2
1351 5 ACSR								2
768 2 ACSS								1
545.6 ACAP								5
								6
5/5 6 ACAR								7
545.6 ACAR								8
545.6 ACAR								9
477 ACSR								10
545 6 ACAR								11
36617 ACSR								12
636 ACSR								13
1033.5 ACSR								14
36617 ACSR								15
636 ACSR								16
1033.5 ACSR								17
36617 ACSR								18
636 ACSR								19
36617 ACSR								20
477 AAC								21
636 ACSR								22
1033.5 ACSR								23
36617 ACSR								24
477 AAC								25
636 ACSR								26
721 ACAR								27
721 ACAR								28
795 ACSR								29
795 ACSR								30
721 ACAR								31
1109 ACAR								32
1109 ACAR								33
1109 ACAR								34
1109 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report				
VIRGINIA ELECTRIC AND POWER COMPANY	(2) $\square$ A Resubmission	/ /	End of 2018/Q4				
TRANSMISSION LINE STATISTICS							

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNA	TION	VOLTAGE (KV (Indicate where other than	VOLTAGE (KV) (Indicate where other than 60 cycle 3 phase)		LENGTH (Pole miles) (In the case of underground lines report circuit miles)		Number
			60 cycle, 3 pha	ise)	Supporting	On Structure	On Structures	Circuits
	From (a)	lo (b)	Operating	Designed	Structure	of Line Designated	of Another Line	(1.)
			(0)	(0)		(f)	(g)	(h)
1	DUPONT	KEVLAR (116)	115.00	115.00		0.07	0.00	1
2	DUPONT	KEVLAR (116)	115.00	115.00		0.1/	0.09	
3	DUPUNI	KEVLAR (116)	115.00	115.00	STEEL TWR	0.16		1
4	DOOMS		115.00	115.00		0.37		1
5	DOOMS	DUPONT (117)	115.00	115.00		4.47		
6	DOOMS		115.00	115.00		0.04		
7	DOOMS		115.00	115.00		2.28		
8	DOOMS	DUPONT (117)	115.00	115.00	STEEL HERM	5.82		
9	DOOMS	DUPONT (117)	115.00	115.00	STEEL POLE	1.27		
10	DOOMS	DUPONT (117)	115.00	115.00	STEEL POLE	0.02		
11	DOOMS	DUPONT (117)	115.00	115.00	STEEL POLE	1.37		
12	DOOMS	DUPONT (117)	115.00	115.00	STEEL TWR	0.01		
13	DOOMS	DUPONT (117)	115.00	115.00	STEEL TWR	0.03		
14	DOOMS	DUPONT (117)	115.00	115.00	STEEL TWR	0.04		
15	DOOMS	DUPONT (117)	115.00	115.00	WOOD HFRM	3.43		
16	DOOMS	DUPONT (117)	115.00	115.00	WOOD HFRM	4.73		
17	DOOMS	DUPONT (117)	115.00	115.00	WOOD POLE	0.20		
18	DOOMS	DUPONT (117)	115.00	115.00	WOOD POLE	0.02		
19	DOOMS	DUPONT (117)	115.00	115.00	WOOD POLE	3.43		
20	ENDLESS CAVERNS	N SHEN (118)	115.00	115.00	CONC HFRM	0.09		1
21	ENDLESS CAVERNS	N SHEN (118)	115.00	115.00	CONC POLE	0.17		
22	ENDLESS CAVERNS	N SHEN (118)	115.00	115.00	STEEL HFRM	4.12		
23	ENDLESS CAVERNS	N SHEN (118)	115.00	115.00	STEEL POLE	14.52		
24	ENDLESS CAVERNS	N SHEN (118)	115.00	115.00	STEEL TWR	0.10		
25	ENDLESS CAVERNS	N SHEN (118)	115.00	115.00	STEEL TWR	0.04		
26	ENDLESS CAVERNS	N SHEN (118)	115.00	115.00	WOOD HFRM	0.41		
27	ENDLESS CAVERNS	N SHEN (118)	115.00	115.00	WOOD POLE	0.06		
28	MERCK 5	GROTTOES (119)	115.00	115.00	CONC HFRM	0.09		1
29	MERCK 5	GROTTOES (119)	115.00	115.00	STEEL HFRM	0.63		
30	MERCK 5	GROTTOES (119)	115.00	115.00	STEEL POLE	12.00		
31	ST JOHNS	ST JOHNS DP (12)	115.00	115.00	CONC HFRM	0.12		1
32	ST JOHNS	ST JOHNS DP (12)	115.00	115.00	STEEL POLE	0.10		
33	ST JOHNS	ST JOHNS DP (12)	115.00	115.00	WOOD POLE	0.05		
34	CEC	GREENWICH (120)	115.00	230.00	STEEL HFRM	0.25		1
35	CEC	GREENWICH (120)	115.00	230.00	STEEL HFRM	0.12		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colurr	nn (i) Land.	EXPENSES, EXCEPT DEPRECIATION AND TAXES				Т
Size of	ize of Land rights, and clearing right-of-way)			EXPE	ENSES, EXCEPT DE	PRECIATION ANL	DIAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	1
and Material	(i)	Other Costs	(1)	Expenses	Expenses	(0)	Expenses	No
(1)	0)	(К)	(1)	(m)	(n)	(0)	(p)	1.10.
721 ACAR								1
721 ACAR								2
721 ACAR								3
636 ACSR								4
1033.5 ACSR								5
636 ACSR								6
1033.5 ACSR	-							7
636 ACSR								8
1033.5 ACSR								9
477 AAC								10
636 ACSR								11
1033.5 ACSR								12
396.3 ACAR								13
636 ACSR								14
1033.5 ACSR								15
636 ACSR								16
1033.5 ACSR								17
396.3 ACAR								18
636 ACSR								19
477 ACSR								20
477 ACSR								21
477 ACSR								22
477 ACSR								23
477 ACSR								24
636 ACSR								25
477 ACSR								26
477 ACSR								27
477 ACSR								28
477 ACSR								29
477 ACSR								30
795 ACSR								31
795 ACSR								32
795 ACSR								33
1177 AAAC								34
1534 ACAR								35
								00
	540 400 010	1 121 045 100	1 605 167 227	14 070 455	20 00/ 107	101 / 55	10 076 00	7 00
	203,002,218	4,121,800,109	4,000,407,327	14,070,455	28,804,187	101,055	42,970,29	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATI	ON	VOLTAGE (KV (Indicate where	/) e	Type of	LENGTH (In the	(Pole miles) case of	Number
NO.			other than 60 cycle, 3 pha	ase)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	On Structure of Line	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line	(h)
1	CEC	GREENWICH (120)	115.00	230.00	STEEL HERM	0.23	(9)	(1)
2	CEC	GREENWICH (120)	115.00	230.00	STEEL HERM	1.96		
- 3	CEC	GREENWICH (120)	115.00	230.00	STEEL POLE	0.08		
4	CEC	GREENWICH (120)	115.00	230.00	STEEL POLE	0.46		
5	CEC	GREENWICH (120)	115.00	230.00	STEEL POLE	0.29		
6	CEC	GREENWICH (120)	115.00	230.00	STEEL POLE	0.79		
7	CEC	GREENWICH (120)	115.00	230.00	STEEL POLE	0.04		
8	CEC	GREENWICH (120)	115.00	230.00	STEEL TWR	0.42		
9	CEC	GREENWICH (120)	115.00	230.00	STEEL TWR	0.01		
10	CEC	GREENWICH (120)	115.00	230.00	STEEL TWR	0.06		
11	CEC	GREENWICH (120)	115.00	230.00	STEEL TWR	0.12		
12	CEC	GREENWICH (120)	115.00	230.00	STEEL TWR	0.02		
13	CEC	GREENWICH (120)	115.00	230.00	WOOD HFRM	0.09		
14	CEC	GREENWICH (120)	115.00	230.00	WOOD HFRM	0.15		
15	CEC	GREENWICH (120)	115.00	230.00	WOOD HFRM	5.24		
16	CEC	GREENWICH (120)	115.00	230.00	WOOD POLE	0.22		
17	CEC	GREENWICH (120)	115.00	230.00	WOOD POLE	0.20		
18	CEC	GREENWICH (120)	115.00	230.00	WOOD POLE	0.85		
19	POE	PRINCE GEORGE (121)	115.00	115.00	STEEL POLE	0.03		1
20	POE	PRINCE GEORGE (121)	115.00	115.00	STEEL POLE	0.25		
21	POE	PRINCE GEORGE (121)	115.00	115.00	STEEL POLE	0.24		
22	POE	PRINCE GEORGE (121)	115.00	115.00	STEEL TWR	3.14		
23	POE	PRINCE GEORGE (121)	115.00	115.00	STEEL TWR	1.94		
24	POE	PRINCE GEORGE (121)	115.00	115.00	STEEL TWR	0.04		
25	LOUDOUN	GAINESVILLE (124)	115.00	230.00	STEEL HFRM	1.78		1
26	LOUDOUN	GAINESVILLE (124)	115.00	230.00	STEEL POLE	0.03		
27	LOUDOUN	GAINESVILLE (124)	115.00	230.00	STEEL POLE	1.10		
28	LOUDOUN	GAINESVILLE (124)	115.00	230.00	STEEL TWR	0.01		
29	LOUDOUN	GAINESVILLE (124)	115.00	230.00	STEEL TWR	4.70		
30	REEVES AVE	MCLAUGHLIN (125)	115.00	115.00	CONC POLE	0.05		1
31	REEVES AVE	MCLAUGHLIN (125)	115.00	115.00	CONC POLE	0.07		
32	REEVES AVE	MCLAUGHLIN (125)	115.00	115.00	STEEL POLE	3.40		
33	REEVES AVE	MCLAUGHLIN (125)	115.00	115.00	STEEL TWR	0.01		
34	EARLEYS	SCOTLAND NECK (126)	115.00	115.00	CONC HFRM	0.04		1
35	EARLEYS	SCOTLAND NECK (126)	115.00	115.00	STEEL HFRM	1.52		
					7074			
36					IOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if							

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
477 ACSR								1
636 ACSR								2
1177 AAAC								3
1534 ACAR								4
477 ACSR								5
636 ACSR								6
721 ACAR								7
1534 ACAR								8
477 AAC								9
477 ACSR								10
636 ACSR								11
721 ACAR								12
1109 ACAR								13
1534 ACAR								14
477 ACSR								15
1109 ACAR								16
1534 ACAR								17
477 ACSR								18
336.4 ACSR								19
571.7 ACSS								20
636 ACSR								21
336.4 ACSR								22
571.7 ACSS								23
636 ACSR								24
636 ACSR								25
1351.5 ACSR								26
636 ACSR								27
1351.5 ACSR								28
636 ACSR								29
1033.5 ACSS								30
1109 ACAR								31
1033.5 ACSS								32
1109 ACAR								33
545.6 ACAR								34
545.6 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report				
VIRGINIA ELECTRIC AND POWER COMPANY	(2) $\square$ A Resubmission	/ /	End of 2018/Q4				
TRANSMISSION LINE STATISTICS							

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	ON	VOLTAGE (KV	()	Type of	LENGTH	(Pole miles)	Number
No.			other than		0		ound lines	Of
			60 cycle, 3 pha	ise)	Supporting	On Structure	On Structures	Circuits
	From	То	Operating	Designed	Structure	of Line Designated	of Another Line	Onouno
	(a)	(d)	(C)	(d)	(e)	(f)	(g)	(h)
1	EARLEYS	SCOTLAND NECK (126)	115.00	115.00	STEEL POLE	0.06		
2	EARLEYS	SCOTLAND NECK (126)	115.00	115.00	STEEL TWR	0.02		
3	EARLEYS	SCOTLAND NECK (126)	115.00	115.00	WOOD HFRM	23.16		
4	EARLEYS	SCOTLAND NECK (126)	115.00	115.00	WOOD POLE	0.69		
5	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	CONC HFRM	0.06		1
6	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	CONC POLE	0.11		
7	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	CONC POLE	0.26		
8	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	STEEL HFRM	0.07		
9	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	STEEL HFRM	0.55		
10	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	STEEL HFRM	0.10		
11	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	STEEL POLE	2.72		
12	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	STEEL POLE	1.26		
13	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	STEEL TWR	0.16		
14	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	STEEL TWR	0.04		
15	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	WOOD HFRM	0.09		
16	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	WOOD HFRM	2.11		
17	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	WOOD POLE	0.06		
18	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	WOOD POLE	6.26		
19	BUGGS ISLAND NUG	PLYWOOD (127)	115.00	115.00	WOOD POLE	8.35		
20	ENDLESS CAVERNS	EDINBURG (128)	115.00	230.00	STEEL HFRM	15.61		1
21	ENDLESS CAVERNS	EDINBURG (128)	115.00	230.00	STEEL POLE	0.24		
22	ENDLESS CAVERNS	EDINBURG (128)	115.00	230.00	STEEL POLE	1.53		
23	ENDLESS CAVERNS	EDINBURG (128)	115.00	230.00	STEEL TWR	0.09		
24	ENDLESS CAVERNS	EDINBURG (128)	115.00	230.00	WOOD HFRM	0.22		
25	ENDLESS CAVERNS	EDINBURG (128)	115.00	230.00	WOOD POLE	3.15		
26	REEVES AVE	CRADOCK (129)	115.00	115.00	CONC POLE		0.08	1
27	REEVES AVE	CRADOCK (129)	115.00	115.00	STEEL		0.20	
28	REEVES AVE	CRADOCK (129)	115.00	115.00	STEEL HERM		0.09	
29	REEVES AVE	CRADOCK (129)	115.00	115.00	STEEL POLE		0.06	
30	REEVES AVE	CRADOCK (129)	115.00	115.00	STEEL POLE		0.13	
31	REEVESAVE		115.00	115.00	STEEL POLE	0.04	0110	
32	REEVESAVE		115.00	115.00	STEEL TWR	0.01	0.04	
33			115.00	115.00	STEEL TWR		3 33	
34			115.00	115.00	STEEL TWR	0.08	0.00	
35			115.00	115.00	STEEL TWR	0.00		
- 55			115.00	113.00	SILLEIWK	0.03		
					TOTAL			
36					IOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>I his Report Is:</li> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	Inis Report is:Date of Report(1)X An Original(Mo, Da, Yr)(2)A Resubmission/ /	
	TRANSMISSION LINE STATISTICS (C	ontinued)	
7. Do not report the same transmission line structu	re twice. Report Lower voltage Lines and h	higher voltage lines as one	line. Designate in a footnote if

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	DTAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	- L ine
(i)	(j)	Other Costs (k)	(1)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
545.6 ACAR		. ,	()	( )			,	1
545.6 ACAR								2
545.6 ACAR								3
545.6 ACAR								4
721 ACAR								5
721 ACAR								6
740.8 AAAC								7
559.5 AAAC								8
721 ACAR								9
740.8 AAAC								10
721 ACAR								11
740.8 AAAC								12
721 ACAR								13
795 ACSR								14
559.5 AAAC								15
721 ACAR								16
559.5 AAAC								17
721 ACAR								18
740.8 AAAC								19
636 ACSR								20
545.6 ACAR								21
636 ACSR								22
545.6 ACAR								23
545.6 ACAR								24
545.6 ACAR								25
636 ACSR								26
636 ACSR								27
636 ACSR								28
477 ACSS								29
636 ACSR								30
768.2 ACSS								31
477 ACSS								32
636 ACSR								33
636 ACSR								34
768.2 ACSS								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	N	VOLTAGE (K)	()	Type of	LENGTH	(Pole miles)	
No.			other than	9	Type of	undergro	case of bund lines	Number
			60 cycle, 3 pha	ase)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	CLUBHOUSE	CAROLINA (130)	115.00	115.00	ALUM TWR	1.36		1
2	CLUBHOUSE	CAROLINA (130)	115.00	115.00	CONC HFRM	0.06		
3	CLUBHOUSE	CAROLINA (130)	115.00	115.00	CONC HFRM	0.01		
4	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL HFRM	0.06		
5	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL HFRM	0.02		
6	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL HFRM	0.51		
7	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL HFRM	7.78		
8	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL POLE	3.13		
9	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL POLE	0.01		
10	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL POLE	0.08		
11	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL POLE	0.45		
12	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL POLE	3.63		
13	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL POLE	0.34		
14	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL TWR	0.76		
15	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL TWR	0.07		
16	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL TWR	0.08		
17	CLUBHOUSE	CAROLINA (130)	115.00	115.00	STEEL TWR	0.24		
18	CLUBHOUSE	CAROLINA (130)	115.00	115.00	WOOD HFRM	4.75		
19	CLUBHOUSE	CAROLINA (130)	115.00	115.00	WOOD HFRM	0.03		
20	CLUBHOUSE	CAROLINA (130)	115.00	115.00	WOOD POLE	1.14		
21	CLUBHOUSE	CAROLINA (130)	115.00	115.00	WOOD POLE	1.69		
22	CLUBHOUSE	CAROLINA (130)	115.00	115.00	WOOD POLE	0.40		
23	CLUBHOUSE	CAROLINA (130)	115.00	115.00	WOOD POLE	2.85		
24	ENDLESS CAVERNS	TIMBERVILLE (131)	115.00	115.00	STEEL HFRM	0.02		1
25	ENDLESS CAVERNS	TIMBERVILLE (131)	115.00	115.00	STEEL HFRM	0.91		
26	ENDLESS CAVERNS	TIMBERVILLE (131)	115.00	115.00	STEEL HFRM	0.09		
27	ENDLESS CAVERNS	TIMBERVILLE (131)	115.00	115.00	STEEL POLE		0.01	
28	ENDLESS CAVERNS	TIMBERVILLE (131)	115.00	115.00	STEEL POLE	0.18		
29	ENDLESS CAVERNS	TIMBERVILLE (131)	115.00	115.00	STEEL TWR	0.11		
30	ENDLESS CAVERNS	TIMBERVILLE (131)	115.00	115.00	WOOD HFRM	3.80		
31	ENDLESS CAVERNS	TIMBERVILLE (131)	115.00	115.00	WOOD POLE	0.44		
32	BULL RUN	HARRISON DP (134)	115.00	115.00	CONC HFRM	0.03		1
33	BULL RUN	HARRISON DP (134)	115.00	115.00	STEEL POLE	0.51		
34	BULL RUN	HARRISON DP (134)	115.00	115.00	STEEL TWR	0.10		
35	GREENWICH	THOLE ST (135)	115.00	230.00	STEEL POLE		1.18	1
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report					
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4					
	TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure	twice. Report Lower voltage Lines and h	higher voltage lines as one	line. Designate in a footnote if					

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	(k)	(I)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
336.4 ACSR								1
336.4 ACSR								2
477 ACSS								3
336.4 ACSR								4
545.6 ACAR								5
636 ACSR								6
768.2 ACSS								7
336.4 ACSR								8
36617 ACSR								9
477 ACSS								10
545.6 ACAR								11
636 ACSR								12
768.2 ACSS								13
336.4 ACSR								14
36617 ACSR								15
545.6 ACAR								16
768.2 ACSS								17
336.4 ACSR								18
36617 ACSR								19
336.4 ACSR								20
36617 ACSR								21
477 ACSS								22
545.6 ACAR								23
336.4 ACSR								24
36617 ACSR								25
636 ACSR								26
636 ACSR								27
36617 ACSR								28
36617 ACSR								29
36617 ACSR								30
36617 ACSR								31
1590 ACSS								32
1590 ACSS								33
1590 ACSS								34
2500 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATI	ON	VOLTAGE (KV (Indicate where	Y) e	Type of	LENGTH (In the	(Pole miles)	Number
NO.			other than 60 cycle, 3 pha	ise)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structuro	On Structure	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line	(h)
1	GREENWICH	THOLE ST (135)	115.00	230.00	STEEL POLE	6.55	(9)	(1)
2	GREENWICH	THOLE ST (135)	115.00	230.00	STEEL TWR	0.02		
3	GREENWICH	THOLE ST (135)	115.00	230.00	WOOD POLE	0.05		
4	TUNIS	EARLEYS (136)	115.00	115.00	CONC HFRM	0.03		1
5	TUNIS	EARLEYS (136)	115.00	115.00	CONC POLE	0.05		
6	TUNIS	EARLEYS (136)	115.00	115.00	STEEL POLE		0.02	
7	TUNIS	EARLEYS (136)	115.00	115.00	STEEL POLE	0.62		
8	TUNIS	EARLEYS (136)	115.00	115.00	STEEL POLE	0.29		
9	TUNIS	EARLEYS (136)	115.00	115.00	STEEL TWR	0.03		
10	TUNIS	EARLEYS (136)	115.00	115.00	WOOD POLE		0.14	
11	TUNIS	EARLEYS (136)	115.00	115.00	WOOD POLE	7.16		
12	TUNIS	EARLEYS (136)	115.00	115.00	WOOD POLE	6.45		
13	RIDGE ROAD	KERR DAM (137)	115.00	115.00	STEEL POLE	0.18		1
14	RIDGE ROAD	KERR DAM (137)	115.00	115.00	STEEL POLE	9.76		
15	RIDGE ROAD	KERR DAM (137)	115.00	115.00	STEEL TWR	0.06		
16	EVERETTS	ALBEMARLE (139)	115.00	115.00	STEEL HFRM	0.87		1
17	EVERETTS	ALBEMARLE (139)	115.00	115.00	STEEL POLE	0.02		
18	EVERETTS	ALBEMARLE (139)	115.00	115.00	STEEL TWR	0.22		
19	EVERETTS	ALBEMARLE (139)	115.00	115.00	WOOD HFRM	14.24		
20	EVERETTS	ALBEMARLE (139)	115.00	115.00	WOOD POLE	1.24		
21	SOUTHAMPTON NUG	NEWSOMS (140)	115.00	230.00	CONC HFRM	0.07		1
22	SOUTHAMPTON NUG	NEWSOMS (140)	115.00	230.00	STEEL POLE	0.11		
23	SOUTHAMPTON NUG	NEWSOMS (140)	115.00	230.00	STEEL TWR		0.08	
24	SOUTHAMPTON NUG	NEWSOMS (140)	115.00	230.00	STEEL TWR	0.09		
25	SOUTHAMPTON NUG	NEWSOMS (140)	115.00	230.00	STEEL TWR	9.71		
26	SKIMMER	BALCONY FALLS (141)	115.00	115.00	STEEL HFRM	0.54		1
27	SKIMMER	BALCONY FALLS (141)	115.00	115.00	STEEL POLE	0.60		
28	SKIMMER	BALCONY FALLS (141)	115.00	115.00	STEEL TWR		1.88	
29	SKIMMER	BALCONY FALLS (141)	115.00	115.00	STEEL TWR	2.06		
30	SKIMMER	BALCONY FALLS (141)	115.00	115.00	WOOD HFRM	4.56		
31	SKIMMER	BALCONY FALLS (141)	115.00	115.00	WOOD POLE	0.14		
32	NORTHWEST	ELMONT (142)	115.00	115.00	STEEL HFRM	0.13		1
33	NORTHWEST	ELMONT (142)	115.00	115.00	STEEL HFRM	0.13		
34	NORTHWEST	ELMONT (142)	115.00	115.00	STEEL HFRM	0.07		
35	NORTHWEST	ELMONT (142)	115.00	115.00	STEEL POLE	0.02		
L								
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	TRANSMISSION LINE STATISTICS (C	ontinued)	
7. Do not report the same transmission line structure	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate in a footnote if

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	F (Include in Colum	nn (i) Land.					Т
Size of	Land rights,	and clearing right-o	f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
and Material		Other Costs		Expenses	Expenses	(0)	Expenses	No
(1)	())	(К)	(1)	(m)	(n)	(0)	(p)	110.
2500 ACAR								1
2500 ACAR								2
2500 ACAR								3
545.6 ACAR								4
545.6 ACAR								5
636 ACSR								6
545.6 ACAR								7
559.5 AAAC								8
545.6 ACAR								9
545.6 ACAR								10
545.6 ACAR								11
559.5 AAAC								12
1033.5 ACSR								13
768.2 ACSS								14
768.2 ACSS								15
336.4 ACSR								16
336.4 ACSR								17
336.4 ACSR								18
336.4 ACSR								19
336.4 ACSR								20
545.6 ACAR								21
1590 AAC								22
545.6 ACAR								23
1590 AAC								24
545.6 ACAR								25
36617 ACSR								26
636 ACSR								27
36617 ACSR								28
36617 ACSR								29
36617 ACSR								30
36617 ACSR								31
1033.5 ACSS								32
477 ACSR								33
721 ACAR								34
477 ACSR								35
in noon								00
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	N	VOLTAGE (KV	<u>()</u>	Type of	LENGTH	(Pole miles)	
No.			other than	9	Type of	(In the undergro	case of bund lines	Number
		1	60 cycle, 3 pha	ase)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	NORTHWEST	ELMONT (142)	115.00	115.00	STEEL POLE	0.25		
2	NORTHWEST	ELMONT (142)	115.00	115.00	STEEL TWR	0.10		
3	NORTHWEST	ELMONT (142)	115.00	115.00	STEEL TWR	0.65		
4	NORTHWEST	ELMONT (142)	115.00	115.00	STEEL TWR	0.05		
5	NORTHWEST	ELMONT (142)	115.00	115.00	STEEL TWR	4.57		
6	NORTHWEST	ELMONT (142)	115.00	115.00	WOOD POLE	0.10		
7	BOWERS HILL	ALEXANDERS CORNER	115.00	115.00	CONC POLE	0.21		1
8	BOWERS HILL	ALEXANDERS CORNER	115.00	115.00	STEEL TWR	0.01		
9	BOWERS HILL	ALEXANDERS CORNER	115.00	115.00	WOOD POLE	1.98		
10	POSSUM POINT	INDEPENDENT HILL DP	115.00	115.00	STEEL HFRM		0.76	1
11	POSSUM POINT	INDEPENDENT HILL DP	115.00	115.00	STEEL HFRM	1.56		
12	POSSUM POINT	INDEPENDENT HILL DP	115.00	115.00	STEEL POLE		0.28	
13	POSSUM POINT	INDEPENDENT HILL DP	115.00	115.00	STEEL POLE		0.46	
14	POSSUM POINT	INDEPENDENT HILL DP	115.00	115.00	STEEL TWR		0.10	
15	POSSUM POINT	INDEPENDENT HILL DP	115.00	115.00	STEEL TWR	0.14		
16	POSSUM POINT	INDEPENDENT HILL DP	115.00	115.00	WOOD HFRM		0.86	
17	POSSUM POINT	INDEPENDENT HILL DP	115.00	115.00	WOOD HFRM	3.73		
18	POSSUM POINT	INDEPENDENT HILL DP	115.00	115.00	WOOD POLE	0.01		
19	POSSUM POINT	INDEPENDENT HILL DP	115.00	115.00	WOOD POLE	0.51		
20	POSSUM POINT	INDEPENDENT HILL DP	115.00	115.00	WOOD POLE	0.08		
21	DOOMS	DUPONT (146)	115.00	230.00	STEEL POLE	4.60		1
22	DOOMS	DUPONT (146)	115.00	230.00	STEEL TWR	0.08		
23	LANDSTOWN	PENDLETON (147)	115.00	115.00	CONC HFRM	0.05		1
24	LANDSTOWN	PENDLETON (147)	115.00	115.00	CONC POLE	0.06		
25	LANDSTOWN	PENDLETON (147)	115.00	115.00	CONC POLE	0.03		
26	LANDSTOWN	PENDLETON (147)	115.00	115.00	STEEL HFRM	5.04		
27	LANDSTOWN	PENDLETON (147)	115.00	115.00	STEEL POLE	0.63		
28	LANDSTOWN	PENDLETON (147)	115.00	115.00	STEEL TWR	0.05		
29	CLUBHOUSE	JARRATT (148)	115.00	115.00	CONC HFRM	0.01		1
30	CLUBHOUSE	JARRATT (148)	115.00	115.00	STEEL HFRM	0.59		
31	CLUBHOUSE	JARRATT (148)	115.00	115.00	STEEL HFRM	3.03		
32	CLUBHOUSE	JARRATT (148)	115.00	115.00	STEEL POLE	0.03		
33	CLUBHOUSE	JARRATT (148)	115.00	115.00	STEEL POLE	0.04		
34	CLUBHOUSE	JARRATT (148)	115.00	115.00	STEEL TWR	0.08		
35	CLUBHOUSE	JARRATT (148)	115.00	115.00	WOOD HFRM	1.45		
		, , , , , , , , , , , , , , , , , , ,						
26					ΤΟΤΑΙ	5 5 1 1 6 1	1 1/6 50	520
50	1					5,544.04	1,140.37	527

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4				
TRANSMISSION LINE STATISTICS (Continued)								
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if				

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
721 ACAR								1
1033.5 ACSR								2
1033.5 ACSS								3
477 ACSR								4
721 ACAR								5
1033.5 ACSR								6
545.6 ACAR								7
545.6 ACAR								8
545.6 ACAR								9
636 ACSR								10
636 ACSR								11
636 ACSR								12
721 ACAR								13
636 ACSR								14
636 ACSR								15
636 ACSR								16
636 ACSR								17
246.9 AAAC								18
636 ACSR								19
721 ACAR								20
636 ACSR								21
636 ACSR								22
2500 ACAR								23
1109 ACAR								24
1351.5 ACSR								25
1351.5 ACSR								26
1351.5 ACSR								27
1351.5 ACSR								28
795 ACSR								29
36557 CU								30
795 ACSR								31
477 AAC								32
795 ACSR								33
636 ACSR								34
36557 CU								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report					
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4					
TRANSMISSION LINE STATISTICS								

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	ne DESIGNATION o.		DESIGNATION VOLTAGE (KV) (Indicate where other than		Type of	LENGTH (In the undergro	Number	
		Τ	60 cycle, 3 pha	ase)	Supporting	report čire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	CLUBHOUSE	JARRATT (148)	115.00	115.00	WOOD HFRM	0.41		
2	CLUBHOUSE	JARRATT (148)	115.00	115.00	WOOD HFRM	5.34		
3	CLUBHOUSE	JARRATT (148)	115.00	115.00	WOOD POLE	0.15		
4	CLUBHOUSE	JARRATT (148)	115.00	115.00	WOOD POLE	0.22		
5	WILLIS MT	COLONIAL PIPE LINE (149)	115.00	115.00	STEEL HFRM	0.46		1
6	WILLIS MT	COLONIAL PIPE LINE (149)	115.00	115.00	STEEL POLE	0.08		
7	WILLIS MT	COLONIAL PIPE LINE (149)	115.00	115.00	STEEL TWR	0.14		
8	WILLIS MT	COLONIAL PIPE LINE (149)	115.00	115.00	WOOD HFRM	6.64		
9	WILLIS MT	COLONIAL PIPE LINE (149)	115.00	115.00	WOOD POLE	0.48		
10	POE	BELL AVENUE (15)	115.00	115.00	CONC HFRM	0.13		1
11	POE	BELL AVENUE (15)	115.00	115.00	CONC HFRM	0.01		
12	POE	BELL AVENUE (15)	115.00	115.00	CONC HFRM	0.05		
13	POE	BELL AVENUE (15)	115.00	115.00	STEEL HFRM	0.08		
14	POE	BELL AVENUE (15)	115.00	115.00	STEEL POLE		0.05	
15	POE	BELL AVENUE (15)	115.00	115.00	STEEL POLE		0.05	
16	POE	BELL AVENUE (15)	115.00	115.00	STEEL POLE	0.29		
17	POE	BELL AVENUE (15)	115.00	115.00	STEEL POLE	0.07		
18	POE	BELL AVENUE (15)	115.00	115.00	STEEL POLE	0.02		
19	POE	BELL AVENUE (15)	115.00	115.00	STEEL TWR		0.09	
20	POE	BELL AVENUE (15)	115.00	115.00	STEEL TWR	31.88		
21	POE	BELL AVENUE (15)	115.00	115.00	STEEL TWR	0.05		
22	POE	BELL AVENUE (15)	115.00	115.00	STEEL TWR	0.05		
23	POE	BELL AVENUE (15)	115.00	115.00	WOOD POLE	0.05		
24	BASIN	12TH STREET (150)	115.00	115.00	STEEL HFRM	0.04		1
25	BASIN	12TH STREET (150)	115.00	115.00	STEEL POLE	0.25		
26	BASIN	12TH STREET (150)	115.00	115.00	STEEL TWR	0.75		
27	BASIN	12TH STREET (150)	115.00	115.00	STEEL TWR	3.12		
28	BASIN	12TH STREET (150)	115.00	115.00	WOOD HFRM	0.04		
29	PLYWOOD	SEDGE HILL (151)	115.00	115.00	STEEL HFRM	1.48		1
30	PLYWOOD	SEDGE HILL (151)	115.00	115.00	STEEL POLE	0.38		
31	PLYWOOD	SEDGE HILL (151)	115.00	115.00	WOOD HFRM	4.19		
32	PLYWOOD	SEDGE HILL (151)	115.00	115.00	WOOD POLE	0.96		
33	OAK GREEN	SPOTSYLVANIA (153)	115.00	115.00	CONC HFRM	0.11		1
34	OAK GREEN	SPOTSYLVANIA (153)	115.00	115.00	CONC HFRM	0.09		
35	OAK GREEN	SPOTSYLVANIA (153)	115.00	115.00	CONC HFRM	0.17		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>I his Report Is:</li> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	Date of Report (Mo, Da, Yr) / /	End of 2018/Q4							
TRANSMISSION LINE STATISTICS (Continued)										
7. Do not report the same transmission line structu										

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LINE (Include in Column (j) Land,						1	
Size of	of Land rights, and clearing right-of-way)			EXPE	FLINGES, EAGEFT DEFREGIATION AND TAXES			
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	lino
and Material	(i)	Other Costs		Expenses	Expenses	(0)	Expenses	No.
(1)	Ű	(K)	(1)	(m)	(n)	(0)	(þ)	1
795 AUSR								2
30557 CU								3
795 AUSR								4
390.3 ACAR								5 4
390.3 ACAR								0
390.3 ACAR								/
390.3 ACAR								8
390.3 ACAR								9
330.4 AUSK								10
								11
795 ACSR								12
795 AUSR								13
330.4 AUSK								14
030 AUSK								15
330.4 AUSK								10
								1/
795 AUSR								10
224 4 ACSR								19
								20
								21
224 4 ACSD								22
330.4 AUSK								23
721 ACAR								24
								25
030 AUSR								20
721 ACAR								27
								20
109.0 AAAC								29
								21
559.5 AAAC								22
226 / ACSD								22
424 ACSR								24
								25
195 AUSR								30
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report					
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4					
TRANSMISSION LINE STATISTICS								

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

No.     Indicate where other than 60 cycle, 3 phase)     Type of other than 60 cycle, 3 phase)     Type of other than 60 cycle, 3 phase)     Supporting 0 structure of Line Designed (g)     On Structure of Another Line (g)     On Structure of Another Line (g)     On Structure (g)	lumber Of ircuits (h)
From (a)     To (b)     Operating (c)     Designed (d)     Supporting Supporting     Instructure of Line (e)     On Structure of Line (f)     On Structure of Another (g)     C       1     OAK GREEN     SPOTSYLVANIA (153)     115.00     115.00     STEEL HFRM     0.10     Instructure (g)     Instructure (g) <td>Of ircuits (h)</td>	Of ircuits (h)
From (a)To (b)Operating (c)Designed (d)Structure (e)Of Structure of Line (e)Of Another Designated (f)C1OAK GREENSPOTSYLVANIA (153)115.00115.00STEEL HFRM0.102OAK GREENSPOTSYLVANIA (153)115.00115.00STEEL POLE1.05	(h)
(a)         (b)         (c)         (d)         (e)         Designated (f)         Life (g)           1         OAK GREEN         SPOTSYLVANIA (153)         115.00         115.00         STEEL HFRM         0.10           2         OAK GREEN         SPOTSYLVANIA (153)         115.00         115.00         STEEL POLE         1.05	(h)
1         OAK GREEN         SPOTSYLVANIA (153)         115.00         STEEL HFRM         0.10           2         OAK GREEN         SPOTSYLVANIA (153)         115.00         STEEL POLE         1.05	
2 OAK GREEN         SPOTSYLVANIA (153)         115.00         115.00         STEEL POLE         1.05	
3 OAK GREEN SPOTSYLVANIA (153) 115.00 115.00 115.00 2.32	
4 OAK GREEN SPOTSYLVANIA (153) 115.00 115.00 STEEL POLE 5.34	
5 OAK GREEN         SPOTSYLVANIA (153)         115.00         STEEL POLE         5.70	
6 OAK GREEN         SPOTSYLVANIA (153)         115.00         STEEL TWR         0.09	
7 OAK GREEN         SPOTSYLVANIA (153)         115.00         STEEL TWR         0.03	
8 OAK GREEN         SPOTSYLVANIA (153)         115.00         WOOD POLE         0.91	
9 PAMPLIN TWITTYS CREEK (154) 115.00 115.00 CONC HFRM 0.15	1
10 PAMPLIN         TWITTYS CREEK (154)         115.00         STEEL HFRM         4.51	
11 PAMPLIN         TWITTYS CREEK (154)         115.00         STEEL HFRM         0.05	
12 PAMPLIN         TWITTYS CREEK (154)         115.00         STEEL POLE         0.01	
13 PAMPLIN         TWITTYS CREEK (154)         115.00         115.00         WOOD HFRM         0.04	
14 PAMPLIN         TWITTYS CREEK (154)         115.00         115.00         WOOD HFRM         12.14	
15 PAMPLIN         TWITTYS CREEK (154)         115.00         115.00         WOOD POLE         0.46	
16 LOUDOUN         BULL RUN (156)         115.00         CONC HFRM         0.25	1
17 LOUDOUN         BULL RUN (156)         115.00         CONC POLE         3.51	
18 LOUDOUN         BULL RUN (156)         115.00         STEEL HFRM         0.12	
19 LOUDOUN         BULL RUN (156)         115.00         STEEL POLE         0.28	
20 LOUDOUN         BULL RUN (156)         115.00         STEEL POLE         0.11	
21 LOUDOUN         BULL RUN (156)         115.00         STEEL TWR         4.03	
22 LOUDOUN         BULL RUN (156)         115.00         STEEL TWR         0.02	
23 LOUDOUN         BULL RUN (156)         115.00         115.00         WOOD HFRM         0.10	
24 LOUDOUN         BULL RUN (156)         115.00         115.00         WOOD POLE         0.07	
25 PLAZA         MANCHESTER (157)         115.00         STEEL POLE         0.09	1
26 PLAZA         MANCHESTER (157)         115.00         STEEL POLE         0.35	
27 PLAZA         MANCHESTER (157)         115.00         STEEL TWR         0.10	
28 PLAZA         MANCHESTER (157)         115.00         STEEL TWR         2.28	
29 PLAZA         MANCHESTER (157)         115.00         STEEL TWR         2.22	
30 PLAZA         MANCHESTER (157)         115.00         STEEL TWR         0.08	
31 LONE PINE         FARMVILLE (158)         115.00         230.00         STEEL HFRM         0.03	1
32 LONE PINE         FARMVILLE (158)         115.00         230.00         STEEL HFRM         7.55	
33 LONE PINE         FARMVILLE (158)         115.00         230.00         STEEL HFRM         5.06	
34 LONE PINE         FARMVILLE (158)         115.00         230.00         STEEL POLE         1.47	
35 LONE PINE         FARMVILLE (158)         115.00         230.00         STEEL POLE         0.42	
36 TOTAL 5,544.64 1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4					
TRANSMISSION LINE STATISTICS (Continued)									
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if					

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of Land rights, and clearing right-		and clearing right-of-way)		EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor			• •					_
and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	Other Costs (k)	(I)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
636 ACSR			.,	,				1
246.9 AAAC								2
336.4 ACSR								3
636 ACSR								4
795 ACSR								5
246.9 AAAC								6
795 ACSR								7
795 ACSR								8
336.4 ACSR								9
336.4 ACSR								10
768.2 ACSS								11
336.4 ACSR								12
1033.5 ACSR								13
336.4 ACSR								14
336.4 ACSR								15
853.7 ACAR								16
853.7 ACAR								17
853.7 ACAR								18
1109 ACAR								19
636 ACSR								20
1109 ACAR								21
636 ACSR								22
853.7 ACAR								23
853.7 ACAR								24
721 ACAR								25
636 ACSR								26
636 ACSR								27
721 ACAR								28
636 ACSR								29
721 ACAR								30
768.2 ACSS								31
1033.5 ACSR								32
477 ACSR								33
768.2 ACSS								34
1033.5 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report				
VIRGINIA ELECTRIC AND POWER COMPANY	(2) $\square$ A Resubmission	/ /	End of 2018/Q4				
TRANSMISSION LINE STATISTICS							

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATION		DESIGNATION VOLTAGE (KV)		Type of	LENGTH (Pole miles)		Number	
No.		other than		1 ) po oi	underground lines		Number		
			60 cycle, 3 pha	ase)	Supporting	On Structure	On Structures	Circuito	
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits	
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	
1	LONE PINE	FARMVILLE (158)	115.00	230.00	STEEL POLE	0.12			
2	LONE PINE	FARMVILLE (158)	115.00	230.00	STEEL POLE	0.04			
3	LONE PINE	FARMVILLE (158)	115.00	230.00	STEEL TWR	0.18			
4	LONE PINE	FARMVILLE (158)	115.00	230.00	STEEL TWR	3.30			
5	ACCA	SHOCKOE (159)	115.00	115.00	CONC POLE	0.15		1	
6	ACCA	SHOCKOE (159)	115.00	115.00	STEEL HFRM	0.04			
7	ACCA	SHOCKOE (159)	115.00	115.00	STEEL POLE	0.13			
8	ACCA	SHOCKOE (159)	115.00	115.00	STEEL POLE	0.26			
9	ACCA	SHOCKOE (159)	115.00	115.00	STEEL POLE	0.09			
10	ACCA	SHOCKOE (159)	115.00	115.00	STEEL POLE	0.15			
11	ACCA	SHOCKOE (159)	115.00	115.00	STEEL TWR	0.27			
12	ACCA	SHOCKOE (159)	115.00	115.00	STEEL TWR	2.92			
13	GREAT BRIDGE	HICKORY (16)	115.00	115.00	STEEL HFRM	0.04		1	
14	GREAT BRIDGE	HICKORY (16)	115.00	115.00	STEEL POLE	0.13			
15	GREAT BRIDGE	HICKORY (16)	115.00	115.00	STEEL TWR	2.03			
16	GREAT BRIDGE	HICKORY (16)	115.00	115.00	WOOD HFRM	3.80			
17	GREAT BRIDGE	HICKORY (16)	115.00	115.00	WOOD POLE	0.34			
18	DOOMS	DUPONT (160)	115.00	230.00	CONC POLE	0.12		1	
19	DOOMS	DUPONT (160)	115.00	230.00	STEEL POLE		0.16		
20	DOOMS	DUPONT (160)	115.00	230.00	STEEL POLE	0.06			
21	DOOMS	DUPONT (160)	115.00	230.00	STEEL POLE	4.30			
22	DOOMS	DUPONT (160)	115.00	230.00	STEEL TWR	0.10			
23	LOCKS	HARVELL (162)	115.00	115.00	CONC POLE	0.98		1	
24	LOCKS	HARVELL (162)	115.00	115.00	STEEL POLE	1.00			
25	LOCKS	HARVELL (162)	115.00	115.00	STEEL TWR	0.01			
26	BULL RUN	CANNON BRANCH (163)	115.00	115.00	CONC HFRM		0.03	1	
27	BULL RUN	CANNON BRANCH (163)	115.00	115.00	CONC POLE		0.07		
28	BULL RUN	CANNON BRANCH (163)	115.00	115.00	CONC POLE	0.05			
29	BULL RUN	CANNON BRANCH (163)	115.00	115.00	CONC POLE	1.05			
30	BULL RUN	CANNON BRANCH (163)	115.00	115.00	STEEL POLE		0.49		
31	BULL RUN	CANNON BRANCH (163)	115.00	115.00	STEEL POLE	0.04			
32	BULL RUN	CANNON BRANCH (163)	115.00	115.00	STEEL POLE	0.78			
33	BULL RUN	CANNON BRANCH (163)	115.00	115.00	STEEL TWR	0.02			
34	BULL RUN	CANNON BRANCH (163)	115.00	115.00	WOOD POLE	4.47			
35	CEC	REEVES AVE (164)	115.00	230.00	CONC POLE		0.03	1	
26					τοται	5 5 1 1 6 1	1 1/4 50	500	
30					1.01/1E	5,544.04	1,140.39	529	

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights,	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor			,,					
and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	_ Total	Line
(i)	(j)	Other Costs (k)	(I)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
477 ACSR					,			1
545.6 ACAR								2
36617 ACSR								3
545.6 ACAR								4
721 ACAR								5
1351.5 ACSR								6
1351.5 ACSR								7
636 ACSR								8
721 ACAR								9
740.8 AAAC								10
1033.5 ACSR								11
721 ACAR								12
336.4 ACSR								13
336.4 ACSR								14
336.4 ACSR								15
336.4 ACSR								16
336.4 ACSR								17
477 ACSR								18
636 ACSR								19
477 ACSR								20
636 ACSR								21
477 ACSR								22
1109 ACAR								23
1109 ACAR								24
1109 ACAR								25
1590 ACSS								26
1590 ACSS								27
1590 ACSS								28
721 ACAR								29
1590 ACSS								30
1590 ACSS								31
721 ACAR								32
721 ACAR								33
721 ACAR								34
1351.5 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	ine DESIGNATION No.		VOLTAGE (KV) (Indicate where other than 60 cycle, 3 phase)		Type of Supporting	LENGTH (In the undergro report cire	Number Of	
	From	То	Operating	Designed	Ctructure	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line	(b)
1			115.00	230.00		(1)	(9)	(1)
2			115.00	230.00	STEEL HERM	0.03	0.05	
2	CEC		115.00	230.00			0.03	
3	CEC		115.00	230.00		0.22	0.23	
4	CEC		115.00	230.00		0.22		
6	CEC		115.00	230.00		3.66		
7	CEC		115.00	230.00	STEEL TWR	5.00	0.23	
8	CEC		115.00	230.00	STEEL TWR	0.29	0.23	
0	CEC		115.00	230.00	STEEL TWR	2.81		
10	CEC		115.00	230.00	STEEL TWR	0.35		
10	CEC		115.00	230.00		0.55		
12		SHELL BANK (165)	115.00	115.00	STEEL HERM	2.48		1
12		SHELLBANK (105)	115.00	115.00		1 22		
1/		SHELLBANK (165)	115.00	115.00	STEEL TWR	1.23	0.02	
14		SHELLBANK (165)	115.00	115.00	STEEL TWR	0.10	0.72	
10	GREENWICH	BURTON (166)	115.00	115.00	STEEL HERM	0.10		1
10			115.00	115.00		0.02		
18	GREENWICH	BURTON (166)	115.00	115.00		0.07		
10			115.00	115.00	STEEL TWD	3 22		
20			115.00	230.00	STEEL TWR	0.07		1
20			115.00	230.00		0.07		
21			115.00	230.00		0.32		
22		WEVERHAEUSER (168)	115.00	230.00	STEEL HERM	0.22		1
23		WEVERHAEUSER (168)	115.00	230.00	STEEL TWR	0.07		1
24		WEVERHAEUSER (168)	115.00	230.00		0.07		
20		WEVERHAEUSER (168)	115.00	230.00		0.44		
20		KINGSMILL (169)	115.00	115.00		0.23		1
21			115.00	115.00		10.80		1
20			115.00	115.00	STEEL TWR	9.45		
30			115.00	115.00		0.19		
31	CHESTERFIELD 115	NORTHEAST (17)	115.00	115.00		0.17		1
32	CHESTERFIELD 115	NORTHEAST (17)	115.00	115.00	STEEL HERM	1 18		
33	CHESTERFIELD 115	NORTHEAST (17)	115.00	115.00		0.08		
34	CHESTERFIELD 115	NORTHEAST (17)	115.00	115.00	STEEL TOLL	3.92		
35	CHESTERFIELD 115	NORTHEAST (17)	115.00	115.00	WOOD HERM	7.98		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original	(Mo, Da, Yr)	Year/Period	of Report		
	(2) A Resubmission	11		2010/04		
TRANSMISSION LINE STATISTICS (Continued)						
. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colur	nn (i) Land.	EVE				1
Size of	Land rights,	and clearing right-o	of-way)	EXPE	NSES, EXCEPT DE	PRECIATION ANL	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	lina
and Material	(i)	Other Costs		Expenses	Expenses	(0)	Expenses	No.
1351 5 ACSR	()/	(N)	(1)	(11)	(1)	( )	(P)	1
1351.5 ACSR								2
1351.5 ACSR								3
1351.5 ACSR								4
477 ACSR								5
721 ACAR								6
1351.5 ACSR								7
1351.5 ACSR								8
477 ACSR								9
721 ACAR								10
1351.5 ACSR								11
1033.5 ACSS								12
1033.5 ACSS								13
1033.5 ACSS								14
1033.5 ACSS								15
636 ACSR								16
1600 AAAC								17
636 ACSR								18
1600 AAAC								19
545.6 ACAR								20
545.6 ACAR								21
545.6 ACAR								22
545.6 ACAR								23
545.6 ACAR								24
545.6 ACAR								25
545.6 ACAR								26
721 ACAR								27
721 ACAR								28
721 ACAR								29
721 ACAR								30
636 ACSR								31
636 ACSR								32
636 ACSR								33
636 ACSR								34
636 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATI	ON	VOLTAGE (KV	)	Type of	LENGTH	(Pole miles)	
No.			other than	<u>,</u>	Type of	undergro	case of bund lines	Number
			60 cycle, 3 pha	ise)	Supporting	report cire	Cult miles)	Or
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	CHESTERFIELD 115	NORTHEAST (17)	115.00	115.00	WOOD POLE	0.78		
2	CHASE CITY	BOYDTON PLANK ROAD	115.00	115.00	STEEL HFRM	0.12		1
3	CHASE CITY	BOYDTON PLANK ROAD	115.00	115.00	STEEL POLE		11.08	
4	CHASE CITY	BOYDTON PLANK ROAD	115.00	115.00	STEEL POLE	0.19		
5	CHASE CITY	BOYDTON PLANK ROAD	115.00	115.00	STEEL TWR	0.05		
6	LIBERTY	LOMAR (172)	115.00	230.00	CONC POLE	0.05		1
7	LIBERTY	LOMAR (172)	115.00	230.00	STEEL HFRM	0.13		
8	LIBERTY	LOMAR (172)	115.00	230.00	STEEL POLE	0.02		
9	LIBERTY	LOMAR (172)	115.00	230.00	STEEL POLE	2.80		
10	LIBERTY	LOMAR (172)	115.00	230.00	STEEL POLE	0.37		
11	LIBERTY	LOMAR (172)	115.00	230.00	WOOD POLE	0.13		
12	FOUR RIVERS	DOSWELL L.P. (175)	115.00	115.00	CONC HFRM	0.10		1
13	HARMONY VILLAGE	WAN (176)	115.00	115.00	CONC HFRM	0.04		1
14	HARMONY VILLAGE	WAN (176)	115.00	115.00	STEEL POLE		2.18	
15	HARMONY VILLAGE	WAN (176)	115.00	115.00	STEEL POLE		9.50	
16	HARMONY VILLAGE	WAN (176)	115.00	115.00	STEEL POLE	0.09		
17	HARMONY VILLAGE	WAN (176)	115.00	115.00	STEEL TWR	0.02		
18	HARMONY VILLAGE	WAN (176)	115.00	115.00	WOOD POLE	0.01		
19	LANEXA	TOANO (177)	115.00	115.00	CONC HFRM		0.35	1
20	LANEXA	TOANO (177)	115.00	115.00	CONC HFRM	0.09		
21	LANEXA	TOANO (177)	115.00	115.00	STEEL HFRM		0.29	
22	LANEXA	TOANO (177)	115.00	115.00	STEEL HFRM	0.10		
23	LANEXA	TOANO (177)	115.00	115.00	STEEL POLE		0.16	
24	LANEXA	TOANO (177)	115.00	115.00	STEEL TWR		0.21	
25	LANEXA	TOANO (177)	115.00	115.00	STEEL TWR	0.05		
26	LANEXA	TOANO (177)	115.00	115.00	WOOD HFRM		5.62	
27	LANEXA	TOANO (177)	115.00	115.00	WOOD HFRM	0.61		
28	LANEXA	TOANO (177)	115.00	115.00	WOOD HFRM	0.16		
29	LANEXA	TOANO (177)	115.00	115.00	WOOD POLE		0.21	
30	LANEXA	TOANO (177)	115.00	115.00	WOOD POLE	0.16		
31	POSSUM POINT	SMOKETOWN DP (18)	115.00	115.00	STEEL HFRM	2.49		1
32	POSSUM POINT	SMOKETOWN DP (18)	115.00	115.00	STEEL POLE	0.58		
33	POSSUM POINT	SMOKETOWN DP (18)	115.00	115.00	STEEL POLE	0.46		
34	POSSUM POINT	SMOKETOWN DP (18)	115.00	115.00	STEEL TWR	0.25		
35	POSSUM POINT	SMOKETOWN DP (18)	115.00	115.00	WOOD HFRM	4.57		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
636 ACSR								1
768.2 ACSS								2
768.2 ACSS								3
768.2 ACSS								4
768.2 ACSS								5
477 ACSR								6
636 ACSR								7
477 ACSR								8
636 ACSR								9
721 ACAR								10
721 ACAR								11
795 ACSR								12
721 ACAR								13
636 ACSR								14
721 ACAR								15
721 ACAR								16
636 ACSR								17
721 ACAR								18
477 ACSR								19
396.3 ACAR								20
477 ACSR								21
477 ACSR								22
477 ACSR								23
477 ACSR								24
1033.5 ACSS								25
477 ACSR								26
396.3 ACAR								27
477 ACSR								28
477 ACSR								29
396.3 ACAR								30
636 ACSR								31
636 ACSR								32
721 ACAR								33
636 ACSR								34
636 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATI	ON	VOLTAGE (K)	/)	Type of	LENGTH	(Pole miles)	
No.			other than	other than		undergro	bund lines	Number
		1	60 cycle, 3 ph	ase)	Supporting	report cire	Cult miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	POSSUM POINT	SMOKETOWN DP (18)	115.00	115.00	WOOD POLE	0.01		
2	POSSUM POINT	SMOKETOWN DP (18)	115.00	115.00	WOOD POLE	0.38		
3	POSSUM POINT	SMOKETOWN DP (18)	115.00	115.00	WOOD POLE	0.07		
4	BURTON	OAKWOOD (181)	115.00	115.00	STEEL HFRM	0.01		1
5	BURTON	OAKWOOD (181)	115.00	115.00	STEEL POLE	3.64		
6	BURTON	OAKWOOD (181)	115.00	115.00	STEEL TWR	0.04		
7	BURTON	OAKWOOD (181)	115.00	115.00	UG UG	0.85		
8	INDUSTRIAL PARK	THOLE STREET (182)	115.00	115.00	CONC POLE	0.01		1
9	INDUSTRIAL PARK	THOLE STREET (182)	115.00	115.00	STEEL POLE		2.49	
10	INDUSTRIAL PARK	THOLE STREET (182)	115.00	115.00	STEEL POLE	0.02		
11	INDUSTRIAL PARK	THOLE STREET (182)	115.00	115.00	STEEL TWR		0.02	
12	OX	BRISTERS (183)	115.00	230.00	CONC HFRM	0.02		1
13	OX	BRISTERS (183)	115.00	230.00	CONC HFRM	0.03		
14	OX	BRISTERS (183)	115.00	230.00	STEEL HFRM	0.59		
15	OX	BRISTERS (183)	115.00	230.00	STEEL HFRM	2.27		
16	OX	BRISTERS (183)	115.00	230.00	STEEL POLE	4.52		
17	OX	BRISTERS (183)	115.00	230.00	STEEL POLE	0.41		
18	OX	BRISTERS (183)	115.00	230.00	STEEL TWR			
19	OX	BRISTERS (183)	115.00	230.00	STEEL TWR	3.76		
20	OX	BRISTERS (183)	115.00	230.00	STEEL TWR	4.96		
21	OX	BRISTERS (183)	115.00	230.00	WOOD HFRM	0.69		
22	OX	BRISTERS (183)	115.00	230.00	WOOD HFRM	6.28		
23	OX	BRISTERS (183)	115.00	230.00	WOOD POLE	0.01		
24	OX	BRISTERS (183)	115.00	230.00	WOOD POLE	0.26		
25	WHARTON	PANTEGO (189)	115.00	115.00	CONC POLE	2.34		1
26	WHARTON	PANTEGO (189)	115.00	115.00	CONC POLE	0.03		
27	WHARTON	PANTEGO (189)	115.00	115.00	STEEL HFRM	0.01		
28	WHARTON	PANTEGO (189)	115.00	115.00	STEEL HFRM	0.17		
29	WHARTON	PANTEGO (189)	115.00	115.00	STEEL POLE	0.42		
30	WHARTON	PANTEGO (189)	115.00	115.00	STEEL POLE	0.02		
31	WHARTON	PANTEGO (189)	115.00	115.00	STEEL POLE	0.06		
32	WHARTON	PANTEGO (189)	115.00	115.00	STEEL TWR	0.08		
33	WHARTON	PANTEGO (189)	115.00	115.00	STEEL TWR	0.05		
34	WHARTON	PANTEGO (189)	115.00	115.00	WOOD HFRM	8.83		
35	WHARTON	PANTEGO (189)	115.00	115.00	WOOD POLE	16.82		
36			+		TOTAL	5 544 64	1 146 59	529
00				1	-	0,017.04	1,110.07	527

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original	(Mo, Da, Yr)	Year/Period	of Report		
	(2) A Resubmission	11		2010/04		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	F (Include in Colum	nn (i) Land.	EXPENSES EXCEPT DEPRECIATION AND TAXES				1
Size of	Land rights,	and clearing right-o	f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
and Material	(1)	Other Costs	(1)	Expenses	Expenses	(0)	Expenses	No
(1)	0)	(к)	(1)	(m)	(n)	(0)	(p)	
246.9 AAAC								1
636 ACSR								2
721 ACAR								3
3500 CU								4
636 ACSR								5
636 ACSR								6
3500 CU								7
2500 ACAR	-							8
2500 ACAR								9
2500 ACAR								10
2500 ACAR								11
636 ACSR								12
740.8 AAAC								13
636 ACSR								14
740.8 AAAC								15
636 ACSR								16
740.8 AAAC								17
36617 ACSR								18
636 ACSR								19
740.8 AAAC								20
636 ACSR								21
740.8 AAAC								22
36617 ACSR								23
740.8 AAAC								24
36617 ACSR								25
768.2 ACSS								26
36617 ACSR								27
795 ACSR								28
36617 ACSR								29
768.2 ACSS								30
795 ACSR								31
36617 ACSR								32
795 ACSR								33
795 ACSR								34
36617 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATION		VOLTAGE (KV)		Type of LENGTH (Po		(Pole miles)	
No.			other than	9	Type of	(In the undergro	case of bund lines	Number
		1	60 cycle, 3 pha	ise)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	WHARTON	PANTEGO (189)	115.00	115.00	WOOD POLE	1.70		
2	KINGSMILL	SKIFFES CREEK (19)	115.00	115.00	STEEL HFRM		0.23	1
3	KINGSMILL	SKIFFES CREEK (19)	115.00	115.00	STEEL HFRM	0.06		
4	KINGSMILL	SKIFFES CREEK (19)	115.00	115.00	STEEL POLE	0.40		
5	KINGSMILL	SKIFFES CREEK (19)	115.00	115.00	WOOD HFRM		0.73	
6	KINGSMILL	SKIFFES CREEK (19)	115.00	115.00	WOOD HFRM	0.08		
7	KINGSMILL	SKIFFES CREEK (19)	115.00	115.00	WOOD HFRM	0.09		
8	KINGSMILL	SKIFFES CREEK (19)	115.00	115.00	WOOD POLE		0.28	
9	NAGS HEAD	LIGHTHOUSE DP (190)	115.00	115.00	CONC HFRM	0.02		1
10	NAGS HEAD	LIGHTHOUSE DP (190)	115.00	115.00	CONC POLE	1.16		
11	NAGS HEAD	LIGHTHOUSE DP (190)	115.00	115.00	STEEL POLE	0.05		
12	NAGS HEAD	LIGHTHOUSE DP (190)	115.00	115.00	STEEL POLE	0.14		
13	NAGS HEAD	LIGHTHOUSE DP (190)	115.00	115.00	WOOD POLE	7.83		
14	ALTAVISTA	HURT NUG (191)	115.00	115.00	CONC HFRM	0.07		1
15	ALTAVISTA	HURT NUG (191)	115.00	115.00	CONC HFRM	0.05		
16	ALTAVISTA	HURT NUG (191)	115.00	115.00	CONC POLE	0.02		
17	ALTAVISTA	HURT NUG (191)	115.00	115.00	CONC POLE	0.02		
18	ALTAVISTA	HURT NUG (191)	115.00	115.00	STEEL HFRM		0.25	
19	ALTAVISTA	HURT NUG (191)	115.00	115.00	STEEL POLE		1.16	
20	ALTAVISTA	HURT NUG (191)	115.00	115.00	STEEL POLE	0.12		
21	ALTAVISTA	HURT NUG (191)	115.00	115.00	STEEL POLE	0.07		
22	ALTAVISTA	HURT NUG (191)	115.00	115.00	WOOD HFRM	0.82		
23	MERCURY	BLOXOMS CORNER (192)	115.00	115.00	CONC HFRM		0.04	1
24	MERCURY	BLOXOMS CORNER (192)	115.00	115.00	CONC POLE	1.54		
25	MERCURY	BLOXOMS CORNER (192)	115.00	115.00	STEEL POLE	1.20		
26	MERCURY	BLOXOMS CORNER (192)	115.00	115.00	WOOD POLE	0.60		
27	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	CONC POLE	0.01		1
28	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	STEEL HFRM	1.34		
29	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	STEEL HFRM	1.81		
30	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	STEEL POLE	0.15		
31	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	STEEL POLE	0.08		
32	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	STEEL POLE	0.81		
33	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	STEEL TWR	1.05		
34	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	STEEL TWR	0.90		
35	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	STEEL TWR	1.71		
					τοται	E E 4 4 4	1 1 4 / 50	F 10
- 36					IUIAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if							

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of Conductor and Material (0)         Land rights, and clearing right-of-way)         EXPENSES, EXCEPT DEPRECIATION AND TAXES           Land rights, and clearing right-of-way)         Line (0)         Construction and (0)         Total Cost (0)         Depretion Expenses         Rents (0)         Expenses (0)         Rents (0)         Expenses (0)         Rents (0)         Expenses (0)         Rents (0)         Line (0)         Image: Construction (0)		COST OF LIN	E (Include in Colur	nn (i) Land.					Т
Conductor (h)         Land (h)         Construction and (h)         Total Cost (h)         Operation Expenses (h)         Maintenance (h)         Rents (h)         Total Expenses (h)           77 ACSR         -         -         -         1           77 ACSR         -         -         -         2           60 ACSR         -         -         -         4           477 ACSR         -         -         -         4           477 ACSR         -         -         -         4           477 ACSR         -         -         -         6           66A ACSR         -         -         -         6           677 ACS         -         -         -         1           66A ACSR         -         -         -         10           936 6ACAR         -         -         10         1           565 ACAR         -         -         13         3           566 ACAR         -         -         13         3           566 ACAR         -         -         13         3           566 ACAR         -         -         14         14           214 ACAR         - <t< td=""><td>Size of</td><td>Land rights,</td><td>and clearing right-o</td><td>if-way)</td><td>EXPE</td><td>ENSES, EXCEPT DE</td><td>EPRECIATION AND</td><td>TAXES</td><td></td></t<>	Size of	Land rights,	and clearing right-o	if-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
and Methanal ()         Contre (Costs ()         Contre (Costs ()         Expenses ()         Expenses ()         Costs ()         Expenses ()         Costs ()         No.           758 ACSR         -         -         -         -         -         2           636 ACSR         -         -         -         -         3           636 ACSR         -         -         -         -         4           636 ACSR         -         -         -         -         -         4           636 ACSR         -         -         -         -         -         -         7           77 ACSR         -         -         -         -         -         -         7           747 ACSR         -         -         -         -         -         10         7           747 ACSR         -         -         -         -         -         10         10           77 ACSR         -         -         -         -         10         10         12           747 ACSR         -         -         -         -         10         12           717 ACR         -         -         -         10	Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
0)         0)         (k)         0)         (m)         (n)         (u)         (p)         (c)         (p)         (c)         (p)	and Material	(1)	Other Costs	(1)	Expenses	Expenses	(0)	Expenses	No
NA ACSM         Image: Constraint of the second	(1)	0	(К)	(1)	(m)	(n)	(0)	(p)	1.10.
1/1 ACSR	795 ACSR								1
bbb ACSR	4// ACSR								2
Obs ALSN         O         A         A           TA ACSR         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I	636 ACSR								3
1/1 ALSR	636 ACSR								4
1/1 ALSR	4/7 ACSR								5
observation         observation <thobservation< th=""> <thobservation< th=""></thobservation<></thobservation<>	4// ACSR								6
171 ACSR        8       565 ACAR       9       545 6 ACAR       10       171 AAC       11       555 ACAR       11       555 ACAR       11       555 ACAR       11       555 ACAR       13       555 ACAR       13       555 ACAR       11       171 AAC       11       555 ACAR       13       555 ACAR       11       171 AC       11       555 ACAR       11       1531 ACAR       11       1534 ACAR       11       171 ACAR       11       171 ACAR       11       1721 ACAR       11       1735 ACAR       21       174 ACAR       21       171 ACAR       22       171 ACAR       23       171 ACAR       24 <tr< td=""><td>636 ACSR</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7</td></tr<>	636 ACSR								7
365 A CAR	477 ACSR								8
545 A CAR         10           545 A CAR         11           545 A CAR         11           545 A CAR         11           77 A AC         11           545 A CAR         11           77 A AC         11           545 A CAR         11           71 A CA         11           545 A CAR         11           153 A CAR         11           153 A CAR         11           153 A CAR         11           153 A CAR         11           154 CAR         11           151 A CAR         11           152 A CAR         11           153 A CAR         11           154 A CAR         12           171 A CAR         12 <t< td=""><td>545.6 ACAR</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9</td></t<>	545.6 ACAR								9
477 AAC       11         545 ACAR       12         177 AAC       13         545 ACAR       14         171 ACA       14         171 ACA       14         171 ACA       14         171 ACA       14         171 ACAR       16         153 ACAR       16         154 ACAR       16         154 ACAR       17         171 ACA       17         172 I ACAR       17         173 ACAR       17         173 ACAR       17         174 ACAR       16         153 ACAR       17         153 ACAR       17         153 ACAR       17         153 ACAR       18         153 ACAR       17         153 ACAR       10         153 ACAR       10         153 ACAR       11         154 CAR       11         153 ACAR       12         121 ACAR	545.6 ACAR								10
546.6 ACAR         12           477 AAC         13           556.6 ACAR         14           721 ACAR         16           1534 ACAR         16           556.6 ACAR         17           721 ACAR         18           556.6 ACAR         17           721 ACAR         18           721 ACAR         18           721 ACAR         19           1534 ACAR         10           56.6 ACAR         19           1534 ACAR         10           56.6 ACAR         19           1534 ACAR         10           56.6 ACAR         20           556.6 ACAR         21           154.6 ACAR         21           154.6 ACAR         21           154.6 ACAR         21           121 ACAR         22           121 ACAR         24           121 ACAR         29           124 ACAR         29           124 ACAR         29           246 ACAR         30 <tr< td=""><td>477 AAC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td></tr<>	477 AAC								11
477 AAC	545.6 ACAR								12
545.6 ACAR         14           721 ACAR         15           153 ACAR         16           153 ACAR         17           153 ACAR         17           1721 ACAR         18           121 ACAR         10           123 ACAR         10           124 ACAR         10           125 ACAR         10           121 ACAR         10           123 ACAR         10           124 ACAR         10           125 ACAR         10           125 ACAR         10           125 ACAR         10           124 ACAR         10           125 ACAR         10           126 ACAR         10           121 A	477 AAC								13
121 ACAR       1       15         1534 ACAR       16         1534 ACAR       16         154 ACAR       17         721 ACAR       10         721 ACAR       11         721 ACAR       12         721 ACAR       12         721 ACAR       12         7356 ACSR       12	545.6 ACAR								14
1534 ACAR       16       16         545 6 ACAR       17         721 ACAR       18         1534 ACAR       19         1534 ACAR       10         1534 ACAR       11         1545 6 ACAR       11         1545 6 ACAR       11         1546 ACAR       11         1547 ACAR       11         1547 ACAR       11         121 ACAR       12         121 ACAR       12         121 ACAR       12         121 ACAR       12         123       133	721 ACAR								15
545.6 ACAR         17           721 ACAR         18           721 ACAR         19           721 ACAR         20           553.4 ACAR         20           545.6 ACAR         21           545.6 ACAR         21           545.6 ACAR         21           545.6 ACAR         22           721 ACAR         22           721 ACAR         22           721 ACAR         23           721 ACAR         24           721 ACAR         24           721 ACAR         25           721 ACAR         26           721 ACAR         26           721 ACAR         27           63 ACSR         28           721 ACAR         29           721 ACAR         20           721 ACAR         29           721 ACAR         29           721 ACAR         30           536 ACSR         31           721 ACAR         31           721 ACAR         33           <	1534 ACAR								16
721 ACAR       18         721 ACAR       19         1534 ACAR       20         545.6 ACAR       21         545.6 ACAR       21         545.6 ACAR       21         721 ACAR       22         721 ACAR       23         721 ACAR       23         721 ACAR       23         721 ACAR       24         721 ACAR       23         721 ACAR       24         721 ACAR       24         721 ACAR       25         721 ACAR       26         721 ACAR       26         721 ACAR       27         26 ACSR       27         721 ACAR       29         724 ACAR       29         724 ACAR       29         724 ACAR       29         721 ACAR       29         721 ACAR       30         536 ACSR       31         721 ACAR       32         55.5 ACSR       32         55.6 ACSR       33         721 ACAR       33         721 ACAR       33         721 ACAR       34         721 ACAR       35	545.6 ACAR								17
721 ACAR       19         1534 ACAR       20         545.6 ACAR       21         545.6 ACAR       21         271 ACAR       21         721 ACAR       21         721 ACAR       22         721 ACAR       23         721 ACAR       23         721 ACAR       24         721 ACAR       24         721 ACAR       24         721 ACAR       25         721 ACAR       26         721 ACAR       26         721 ACAR       27         721 ACAR       26         721 ACAR       27         721 ACAR       28         721 ACAR       29         721 ACAR       30         721 ACAR       30         721 ACAR       30         721 ACAR       31         721 ACAR       31         721 ACAR       33         565 ACSR       33         565 ACSR       33         721 ACAR       34         <	721 ACAR								18
1534 ACAR       0       0       20         545.6 ACAR       0       0       21         545.6 ACAR       0       0       22         721 ACAR       0       0       23         721 ACAR       0       0       25         721 ACAR       0       0       25         721 ACAR       0       0       26         721 ACAR       0       0       26         721 ACAR       0       0       26         721 ACAR       0       0       27         636 ACSR       0       0       28         721 ACAR       0       0       29         246.9 AAAC       0       0       30         536 ACSR       0       0       30         721 ACAR       0       0       32         565.4 ACSR       0       0       33         363 ACSR       0       0       33         371 ACAR       0       34         721 ACAR       0 <td>721 ACAR</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>19</td>	721 ACAR								19
545.6 ACAR         21         545.6 ACAR         22         721 ACAR          23         721 ACAR          24         721 ACAR          25         721 ACAR          25         721 ACAR          25         721 ACAR          26         721 ACAR          27         636 ACSR          27         636 ACSR          29         246.9 AAAC          30         536 ACSR          30         536 ACSR          31         721 ACAR          31         71 ACAR          32         56.5 ACSR           33         536 ACSR           33         36 ACSR	1534 ACAR								20
545.6 ACAR	545.6 ACAR								21
721 ACAR	545.6 ACAR								22
721 ACAR       24         721 ACAR       25         721 ACAR       26         721 ACAR       27         636 ACSR       28         721 ACAR       29         246.9 AAAC       29         246.9 CASR       30         536 ACSR       31         721 ACAR       31         721 ACAR       33         356 ACSR       33         363 ACSR       31         721 ACAR       32         56.5 ACSR       33         363 ACSR       33         364 ACSR       31         721 ACAR       32         56.5 ACSR       33         363 ACSR       34         721 ACAR       35         363 ACSR       34         721 ACAR       35         363 ACSR       34         371 ACAR       35         364 ACSR       34         371 ACAR       35         371 ACAR       35         371 ACAR       35         3721 ACAR       35         373       36         374 ACAR       35         375       36         376 </td <td>721 ACAR</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>23</td>	721 ACAR								23
721 ACAR         25           721 ACAR         26           721 ACAR         27           636 ACSR         28           721 ACAR         29           246.9 AAAC         30           636 ACSR         30           721 ACAR         30           636 ACSR         31           721 ACAR         31           721 ACAR         32           556.5 ACSR         33           636 ACSR         33           721 ACAR         32           556.5 ACSR         33           536 ACSR         34           721 ACAR         35           5563,602,218         4,121,865,109         4,685,467,327           14,070,455         28,804,187         101,655         42,976,297         36	721 ACAR								24
T21 ACAR	721 ACAR								25
T21 ACAR         Control         Contro         Contro <thcontrol< th=""> <thc< td=""><td>721 ACAR</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>26</td></thc<></thcontrol<>	721 ACAR								26
636 ACSR           28           721 ACAR           29           246.9 AAAC           30           636 ACSR           30           636 ACSR           30           636 ACSR           31           721 ACAR           32           556.5 ACSR           33           636 ACSR           33           636 ACSR           33           636 ACSR           33           636 ACSR           33           721 ACAR           34           721 ACAR           35           563,602,218         4,121,865,109         4,685,467,327         14,070,455         28,804,187         101,655         42,976,297         36	721 ACAR								27
721 ACAR         29           246.9 AAAC         30           636 ACSR         31           721 ACAR         31           721 ACAR         32           556.5 ACSR         33           636 ACSR         33           721 ACAR         32           556.5 ACSR         33           636 ACSR         33           636 ACSR         33           721 ACAR         33           563.6 ACSR         33           636 ACSR         33           636 ACSR         33           721 ACAR         34           721 ACAR         35           563.602,218         4,121,865,109         4,685,467,327           14,070,455         28,804,187         101,655         42,976,297         36	636 ACSR								28
246.9 AAAC         30           636 ACSR         31           721 ACAR         32           556.5 ACSR         33           636 ACSR         34           721 ACAR         35           563,602,218         4,121,865,109         4,685,467,327         14,070,455         28,804,187         101,655         42,976,297         36	721 ACAR								29
636 ACSR         1         31           721 ACAR         32         32           556.5 ACSR         33         33           636 ACSR         33         33           636 ACSR         34         34           721 ACAR         35         35           56.5 ACSR         34         35           636 ACSR         35         35           56.5 ACSR         35         35           563,602,218         4,121,865,109         4,685,467,327         14,070,455         28,804,187         101,655         42,976,297         36	246.9 AAAC								30
721 ACAR         32           556.5 ACSR         33           636 ACSR         34           721 ACAR         34           721 ACAR         35           56.5 ACSR         34           721 ACAR         35           563,602,218         4,121,865,109         4,685,467,327         14,070,455         28,804,187         101,655         42,976,297         36	636 ACSR								31
556.5 ACSR         33           636 ACSR         34           721 ACAR         35           563,602,218         4,121,865,109         4,685,467,327         14,070,455         28,804,187         101,655         42,976,297         36	721 ACAR								32
636 ACSR         34           721 ACAR         35           563,602,218         4,121,865,109         4,685,467,327         14,070,455         28,804,187         101,655         42,976,297         36	556.5 ACSR								33
721 ACAR         35           563,602,218         4,121,865,109         4,685,467,327         14,070,455         28,804,187         101,655         42,976,297         36	636 ACSR								34
563,602,218 4,121,865,109 4,685,467,327 14,070,455 28,804,187 101,655 42,976,297 <b>36</b>	721 ACAR								35
563,602,218         4,121,865,109         4,685,467,327         14,070,455         28,804,187         101,655         42,976,297         36									
563,602,218         4,121,865,109         4,685,467,327         14,070,455         28,804,187         101,655         42,976,297         36									
563,602,218         4,121,865,109         4,685,467,327         14,070,455         28,804,187         101,655         42,976,297         36									
		563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATI	ON	VOLTAGE (KV	<u>()</u>	Type of	LENGTH	(Pole miles)	
No.			other than		1)0001	undergro	bund lines	Number
		1	60 cycle, 3 pha	ase)	Supporting	On Structure	On Structures	Circuito
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	WOOD HFRM	0.22		
2	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	WOOD HFRM	7.32		
3	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	WOOD HFRM	0.88		
4	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	WOOD POLE	1.32		
5	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	WOOD POLE	0.78		
6	KERR DAM	BUGGS ISLAND (193)	115.00	115.00	WOOD POLE	0.74		
7	LEXINGTON	FAIRFIELD (194)	115.00	115.00	STEEL HFRM	0.13		1
8	LEXINGTON	FAIRFIELD (194)	115.00	115.00	STEEL HFRM	0.23		
9	LEXINGTON	FAIRFIELD (194)	115.00	115.00	STEEL POLE	0.20		
10	LEXINGTON	FAIRFIELD (194)	115.00	115.00	STEEL TWR	0.16		
11	LEXINGTON	FAIRFIELD (194)	115.00	115.00	WOOD HFRM	3.85		
12	LEXINGTON	FAIRFIELD (194)	115.00	115.00	WOOD HFRM	2.51		
13	LEXINGTON	FAIRFIELD (194)	115.00	115.00	WOOD POLE		0.01	
14	LEXINGTON	FAIRFIELD (194)	115.00	115.00	WOOD POLE	1.42		
15	LEXINGTON	FAIRFIELD (194)	115.00	115.00	WOOD POLE	0.08		
16	THOLE STREET	OAKWOOD (196)	115.00	230.00	CONC HFRM	0.04		1
17	THOLE STREET	OAKWOOD (196)	115.00	230.00	CONC POLE		0.04	
18	THOLE STREET	OAKWOOD (196)	115.00	230.00	CONC POLE	0.10		
19	THOLE STREET	OAKWOOD (196)	115.00	230.00	STEEL POLE		1.17	
20	THOLE STREET	OAKWOOD (196)	115.00	230.00	STEEL POLE		0.27	
21	THOLE STREET	OAKWOOD (196)	115.00	230.00	STEEL POLE	0.16		
22	THOLE STREET	OAKWOOD (196)	115.00	230.00	STEEL POLE	0.01		
23	CANNON BRANCH	LOMAR (197)	115.00	230.00	CONC POLE	0.05		1
24	CANNON BRANCH	LOMAR (197)	115.00	230.00	STEEL POLE		0.14	
25	CANNON BRANCH	LOMAR (197)	115.00	230.00	STEEL POLE	0.48		
26	CANNON BRANCH	LOMAR (197)	115.00	230.00	STEEL POLE	0.08		
27	CANNON BRANCH	LOMAR (197)	115.00	230.00	STEEL TWR	0.04		
28	CANNON BRANCH	LOMAR (197)	115.00	230.00	WOOD POLE		0.08	
29	CANNON BRANCH	LOMAR (197)	115.00	230.00	WOOD POLE	0.05		
30	SPOTSYLVANIA	CHANCELLOR (198)	115.00	115.00	CONC HFRM	0.13		1
31	SPOTSYLVANIA	CHANCELLOR (198)	115.00	115.00	STEEL HFRM		0.07	
32	SPOTSYLVANIA	CHANCELLOR (198)	115.00	115.00	STEEL HFRM	0.14		
33	SPOTSYLVANIA	CHANCELLOR (198)	115.00	115.00	STEEL POLE		0.77	
34	SPOTSYLVANIA	CHANCELLOR (198)	115.00	115.00	STEEL POLE	9.88		
35	SPOTSYLVANIA	CHANCELLOR (198)	115.00	115.00	STEEL TWR	1.26		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>I his Report Is:</li> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	Date of Report (Mo, Da, Yr) / /	End of 2018/Q4					
TRANSMISSION LINE STATISTICS (Continued)								
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if								

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
556.5 ACSR								1
636 ACSR								2
721 ACAR								3
246.9 AAAC								4
636 ACSR								5
721 ACAR								6
477 ACSR								7
740.8 AAAC								8
477 ACSR								9
477 ACSR								10
477 ACSR								11
740.8 AAAC								12
545.6 ACAR								13
477 ACSR								14
740.8 AAAC								15
2500 ACAR								16
768.2 ACSS								17
1033.5 ACSR								18
2500 ACAR								19
768.2 ACSS								20
1033.5 ACSR								21
2500 ACAR								22
477 ACSR								23
721 ACAR								24
636 ACSR								25
721 ACAR								26
636 ACSR								27
721 ACAR								28
721 ACAR								29
795 ACSR								30
795 ACSR								31
795 ACSR								32
795 ACSR								33
795 ACSR								34
795 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(2) $\square$ A Resubmission	/ /	End of 2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	N	VOLTAGE (KV	<b>(</b> )	Type of	LENGTH	(Pole miles)	
No.			other than	9	i ype oi	(In the undergro	case of bund lines	Number
			60 cycle, 3 pha	ise)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	SPOTSYLVANIA	CHANCELLOR (198)	115.00	115.00	WOOD POLE	1.68		
2	MOUNTAIN RUN	OAK GREEN (2)	115.00	230.00	STEEL HFRM	0.11		1
3	MOUNTAIN RUN	OAK GREEN (2)	115.00	230.00	STEEL HFRM	0.79		
4	MOUNTAIN RUN	OAK GREEN (2)	115.00	230.00	STEEL POLE	5.11		
5	MOUNTAIN RUN	OAK GREEN (2)	115.00	230.00	STEEL POLE	2.62		
6	MOUNTAIN RUN	OAK GREEN (2)	115.00	230.00	STEEL TWR	0.05		
7	MOUNTAIN RUN	OAK GREEN (2)	115.00	230.00	WOOD HFRM	5.81		
8	NORTHEAST	SHOCKOE (20)	115.00	115.00	CONC HFRM	0.05		1
9	NORTHEAST	SHOCKOE (20)	115.00	115.00	STEEL HFRM		0.09	
10	NORTHEAST	SHOCKOE (20)	115.00	115.00	STEEL HFRM	0.09		
11	NORTHEAST	SHOCKOE (20)	115.00	115.00	STEEL POLE		0.05	
12	NORTHEAST	SHOCKOE (20)	115.00	115.00	STEEL POLE	0.08		
13	NORTHEAST	SHOCKOE (20)	115.00	115.00	STEEL TWR	4.45		
14	DUPONT	BASIN (21)	115.00	115.00	STEEL POLE	0.88		1
15	DUPONT	BASIN (21)	115.00	115.00	STEEL TWR	3.09		
16	CAROLINA	KERR DAM (22)	115.00	230.00	CONC TWR	0.03		1
17	CAROLINA	KERR DAM (22)	115.00	230.00	STEEL HFRM	0.70		
18	CAROLINA	KERR DAM (22)	115.00	230.00	STEEL HFRM	35.35		
19	CAROLINA	KERR DAM (22)	115.00	230.00	STEEL POLE	2.34		
20	CAROLINA	KERR DAM (22)	115.00	230.00	STEEL TWR	0.56		
21	CAROLINA	KERR DAM (22)	115.00	230.00	STEEL TWR	0.16		
22	SUFFOLK	BELL AVENUE (23)	115.00	115.00	STEEL POLE	1.27		1
23	SUFFOLK	BELL AVENUE (23)	115.00	115.00	STEEL POLE	0.07		
24	SUFFOLK	BELL AVENUE (23)	115.00	115.00	STEEL TWR		0.78	
25	SUFFOLK	BELL AVENUE (23)	115.00	115.00	STEEL TWR	20.51		
26	SUFFOLK	BELL AVENUE (23)	115.00	115.00	STEEL TWR	0.04		
27	SUFFOLK	BELL AVENUE (23)	115.00	115.00	STEEL TWR	4.41		
28	SUFFOLK	BELL AVENUE (23)	115.00	115.00	WOOD HFRM	0.18		
29	SUFFOLK	BELL AVENUE (23)	115.00	115.00	WOOD POLE	0.01		
30	SUFFOLK	BELL AVENUE (23)	115.00	115.00	WOOD POLE	0.02		
31	BASIN	MANCHESTER (24)	115.00	115.00	CONC HFRM	0.14		1
32	BASIN	MANCHESTER (24)	115.00	115.00	STEEL HFRM	0.65		
33	BASIN	MANCHESTER (24)	115.00	115.00	STEEL POLE	0.79		
34	BASIN	MANCHESTER (24)	115.00	115.00	STEEL POLE	0.09		
35	BASIN	MANCHESTER (24)	115.00	115.00	STEEL TWR	0.18		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	Inis Report Is:         (1)       X An Original         (2)       A Resubmission	Date of Report (Mo, Da, Yr) / /	End of 2018/Q4					
TRANSMISSION LINE STATISTICS (Continued)								
7. Do not report the same transmission line structure t	7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if							

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

0:	COST OF LIN	E (Include in Colum	in (j) Land,	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Size of	Land rights,	and clearing right-o	r-way)					
and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	line
(i)	(i)	Other Costs	(I)	Expenses (m)	Expenses	(o)	Expenses	No.
795 ACSR	07	(,	(.)	(11)	(1)	. ,	(٣)	1
1033 5 ACSR								2
636 ACSR								3
1033 5 ACSR								4
636 ACSR								5
636 ACSR								6
636 ACSR								7
636 ACSR								8
636 ACSR								9
636 ACSR								10
636 ACSR								11
636 ACSR								12
636 ACSR								13
721 ACAR								14
721 ACAR								15
636 ACSR								16
477 ACSS								17
636 ACSR								18
636 ACSR								19
477 ACSS								20
636 ACSR								21
336.4 ACSR								22
636 ACSR								23
336.4 ACSR								24
336.4 ACSR								25
636 ACSR								26
721 ACAR								27
336.4 ACSR								28
336.4 ACSR								29
721 ACAR								30
246.9 AAAC								31
636 ACSR								32
636 ACSR								33
721 ACAR								34
636 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNATIO	ON	VOLTAGE (KV (Indicate where other than 60 cycle, 3 pha	() e use)	Type of Supporting	LENGTH (In the undergro report circ	(Pole miles) case of bund lines cuit miles)	Number Of
	From	То	Operating	Designed	Structuro	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line	(b)
1	BASIN	MANCHESTER (24)	115.00	115.00	STEEL TWR	(1)	(9)	(1)
2	BASIN	MANCHESTER (24)	115.00	115.00		0.07		
2	BASIN	MANCHESTER (24)	115.00	115.00		0.04		
1	BASIN	MANCHESTER (24)	115.00	115.00		0.07		
5	BASIN	MANCHESTER (24)	115.00	115.00		0.21		
6	EVERETTS		115.00	230.00		0.04		1
7	EVERETTS	TROWBRIDGE (25)	115.00	230.00		0.12		
8	EVERETTS	TROWBRIDGE (25)	115.00	230.00	STEEL HERM	0.04		
Q	EVERETTS	TROWBRIDGE (25)	115.00	230.00		0.23		
10	EVERETTS	TROWBRIDGE (25)	115.00	230.00	STEEL TWR	1 40		
11	EVERETTS	TROWBRIDGE (25)	115.00	230.00	WOOD HERM	16.53		
12	EVERETTS	TROWBRIDGE (25)	115.00	230.00		2 43		
13		BALCONY FALLS (26)	115.00	230.00		0.49		1
14		BALCONY FALLS (26)	115.00	230.00	STEEL HERM	0.47		
15	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	STEEL HERM	0.40		
16	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	STEEL HERM	0.10		
17	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	STEEL POLE	0.03		
18	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	STEEL POLE	0.00		
19	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	STEEL POLE	0.39		
20	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	STEEL POLE	0.66		
21	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	STEEL POLE	0.00		
22	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	STEEL POLE	0.13		
23	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	STEEL POLE	0.20		
24	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	STEEL TWR	0.04		
25	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	STEEL TWR	0.22		
26	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	STEEL TWR	8.39		
27	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	STEEL TWR	0.01		
28	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	WOOD HFRM	8.57		
29	LEXINGTON	BALCONY FALLS (26)	115.00	230.00	WOOD POLE	0.89		
30		BALCONY FALLS (26)	115.00	230.00	WOOD POLE	0.93		
31		BALCONY FALLS (26)	115.00	230.00	WOOD POLE	0.35		
32	BURTON	VIRGINIA BEACH (27)	115.00	230.00	CONC HERM	0.04		1
33	BURTON	VIRGINIA BEACH (27)	115.00	230.00	CONC POLE		0.05	
34	BURTON	VIRGINIA BEACH (27)	115.00	230.00	CONC POLE	0.21		
35	BURTON	VIRGINIA BEACH (27)	115.00	230.00	CONC POLE	2.49		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Period of Repor			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum	nn (j) Land, of-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	(k)	(I)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
721 ACAR				( )				1
636 ACSR								2
246.9 AAAC								3
636 ACSR								4
721 ACAR								5
545.6 ACAR								6
545.6 ACAR								7
545.6 ACAR								8
545.6 ACAR								9
545.6 ACAR								10
545.6 ACAR								11
545.6 ACAR								12
396.3 ACAR								13
1109 ACAR								14
396.3 ACAR								15
636 ACSR								16
1109 ACAR								17
336.4 ACSR								18
396.3 ACAR								19
36617 ACSR								20
477 ACSR								21
636 ACSR								22
721 ACAR								23
1109 ACAR								24
396.3 ACAR								25
36617 ACSR								26
636 ACSR								27
396.3 ACAR								28
396.3 ACAR								29
36617 ACSR								30
636 ACSR								31
721 ACAR								32
740.8 AAAC								33
721 ACAR								34
740.8 AAAC								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATION		VOLTAGE (KV) (Indicate where		Type of	LENGTH (Pole miles) (In the case of		Number
No.		other than 60 cycle, 3 phase) Supporting report circuit miles)		Of				
		_	60 cycle, 3 pha	ise)	Supporting	On Structure	On Structures	Circuits
	From	To	Operating	Designed	Structure	of Line Designated	of Another Line	e li cuito
	(a)	(d)	(C)	(d)	(e)	(f)	(g)	(h)
1	BURTON	VIRGINIA BEACH (27)	115.00	230.00	STEEL HERM	0.19		
2	BURTON	VIRGINIA BEACH (27)	115.00	230.00	STEEL POLE	0.05		
3	BURTON	VIRGINIA BEACH (27)	115.00	230.00	STEEL POLE	1.82		
4	BURTON	VIRGINIA BEACH (27)	115.00	230.00	STEEL POLE	0.38		
5	BURTON	VIRGINIA BEACH (27)	115.00	230.00	STEEL TWR	0.03		
6	BURTON	VIRGINIA BEACH (27)	115.00	230.00	WOOD HFRM	0.11		
7	BURTON	VIRGINIA BEACH (27)	115.00	230.00	WOOD POLE	0.05		
8	BURTON	VIRGINIA BEACH (27)	115.00	230.00	WOOD POLE	7.45		
9	BALCONY FALLS	CUSHAW (28)	115.00	115.00	STEEL HFRM	0.42		1
10	BALCONY FALLS	CUSHAW (28)	115.00	115.00	STEEL TWR	2.36		
11	BALCONY FALLS	CUSHAW (28)	115.00	115.00	WOOD HFRM	1.10		
12	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	STEEL HFRM	0.52		1
13	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	STEEL HFRM	0.33		
14	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	STEEL POLE	0.08		
15	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	STEEL TWR	0.17		
16	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	STEEL TWR	0.06		
17	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	STEEL TWR	0.01		
18	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	STEEL TWR	11.40		
19	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	WOOD HFRM	1.54		
20	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	WOOD HFRM	1.18		
21	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	WOOD HFRM	9.93		
22	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	WOOD POLE	0.09		
23	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	WOOD POLE	0.06		
24	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	WOOD POLE	0.18		
25	FREDERICKSBURG	POSSUM POINT (29)	115.00	115.00	WOOD POLE	0.82		
26	NORTHEAST	CARVER (3)	115.00	115.00	STEEL HFRM		0.11	1
27	NORTHEAST	CARVER (3)	115.00	115.00	STEEL HFRM		0.06	
28	NORTHEAST	CARVER (3)	115.00	115.00	STEEL POLE		0.09	
29	NORTHEAST	CARVER (3)	115.00	115.00	STEEL TWR		1.25	
30	NORTHEAST	CARVER (3)	115.00	115.00	STEEL TWR		4.45	
31	NORTHEAST	CARVER (3)	115.00	115.00	STEEL TWR	0.08		
32	ALTAVISTA	SKIMMER (30)	115.00	230.00	CONC HFRM	0.24		1
33	ALTAVISTA	SKIMMER (30)	115.00	230.00	STEEL HFRM		0.15	
34	ALTAVISTA	SKIMMER (30)	115.00	230.00	STEEL HFRM	7.26		
35	ALTAVISTA	SKIMMER (30)	115.00	230.00	STEEL POLE		0.59	
					TOTAL		4.4.4.50	500
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	Other Costs (k)	(I)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
740.8 AAAC			.,	( )				1
636 ACSR								2
740.8 AAAC								3
795 ACSR								4
740.8 AAAC								5
740.8 AAAC								6
636 ACSR								7
740.8 AAAC								8
36617 ACSR								9
36617 ACSR								10
36617 ACSR								11
721 ACAR								12
795 ACSR								13
721 ACAR								14
#2 CU								15
1109 ACAR								16
36557 CU								17
721 ACAR								18
#2 CU								19
721 ACAR								20
795 ACSR								21
#2 CU								22
1109 ACAR								23
721 ACAR								24
795 ACSR								25
636 ACSR								26
721 ACAR								27
636 ACSR								28
636 ACSR								29
721 ACAR								30
636 ACSR								31
636 ACSR								32
636 ACSR								33
636 ACSR								34
636 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

		ON		^			(D - L 'L )	
Line No.	DESIGNATIO	JN	(Indicate where other than		Type of	LENGTH (In the undergro	(Pole miles) case of ound lines cuit miles)	Number Of
		То	Operating	Designed	Structure	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line	(h)
1	AI TAVISTA	SKIMMER (30)	115.00	230.00	STEEL POLE	20.28	(9)	()
2	ALTAVISTA	SKIMMER (30)	115.00	230.00	STEEL TWR	0.04		
3	ALTAVISTA	PERTH (31)	115.00	230.00	STEEL HFRM		0.10	1
4	ALTAVISTA	PERTH (31)	115.00	230.00	STEEL HFRM	0.77		
5	ALTAVISTA	PERTH (31)	115.00	230.00	STEEL HFRM	0.07		
6	ALTAVISTA	PERTH (31)	115.00	230.00	STEEL POLE		0.24	
7	ALTAVISTA	PERTH (31)	115.00	230.00	STEEL POLE	0.05		
8	ALTAVISTA	PERTH (31)	115.00	230.00	STEEL POLE	1.31		
9	ALTAVISTA	PERTH (31)	115.00	230.00	STEEL POLE	2.44		
10	ALTAVISTA	PERTH (31)	115.00	230.00	STEEL TWR	0.01		
11	ALTAVISTA	PERTH (31)	115.00	230.00	WOOD HFRM	15.17		
12	ALTAVISTA	PERTH (31)	115.00	230.00	WOOD HFRM	0.11		
13	ALTAVISTA	PERTH (31)	115.00	230.00	WOOD POLE	1.35		
14	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	CONC HFRM			1
15	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	CONC POLE	0.07		
16	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	STEEL HFRM		0.06	
17	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	STEEL HFRM	0.07		
18	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	STEEL HFRM	0.43		
19	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	STEEL HFRM	0.30		
20	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	STEEL POLE		0.27	
21	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	STEEL POLE	0.30		
22	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	STEEL POLE	0.06		
23	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	STEEL POLE	0.82		
24	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	STEEL POLE	6.02		
25	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	WOOD POLE	1.95		
26	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	WOOD POLE	0.06		
27	SEDGE HILL	REEDY CREEK (32)	115.00	115.00	WOOD POLE	0.89		
28	SEDGE HILL	CHASE CITY (33)	115.00	115.00	STEEL HFRM		0.21	1
29	SEDGE HILL	CHASE CITY (33)	115.00	115.00	STEEL HFRM	23.23		
30	SEDGE HILL	CHASE CITY (33)	115.00	115.00	STEEL HFRM	0.63		
31	SEDGE HILL	CHASE CITY (33)	115.00	115.00	STEEL POLE		0.17	
32	SEDGE HILL	CHASE CITY (33)	115.00	115.00	STEEL POLE	2.43		
33	SEDGE HILL	CHASE CITY (33)	115.00	115.00	STEEL POLE	0.07		
34	SEDGE HILL	CHASE CITY (33)	115.00	115.00	STEEL POLE	0.01		
35	SEDGE HILL	CHASE CITY (33)	115.00	115.00	STEEL TWR	0.13		
36					TOTAL	5,544.64	1,146.59	529
Name of Respondent	This Report Is:	Date of Report	Year/Period of Report					
---------------------------------------------------------	-----------------------------------------	-----------------------------	----------------------------------	--	--	--		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4					
TRANSMISSION LINE STATISTICS (Continued)								
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	ligher voltage lines as one	line. Designate in a footnote if					

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights,	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DI	EPRECIATION AND	D TAXES	
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(0)	(p)	No.
636 ACSR								1
636 ACSR								2
636 ACSR								3
545.6 ACAR								4
636 ACSR								5
636 ACSR								6
1590 AAC								7
545.6 ACAR								8
636 ACSR								9
636 ACSR								10
545.6 ACAR								11
636 ACSR								12
545.6 ACAR								13
36617 ACSR								14
36617 ACSR								15
636 ACSR								16
336.4 ACSR								17
36617 ACSR								18
636 ACSR								19
636 ACSR								20
336.4 ACSR								21
396.3 ACAR								22
36617 ACSR								23
636 ACSR								24
246.9 AAAC								25
396.3 ACAR								26
36617 ACSR								27
1033.5 ACSR								28
1033.5 ACSR								29
246.9 AAAC								30
1033.5 ACSR								31
1033.5 ACSR								32
246.9 AAAC								33
336.4 ACSR								34
246.9 AAAC								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	NC	VOLTAGE (KV	()	Type of	LENGTH	(Pole miles)	
No.			other than	9	Type of	undergro	case of bund lines	Number
			60 cycle, 3 pha	ise)	Supporting	report cire	Cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	SEDGE HILL	CHASE CITY (33)	115.00	115.00	WOOD HFRM	4.81		
2	SEDGE HILL	CHASE CITY (33)	115.00	115.00	WOOD POLE	0.23		
3	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	STEEL HFRM	0.09		1
4	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	STEEL HFRM	0.61		
5	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	STEEL HFRM	1.16		
6	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	STEEL HFRM	2.32		
7	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	STEEL POLE	0.07		
8	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	STEEL POLE	0.40		
9	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	STEEL POLE	0.10		
10	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	STEEL TWR	0.02		
11	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	STEEL TWR	0.41		
12	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	STEEL TWR	0.04		
13	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	WOOD HFRM	1.22		
14	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	WOOD HFRM	4.11		
15	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	WOOD HFRM	2.03		
16	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	WOOD HFRM	2.14		
17	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	WOOD POLE	0.92		
18	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	WOOD POLE	0.23		
19	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	WOOD POLE	0.16		
20	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	WOOD POLE	0.38		
21	SKIFFES CREEK	YORKTOWN (34)	115.00	115.00	WOOD POLE	0.06		
22	CHASE CITY	BUGGS ISLAND (36)	115.00	115.00	CONC POLE	0.04		1
23	CHASE CITY	BUGGS ISLAND (36)	115.00	115.00	STEEL HFRM	0.08		
24	CHASE CITY	BUGGS ISLAND (36)	115.00	115.00	STEEL HFRM	0.72		
25	CHASE CITY	BUGGS ISLAND (36)	115.00	115.00	STEEL POLE	19.36		
26	CHASE CITY	BUGGS ISLAND (36)	115.00	115.00	STEEL TWR	0.89		
27	CHASE CITY	BUGGS ISLAND (36)	115.00	115.00	STEEL TWR	0.22		
28	SPOTSYLVANIA	WILDERNESS DP (37)	115.00	115.00	CONC HFRM	0.08		1
29	SPOTSYLVANIA	WILDERNESS DP (37)	115.00	115.00	CONC POLE	0.02		
30	SPOTSYLVANIA	WILDERNESS DP (37)	115.00	115.00	STEEL HFRM	0.12		
31	SPOTSYLVANIA	WILDERNESS DP (37)	115.00	115.00	STEEL POLE	8.66		
32	KERR DAM	BOYDTON PLANK ROAD (38)	115.00	115.00	STEEL HFRM		0.12	1
33	KERR DAM	BOYDTON PLANK ROAD (38)	115.00	115.00	STEEL POLE		9.75	
34	KERR DAM	BOYDTON PLANK ROAD (38)	115.00	115.00	STEEL POLE	0.03		
35	KERR DAM	BOYDTON PLANK ROAD (38)	115.00	115.00	STEEL POLE	0.16		
36					TOTAL	5,544.64	1,146.59	529

VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original	(Mo, Da, Yr)	Year/Period	of Report		
	(2) A Resubmission	11		2010/04		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate in	a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

		E (Include in Colum	n (i) Land					Т
Size of	Land rights, a	and clearing right-o	f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	D TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintonanco	Ponte	Total	1.
and Material (i)	(i)	Other Costs		Expenses	Expenses	(0)	Expenses	Line No.
246 9 AAAC	07	()	(7)	()	(1)	. ,	(F7	1
246 9 AAAC								2
36586 ACSR								3
36617 CU								4
477 ACSR								5
636 ACSR								6
36586 ACSR								7
477 ACSR								8
636 ACSR								9
36586 ACSR								10
477 ACSR								11
636 ACSR								12
36586 ACSR								13
36617 CU								14
477 ACSR								15
636 ACSR								16
246.9 AAAC								17
36586 ACSR								18
36617 CU								19
477 ACSR								20
636 ACSR								21
636 ACSR								22
477 ACSS								23
636 ACSR								24
636 ACSR								25
477 ACSS								26
636 ACSR								27
336.4 ACSR								28
336.4 ACSR								29
336.4 ACSR								30
336.4 ACSR								31
768.2 ACSS								32
768.2 ACSS								33
1033.5 ACSR								34
396.3 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNATIO	ON	VOLTAGE (KV (Indicate where other than 60 cvcle, 3 pha	() e ise)	Type of Supporting	LENGTH (In the undergro report circ	(Pole miles) case of ound lines cuit miles)	Number Of
	From	То	Operating	Designed	Ctrusture	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	Structure	Designated	Line	(b)
1			115.00	115.00		(T) 0.10	(g)	(1)
1		BOYDTON PLANK ROAD (38)	115.00	115.00	STEEL FULE	0.10	0.07	
2		BOYDTON PLANK ROAD (38)	115.00	115.00	STEEL TWR	0.10	0.07	
3		BOIDTON PLANK ROAD (38)	115.00	220.00		0.10		1
4	SHERWOOD		115.00	230.00		0.11		1
5	SHERWOOD		115.00	230.00	STEEL LEDM	0.12		
7	SHERWOOD		115.00	230.00	STEEL LEDM	0.03		
/	SHERWOOD		115.00	230.00		0.33		
0	SHERWOOD		115.00	230.00	STEEL POLE	0.00		
9	SHERWOOD		115.00	230.00		0.01		
10	SHERWOOD		115.00	230.00	STEEL POLE	0.12		
11	SHERWOOD		115.00	230.00	STEEL POLE	18.30		
12			115.00	230.00		6.30		1
13			115.00	115.00		0.28		1
14			115.00	115.00		0.10		
15			115.00	115.00		0.14		
16			115.00	115.00	STEEL HERM	0.49		
17		BREMO (4)	115.00	115.00	STEEL HERM	3.86		
18	COLUMBIA SW STA	BREMO (4)	115.00	115.00	STEEL POLE	2.03		
19	COLUMBIA SW STA	BREMO (4)	115.00	115.00	STEEL POLE	0.36		
20	COLUMBIA SW STA	BREMO (4)	115.00	115.00	STEEL POLE	0.15		
21	COLUMBIA SW STA	BREMO (4)	115.00	115.00	STEEL POLE	2.82		
22	COLUMBIA SW STA	BREMO (4)	115.00	115.00	STEEL TWR	0.05		
23	COLUMBIA SW STA	BREMO (4)	115.00	115.00	WOOD HFRM	0.27		
24	COLUMBIA SW STA	BREMO (4)	115.00	115.00	WOOD POLE	2.85		
25	COLUMBIA SW STA	BREMO (4)	115.00	115.00	WOOD POLE	0.06		
26	CHASE CITY	BRODNAX (40)	115.00	115.00	STEEL HFRM		0.02	1
27	CHASE CITY	BRODNAX (40)	115.00	115.00	STEEL HFRM	0.07		
28	CHASE CITY	BRODNAX (40)	115.00	115.00	STEEL HFRM	20.07		
29	CHASE CITY	BRODNAX (40)	115.00	115.00	STEEL HFRM	6.08		
30	CHASE CITY	BRODNAX (40)	115.00	115.00	STEEL POLE		0.02	
31	CHASE CITY	BRODNAX (40)	115.00	115.00	STEEL POLE	0.28		
32	CHASE CITY	BRODNAX (40)	115.00	115.00	STEEL POLE	0.01		
33	CHASE CITY	BRODNAX (40)	115.00	115.00	STEEL POLE	0.15		
34	CHASE CITY	BRODNAX (40)	115.00	115.00	STEEL POLE	0.05		
35	CHASE CITY	BRODNAX (40)	115.00	115.00	STEEL TWR	0.05		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>I his Report Is:</li> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	Date of Report (Mo, Da, Yr) / /	End of 2018/Q4
	TRANSMISSION LINE STATISTICS (C	ontinued)	
7. Do not report the same transmission line structu	re twice. Report Lower voltage Lines and h	higher voltage lines as one	line. Designate in a footnote if

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	<b>.</b>							_
and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	(k)	(I)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
768.2 ACSS			.,	. ,			,	1
768.2 ACSS								2
1033.5 ACSR								3
721 ACAR								4
1033.5 ACSR								5
477 ACSR								6
636 ACSR								7
1033.5 ACSR								8
36617 ACSR								9
477 ACSR								10
636 ACSR								11
721 ACAR								12
36617 ACSR								13
336.4 ACSR								14
36617 ACSR								15
545.6 ACAR								16
636 ACSR								17
336.4 ACSR								18
36617 ACSR								19
545.6 ACAR								20
636 ACSR								21
636 ACSR								22
36617 ACSR								23
36617 ACSR								24
636 ACSR								25
768.2 ACSS								26
246.9 AAAC								27
336.4 ACSR								28
636 ACSR								29
768.2 ACSS								30
246.9 AAAC								31
336.4 ACSR								32
636 ACSR								33
768.2 ACSS								34
336.4 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	N	VOLTAGE (KV	<u>()</u>	Type of	LENGTH	(Pole miles)	
No.			other than	9	Type of	(In the undergro	case of bund lines	Number
			60 cycle, 3 pha	ise)	Supporting	report cire	Cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	KITTY HAWK	COLINGTON (41)	115.00	115.00	CONC POLE	3.08		1
2	KITTY HAWK	COLINGTON (41)	115.00	115.00	STEEL HFRM	0.05		
3	KITTY HAWK	COLINGTON (41)	115.00	115.00	STEEL HFRM	0.04		
4	KITTY HAWK	COLINGTON (41)	115.00	115.00	STEEL POLE	1.34		
5	PENINSULA	SHELLBANK (42)	115.00	115.00	CONC POLE	0.04		1
6	PENINSULA	SHELLBANK (42)	115.00	115.00	STEEL HFRM	0.23		
7	PENINSULA	SHELLBANK (42)	115.00	115.00	STEEL POLE	0.41		
8	PENINSULA	SHELLBANK (42)	115.00	115.00	STEEL POLE	5.71		
9	PENINSULA	SHELLBANK (42)	115.00	115.00	STEEL TWR	0.02		
10	STAUNTON	HARRISONBURG (43)	115.00	115.00	STEEL HFRM		0.04	1
11	STAUNTON	HARRISONBURG (43)	115.00	115.00	STEEL HFRM	3.07		
12	STAUNTON	HARRISONBURG (43)	115.00	115.00	STEEL POLE	0.07		
13	STAUNTON	HARRISONBURG (43)	115.00	115.00	STEEL POLE	0.06		
14	STAUNTON	HARRISONBURG (43)	115.00	115.00	STEEL TWR	0.45		
15	STAUNTON	HARRISONBURG (43)	115.00	115.00	WOOD HFRM	18.03		
16	STAUNTON	HARRISONBURG (43)	115.00	115.00	WOOD POLE	1.08		
17	SUFFOLK	BELL AVENUE (44)	115.00	115.00	CONC HFRM		0.05	1
18	SUFFOLK	BELL AVENUE (44)	115.00	115.00	STEEL POLE		1.27	
19	SUFFOLK	BELL AVENUE (44)	115.00	115.00	STEEL POLE		0.07	
20	SUFFOLK	BELL AVENUE (44)	115.00	115.00	STEEL POLE	0.02		
21	SUFFOLK	BELL AVENUE (44)	115.00	115.00	STEEL TWR		20.26	
22	SUFFOLK	BELL AVENUE (44)	115.00	115.00	STEEL TWR	1.08		
23	SUFFOLK	BELL AVENUE (44)	115.00	115.00	STEEL TWR			
24	SUFFOLK	BELL AVENUE (44)	115.00	115.00	WOOD HFRM		0.14	
25	SUFFOLK	BELL AVENUE (44)	115.00	115.00	WOOD HFRM	0.04		
26	SUFFOLK	BELL AVENUE (44)	115.00	115.00	WOOD POLE	0.09		
27	KERR DAM	HENDERSON (CP&L) (45)	115.00	115.00	STEEL TWR	0.55		1
28	KERR DAM	HENDERSON (CP&L) (45)	115.00	115.00	STEEL TWR	0.09		
29	KERR DAM	HENDERSON (CP&L) (45)	115.00	115.00	WOOD HFRM	3.85		
30	KERR DAM	HENDERSON (CP&L) (45)	115.00	115.00	WOOD POLE	0.15		
31	CEC	YADKIN (46)	115.00	230.00	STEEL HFRM		0.23	1
32	CEC	YADKIN (46)	115.00	230.00	STEEL HFRM	0.28		
33	CEC	YADKIN (46)	115.00	230.00	STEEL POLE	0.24		
34	CEC	YADKIN (46)	115.00	230.00	STEEL TWR		2.41	
35	PINEWOOD	FREDERICKSBURG (47)	115.00	115.00	CONC HFRM	0.14		1
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights,	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor								4
and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	(k)	(I)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
545.6 ACAR			.,	. ,			,	1
1109 ACAR								2
545.6 ACAR								3
545.6 ACAR								4
1033.5 ACSS								5
1033.5 ACSS								6
1033.5 ACSS								7
721 ACAR								8
1033.5 ACSS								9
636 ACSR								10
477 ACSR								11
477 ACSR								12
636 ACSR								13
477 ACSR								14
477 ACSR								15
477 ACSR								16
336.4 ACSR								17
336.4 ACSR								18
636 ACSR								19
636 ACSR								20
336.4 ACSR								21
336.4 ACSR								22
636 ACSR								23
336.4 ACSR								24
336.4 ACSR								25
336.4 ACSR								26
477 ACSR								27
795 ACSR								28
795 ACSR								29
795 ACSR								30
636 ACSR								31
636 ACSR								32
636 ACSR								33
636 ACSR								34
1033.5 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1)     X An Original     (Mo, Da, Yr)       (2)     A Resubmission     / /		End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	N	VOLTAGE (KV	<b>(</b> )	Type of	LEŅGŢH	(Pole miles)	
No.			other than	9	Type of	(In the undergro	case of bund lines	Number
			60 cycle, 3 pha	ise)	Supporting	report cire	cuit miles)	TO I
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	PINEWOOD	FREDERICKSBURG (47)	115.00	115.00	STEEL HFRM		0.10	
2	PINEWOOD	FREDERICKSBURG (47)	115.00	115.00	STEEL HFRM	28.96		
3	PINEWOOD	FREDERICKSBURG (47)	115.00	115.00	STEEL HFRM	0.12		
4	PINEWOOD	FREDERICKSBURG (47)	115.00	115.00	STEEL POLE		0.78	
5	PINEWOOD	FREDERICKSBURG (47)	115.00	115.00	STEEL POLE	0.94		
6	PINEWOOD	FREDERICKSBURG (47)	115.00	115.00	STEEL POLE	0.33		
7	THOLE ST	SEWELLS POINT (48)	115.00	230.00	CONC HFRM	0.04		1
8	THOLE ST	SEWELLS POINT (48)	115.00	230.00	STEEL POLE		3.98	
9	THOLE ST	SEWELLS POINT (48)	115.00	230.00	STEEL POLE	0.23		
10	THOLE ST	SEWELLS POINT (48)	115.00	230.00	STEEL POLE	0.55		
11	THOLE ST	SEWELLS POINT (48)	115.00	230.00	STEEL POLE	0.29		
12	THOLE ST	SEWELLS POINT (48)	115.00	230.00	STEEL POLE	0.03		
13	NEW ROAD	MIDDLEBURG (49)	115.00	115.00	STEEL HFRM	0.42		1
14	NEW ROAD	MIDDLEBURG (49)	115.00	115.00	STEEL HFRM	0.06		
15	NEW ROAD	MIDDLEBURG (49)	115.00	115.00	STEEL POLE	0.06		
16	NEW ROAD	MIDDLEBURG (49)	115.00	115.00	STEEL POLE	0.22		
17	NEW ROAD	MIDDLEBURG (49)	115.00	115.00	STEEL TWR	0.14		
18	NEW ROAD	MIDDLEBURG (49)	115.00	115.00	WOOD HFRM	4.89		
19	NEW ROAD	MIDDLEBURG (49)	115.00	115.00	WOOD POLE	0.12		
20	CUNNINGHAM DP	BREMO (5)	115.00	115.00	STEEL HFRM	1.26		1
21	CUNNINGHAM DP	BREMO (5)	115.00	115.00	STEEL POLE	0.24		
22	CUNNINGHAM DP	BREMO (5)	115.00	115.00	STEEL TWR	0.16		
23	CUNNINGHAM DP	BREMO (5)	115.00	115.00	WOOD HFRM	9.67		
24	CUNNINGHAM DP	BREMO (5)	115.00	115.00	WOOD POLE	1.30		
25	REEVES AVE	GOSPORT (51)	115.00	115.00	STEEL	0.20		1
26	REEVES AVE	GOSPORT (51)	115.00	115.00	STEEL HFRM	0.09		
27	REEVES AVE	GOSPORT (51)	115.00	115.00	STEEL POLE		0.05	
28	REEVES AVE	GOSPORT (51)	115.00	115.00	STEEL POLE		0.04	
29	REEVES AVE	GOSPORT (51)	115.00	115.00	STEEL POLE	0.13		
30	REEVES AVE	GOSPORT (51)	115.00	115.00	STEEL TWR		0.65	
31	REEVES AVE	GOSPORT (51)	115.00	115.00	STEEL TWR	0.04		
32	REEVES AVE	GOSPORT (51)	115.00	115.00	STEEL TWR	1.90		
33	KITTY HAWK	NAGS HEAD (52)	115.00	115.00	CONC HFRM	0.05		1
34	KITTY HAWK	NAGS HEAD (52)	115.00	115.00	CONC POLE	4.38		
35	KITTY HAWK	NAGS HEAD (52)	115.00	115.00	STEEL HFRM	0.03		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	nn (i) Land.					Т
Size of	Land rights,	and clearing right-o	if-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
and Material (i)	(j)	Other Costs (k)	(1)	Expenses (m)	Expenses	(0)	Expenses (p)	No.
1033.5 ACSR			.,	( )				1
1033.5 ACSR								2
636 ACSR								3
1033.5 ACSR								4
1033.5 ACSR								5
636 ACSR								6
2500 ACAR								7
768.2 ACSS								8
1033.5 ACSR								9
1351.5 ACSR								10
2500 ACAR								11
768.2 ACSS								12
336.4 ACSR								13
636 ACSR								14
336.4 ACSR								15
636 ACSR								16
336.4 ACSR								17
336.4 ACSR								18
336.4 ACSR								19
636 ACSR								20
636 ACSR								21
636 ACSR								22
636 ACSR								23
636 ACSR								24
636 ACSR								25
636 ACSR								26
477 ACSS								27
768.2 ACSS								28
636 ACSR								29
768.2 ACSS								30
477 ACSS								31
636 ACSR								32
1109 ACAR								33
545.6 ACAR								34
1177 AAAC								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	of Respondent       This Report Is:         NIA ELECTRIC AND POWER COMPANY       (1) X An Original         (2) A Resubmission		Year/Period of Report End of 2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNAT	ION	VOLTAGE (KV (Indicate where other than 60 cycle, 3 pha	/) e ase)	Type of Supporting	LENGTH (In the undergro report cire	(Pole miles) case of bund lines cuit miles)	Number Of
	From	То	Operating	Designed	Structuro	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line	(b)
1		NAGS HEAD (52)	115.00	115.00		(1)	(9)	(1)
2		NAGS HEAD (52)	115.00	115.00		3 35		
2		KEV/LAP (53)	115.00	115.00	STEEL HERM	0.54		1
	CHESTERFIELD 115	KEVLAR (53)	115.00	115.00	STEEL HERM	0.04		1
5	CHESTERFIELD 115	KEVLAR (53)	115.00	115.00		0.00		
6	CHESTERFIELD 115	KEVLAR (53)	115.00	115.00	STEEL POLE	0.19		
7	CHESTERFIELD 115	KEVLAR (53)	115.00	115.00	STEEL TWR	0.05		
, 8	CHESTERFIELD 115	KEVLAR (53)	115.00	115.00	STEEL TWR	2 20		
9	CHESTERFIELD 115	KEVLAR (53)	115.00	115.00	WOOD HERM	2.20		
10	CHESTERFIELD 115	KEVLAR (53)	115.00	115.00		0.70		
11	CHESTERFIELD 115	KEVLAR (53)	115.00	115.00	WOOD POLE	0.07		
12		FARLEYS (54)	115.00	230.00	STEEL HERM	0.07	0.03	1
13	OCCONFECHEE	EARLEYS (54)	115.00	230.00	STEEL HERM		11 23	
14	OCCONFECHEE	EARLEYS (54)	115.00	230.00	STEEL HERM	9.09		
15	OCCONFECHEE	EARLEYS (54)	115.00	230.00	STEEL HERM	8.08		
16	OCCONFECHEE	EARLEYS (54)	115.00	230.00	STEEL POLE	0.00	0.39	
17	OCCONFECHEE	EARLEYS (54)	115.00	230.00	STEEL POLE	0.37	0107	
18	OCCONFECHEE	EARLEYS (54)	115.00	230.00	STEEL POLE	0.30		
19	OCCONFECHEE	EARLEYS (54)	115.00	230.00	STEEL POLE	0.58		
20	OCCONFECHEE	EARLEYS (54)	115.00	230.00	STEEL TWR	0.06		
21	TARBORO	ANACONDA (55)	115.00	115.00	CONC POLE	0.20		1
22	TARBORO	ANACONDA (55)	115.00	115.00	STEEL HFRM	0.07		
23	TARBORO	ANACONDA (55)	115.00	115.00	STEEL HFRM	0.20		
24	TARBORO	ANACONDA (55)	115.00	115.00	STEEL POLE	0.01		
25	TARBORO	ANACONDA (55)	115.00	115.00	STEEL POLE	0.18		
26	TARBORO	ANACONDA (55)	115.00	115.00	STEEL POLE	0.22		
27	TARBORO	ANACONDA (55)	115.00	115.00	STEEL TWR	0.05		
28	TARBORO	ANACONDA (55)	115.00	115.00	STEEL TWR	0.03		
29	TARBORO	ANACONDA (55)	115.00	115.00	STEEL TWR	0.15		
30	TARBORO	ANACONDA (55)	115.00	115.00	STEEL TWR	0.01		
31	TARBORO	ANACONDA (55)	115.00	115.00	STEEL TWR	1.73		
32	TARBORO	ANACONDA (55)	115.00	115.00	WOOD HFRM	0.06		
33	TARBORO	ANACONDA (55)	115.00	115.00	WOOD HFRM	0.38		
34	TARBORO	ANACONDA (55)	115.00	115.00	WOOD HFRM	0.16		
35	TARBORO	ANACONDA (55)	115.00	115.00	WOOD HFRM	0.11		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	1 nis Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of 2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if						

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
1177 AAAC								1
545.6 ACAR								2
636 ACSR								3
721 ACAR								4
636 ACSR								5
721 ACAR								6
636 ACSR								7
721 ACAR								8
636 ACSR								9
636 ACSR								10
721 ACAR								11
336.4 ACSR								12
636 ACSR								13
336.4 ACSR								14
636 ACSR								15
636 ACSR								16
336.4 ACSR								17
545.6 ACAR								18
636 ACSR								19
636 ACSR								20
740.8 AAAC								21
1033.5 ACSR								22
36557 CU								23
1033.5 ACSR								24
1590 AAC								25
721 ACAR								26
1033.5 ACSR								27
1590 AAC								28
36557 CU								29
336.4 ACSR								30
740.8 AAAC								31
1590 AAC								32
36557 CU								33
336.4 ACSR								34
740.8 AAAC								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNATIO	N	VOLTAGE (KV (Indicate where other than 60 cycle, 3 pha	() e ase)	Type of Supporting	LENGTH (In the undergro report cire	(Pole miles) case of bund lines cuit miles)	Number Of
	From	То	Operating	Designed	Chrysterre	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line	(h)
1			115.00	115.00		(1)	(9)	(11)
2	TARBORO		115.00	115.00		0.42		
- 3	TARBORO		115.00	115.00	WOOD POLE	2 30		
4	PECAN	BOYKINS (56)	115.00	230.00		0.09		1
5	PECAN	BOYKINS (56)	115.00	230.00	STEFL HERM	0.07	0.04	· · ·
6	PECAN	BOYKINS (56)	115.00	230.00	STEEL TWR	0.18	0.01	
7	PECAN	BOYKINS (56)	115.00	230.00	STEEL TWR	17.04		
8	PECAN	BOYKINS (56)	115.00	230.00	WOOD POLE	0.02		
9	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	CONC HERM		0.10	1
10	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	CONC HERM	0.26		
11	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	STEEL HFRM		1.31	
12	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	STEEL HFRM	0.25		
13	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	STEEL POLE		0.08	
14	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	STEEL POLE		0.26	
15	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	STEEL POLE		3.09	
16	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	STEEL POLE	0.03		
17	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	STEEL POLE	0.05		
18	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	STEEL POLE			
19	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	STEEL POLE	0.22		
20	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	WOOD HFRM		3.20	
21	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	WOOD HFRM		0.29	
22	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	WOOD HFRM	0.05		
23	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	WOOD HFRM	0.32		
24	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	WOOD HFRM	4.12		
25	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	WOOD POLE		0.01	
26	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	WOOD POLE		0.32	
27	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	WOOD POLE		0.12	
28	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	WOOD POLE	0.11		
29	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	WOOD POLE	0.04		
30	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	WOOD POLE	0.11		
31	SKIFFES CREEK	YORKTOWN (58)	115.00	115.00	WOOD POLE	0.48		
32	ELMONT	GREENWOOD DP (59)	115.00	115.00	CONC HFRM	0.07		1
33	ELMONT	GREENWOOD DP (59)	115.00	115.00	STEEL HFRM	2.34		
34	ELMONT	GREENWOOD DP (59)	115.00	115.00	STEEL HFRM	4.79		
35	ELMONT	GREENWOOD DP (59)	115.00	115.00	STEEL POLE	0.54		
36					IUIAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if							

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPE	ENSES, EXCEPT DI	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
and Material	(i)	Other Costs		Expenses	Expenses	(0)	Expenses	No.
	07	(K)	(1)	(111)	(1)	(-)	(9)	1
1370 AAC 336 4 ACSP								2
721 ACAR								2
								1
545 6 ACAR								5
1590 AAC								6
545 6 ACAR								7
36557 CU								8
477 ACSR								9
477 ACSR								10
477 ACSR								11
636 ACSR								12
477 AAC								13
477 ACSR								14
636 ACSR								15
36586 ACSR								16
477 AAC								17
477 ACSR								18
636 ACSR								19
477 ACSR								20
636 ACSR								21
477 AAC								22
477 ACSR								23
636 ACSR								24
477 AAC								25
477 ACSR								26
636 ACSR								27
36617 CU								28
477 AAC								29
477 ACSR								30
636 ACSR								31
721 ACAR								32
1109 ACAR								33
721 ACAR								34
1109 ACAR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	ATION VOLTAGE (KV)		Type of	LENGTH	(Pole miles)	Number	
No.			other than		Supporting	undergro report cire	ound lines cuit miles)	Of
	 	То	Operating	Designed	Supporting	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	Structure	Designated	Line	(h)
1			115.00	(U) 115.00		(1)	(g)	(1)
1			115.00	115.00	STEEL POLE	0.04		
2			115.00	115.00	STEEL TWD	0.70		
3		BEMINCTON CT (6)	115.00	115.00		0.01		1
4	REMINGTON		115.00	115.00		0.13		1
5	REMINGTON	REMINGTON CT (6)	115.00	115.00	STEEL TWD	0.76		
7	REMINGTON	REMINGTON CT (6)	115.00	115.00		0.00		
- /			115.00	220.00		0.07		1
0	NORTHWEST		115.00	230.00	STEEL HEDM	0.11		1
9	NORTHWEST		115.00	230.00		0.23		
10	NORTHWEST		115.00	230.00		0.09	0.11	
11	NORTHWEST		115.00	230.00	STEEL TWR		0.11	
12	NORTHWEST		115.00	230.00	STEEL TWR	0.42	0.14	
13	NORTHWEST		115.00	230.00	STEEL TWR	0.42		
14	NORTHWEST		115.00	230.00	STEEL TWR	3.79		
15	NORTHWEST		115.00	230.00		1.38		
16	NORTHWEST		115.00	230.00	WOOD POLE	0.09		
17	NORTHWEST	ACCA (60)	115.00	230.00	WOOD POLE	0.41		
18	YORKTOWN	WHEALTON (61)	115.00	115.00	CONC HERM	0.22		1
19	YORKTOWN	WHEALTON (61)	115.00	115.00	STEEL HERM		2.18	
20	YORKTOWN	WHEALTON (61)	115.00	115.00	STEEL HFRM	0.38		
21	YORKTOWN	WHEALTON (61)	115.00	115.00	STEEL HFRM	2.57		
22	YORKTOWN	WHEALTON (61)	115.00	115.00	STEEL POLE		0.04	
23	YORKTOWN	WHEALTON (61)	115.00	115.00	STEEL POLE	6.04		
24	YORKTOWN	WHEALTON (61)	115.00	115.00	STEEL POLE	0.53		
25	YORKTOWN	WHEALTON (61)	115.00	115.00	STEEL TWR		0.05	
26	YORKTOWN	WHEALTON (61)	115.00	115.00	STEEL TWR	0.03		
27	YORKTOWN	WHEALTON (61)	115.00	115.00	STEEL TWR	3.42		
28	YORKTOWN	WHEALTON (61)	115.00	115.00	WOOD HFRM		2.23	
29	YORKTOWN	WHEALTON (61)	115.00	115.00	WOOD HFRM	1.46		
30	YORKTOWN	WHEALTON (61)	115.00	115.00	WOOD POLE	1.43		
31	GOSPORT	CEC (62)	115.00	115.00	CONC HFRM	0.02		1
32	GOSPORT	CEC (62)	115.00	115.00	CONC POLE	0.08		
33	GOSPORT	CEC (62)	115.00	115.00	STEEL HFRM	0.08		
34	GOSPORT	CEC (62)	115.00	115.00	STEEL POLE	0.03		
35	GOSPORT	CEC (62)	115.00	115.00	STEEL POLE	0.25		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of 2018/Q4				
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if							

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights,	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
636 ACSR								1
721 ACAR								2
721 ACAR								3
1109 ACAR								4
1109 ACAR								5
1109 ACAR								6
1109 ACAR								7
477 ACSR								8
1033.5 ACSS								9
477 ACSR								10
1033.5 ACSS								11
477 ACSR								12
1033.5 ACSS								13
477 ACSR								14
1033.5 ACSS								15
1033.5 ACSR								16
1033.5 ACSS								17
636 ACSR								18
636 ACSR								19
1192.5 ACSR								20
636 ACSR								21
636 ACSR								22
1192.5 ACSR								23
636 ACSR								24
636 ACSR								25
1192.5 ACSR								26
636 ACSR								27
636 ACSR								28
636 ACSR								29
636 ACSR								30
636 ACSS								31
636 ACSS								32
1109 ACAR								33
1109 ACAR								34
336.4 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNATIO	N	VOLTAGE (KV (Indicate where other than 60 cycle, 3 pha	) e	Type of Supporting	LENGTH (In the undergro report circ	(Pole miles) case of bund lines cuit miles)	Number Of
	From	То	Operating	Designed		On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	Structure	Designated	Line	(h)
1			115.00	115.00		(1)	(g)	(11)
2	COSPORT	CEC (62)	115.00	115.00	STEEL TWR	2.03		
2	GOSPORT	CEC (62)	115.00	115.00		0.28		
4	GOSPORT	CEC (62)	115.00	115.00		0.20		
5	BASIN	12TH STREET (63)	115.00	115.00	STEEL HERM	0.03		1
6	BASIN	12TH STREET (63)	115.00	115.00		0.11	0.05	
7	BASIN	12TH STREET (63)	115.00	115.00	STEEL POLE	1 02	0.00	
8	BASIN	12TH STREET (63)	115.00	115.00	STEEL POLE	0.81		
9	BASIN	12TH STREET (63)	115.00	115.00		0.04		
10	BASIN	12TH STREET (63)	115.00	115.00	STEEL TOLL	0.01	0.01	
11	BASIN	12TH STREET (63)	115.00	115.00	STEEL TWR	1.59	0.01	
12	BASIN	12TH STREET (63)	115.00	115.00	WOOD POLE	0.20		
13	BASIN	12TH STREET (63)	115.00	115.00	WOOD POLE	0.01		
14	BASIN	12TH STREET (63)	115.00	115.00	WOOD POLE	0.12		
15	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	CONC HFRM	0.02		1
16	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	CONC HFRM	0.06		
17	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	STEEL	1.19		
18	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	STEEL HFRM	0.07		
19	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	STEEL HFRM	0.27		
20	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	STEEL HFRM	16.77		
21	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	STEEL POLE	4.80		
22	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	STEEL POLE	0.66		
23	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	STEEL TWR	0.01		
24	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	STEEL TWR	0.13		
25	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	WOOD HFRM	2.11		
26	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	WOOD HFRM	7.87		
27	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	WOOD POLE	0.39		
28	NORTHERN NECK	HARMONY VILLAGE (65)	115.00	230.00	WOOD POLE	2.11		
29	CRADOCK	CEC (66)	115.00	115.00	CONC HFRM	0.02		1
30	CRADOCK	CEC (66)	115.00	115.00	STEEL HFRM		0.18	
31	CRADOCK	CEC (66)	115.00	115.00	STEEL HFRM	0.09		
32	CRADOCK	CEC (66)	115.00	115.00	STEEL POLE		0.15	
33	CRADOCK	CEC (66)	115.00	115.00	STEEL POLE	0.09		
34	CRADOCK	CEC (66)	115.00	115.00	STEEL TWR		2.58	
35	CRADOCK	CEC (66)	115.00	115.00	STEEL TWR	0.03		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum and clearing right-o	n (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	Other Costs (k)	(I)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
336.4 ACSR			.,	( )			,	1
636 ACSS								2
336.4 ACSR								3
336.4 ACSR								4
636 ACSR								5
721 ACAR								6
1534 ACAR								7
636 ACSR								8
721 ACAR								9
721 ACAR								10
636 ACSR								11
545.6 ACAR								12
636 ACSR								13
721 ACAR								14
1534 ACAR								15
477 ACSR								16
477 ACSR								17
1033.5 ACSR								18
1534 ACAR								19
477 ACSR								20
1534 ACAR								21
477 ACSR								22
1534 ACAR								23
477 ACSR								24
1534 ACAR								25
477 ACSR								26
1534 ACAR								27
477 ACSR								28
1033.5 ACSR								29
1033.5 ACSR								30
336.4 ACSR								31
336.4 ACSR								32
336.4 ACSR								33
336.4 ACSR								34
336.4 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNATIO	N	VOLTAGE (KV (Indicate where other than 60 cycle, 3 pha	) e ise)	Type of Supporting	LENGTH (In the undergro report circ	(Pole miles) case of ound lines cuit miles)	Number Of
	From	То	Operating	Designed	Structure	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line	(b)
1		CEC (66)	115.00	115.00		(1)	(9)	(11)
2	CRADOCK	CEC (66)	115.00	115.00		0.23		
3	GREENWICH	LITTLE CREEK (67)	115.00	115.00	CONC HERM	0.10	0.04	1
4	GREENWICH	LITTLE CREEK (67)	115.00	115.00	STEEL POLE		0.09	
5	GREENWICH		115.00	115.00	STEEL POLE		0.03	
6	GREENWICH		115.00	115.00	STEEL TWR		3.12	
7	GREENWICH		115.00	115.00	STEEL TWR		0.19	
8	GREENWICH	LITTLE CREEK (67)	115.00	115.00	STEEL TWR	0.18		
9	SUFFOLK	UNION CAMP (68)	115.00	230.00	CONC POLE	0.16		1
10	SUFFOLK	UNION CAMP (68)	115.00	230.00	STEEL POLE	0.27		
11	SUFFOLK	UNION CAMP (68)	115.00	230.00	STEEL POLE	0.32		
12	SUFFOLK	UNION CAMP (68)	115.00	230.00	STEEL TWR	0.05		
13	SUFFOLK	UNION CAMP (68)	115.00	230.00	STEEL TWR	0.07		
14	SUFFOLK	UNION CAMP (68)	115.00	230.00	STEEL TWR	18.85		
15	LOCKS	PURDY (69)	115.00	230.00	CONC HFRM	0.06		1
16	LOCKS	PURDY (69)	115.00	230.00	CONC HFRM	0.10		
17	LOCKS	PURDY (69)	115.00	230.00	STEEL HFRM	6.64		
18	LOCKS	PURDY (69)	115.00	230.00	STEEL HFRM	1.34		
19	LOCKS	PURDY (69)	115.00	230.00	STEEL POLE	0.03		
20	LOCKS	PURDY (69)	115.00	230.00	STEEL POLE	0.15		
21	LOCKS	PURDY (69)	115.00	230.00	STEEL TWR	2.57		
22	LOCKS	PURDY (69)	115.00	230.00	WOOD HFRM	17.04		
23	LOCKS	PURDY (69)	115.00	230.00	WOOD POLE	0.08		
24	SKIFFES CREEK	MARTINS HUNDRED (7)	115.00	115.00	STEEL HFRM		0.11	1
25	SKIFFES CREEK	MARTINS HUNDRED (7)	115.00	115.00	STEEL HFRM	0.05		
26	SKIFFES CREEK	MARTINS HUNDRED (7)	115.00	115.00	STEEL POLE		0.04	
27	SKIFFES CREEK	MARTINS HUNDRED (7)	115.00	115.00	STEEL POLE	0.68		
28	SKIFFES CREEK	MARTINS HUNDRED (7)	115.00	115.00	STEEL POLE	0.07		
29	SKIFFES CREEK	MARTINS HUNDRED (7)	115.00	115.00	STEEL TWR	0.11		
30	SKIFFES CREEK	MARTINS HUNDRED (7)	115.00	115.00	WOOD HFRM	0.12		
31	SKIFFES CREEK	MARTINS HUNDRED (7)	115.00	115.00	WOOD POLE	0.24		
32	REMINGTON	CULPEPER (70)	115.00	115.00	CONC POLE	0.02		1
33	REMINGTON	CULPEPER (70)	115.00	115.00	STEEL HFRM	0.03		
34	REMINGTON	CULPEPER (70)	115.00	115.00	STEEL HFRM	9.40		
35	REMINGTON	CULPEPER (70)	115.00	115.00	STEEL POLE		5.21	
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if			

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	F (Include in Colum	nn (i) Land.					Т
Size of	Size of Land rights, and clearing right-of-way)				TAXES			
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	-
and Material	(1)	Other Costs		Expenses	Expenses	(0)	Expenses	No
(I)	())	(к)	(1)	(m)	(n)	(0)	(p)	110.
336.4 ACSR								1
336.4 ACSR								2
1600 AAAC								3
1600 AAAC								4
636 ACSR								5
1600 AAAC								6
636 ACSR								7
1600 AAAC								8
1590 AAC								9
1590 AAC								10
545.6 ACAR								11
1590 AAC								12
1590 ACSR								13
545.6 ACAR								14
636 ACSR								15
795 ACSR								16
636 ACSR								17
795 ACSR								18
636 ACSR								19
795 ACSR								20
795 ACSR								21
795 ACSR								22
795 ACSR								23
336.4 ACSR								24
336.4 ACSR								25
636 ACSR								26
336.4 ACSR								27
636 ACSR								28
545.6 ACAR								29
545.6 ACAR								30
545.6 ACAR								31
1033.5 ACSR								32
1033.5 ACSR								33
477 ACSR								34
1033.5 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNATION VOLTAGE (KV) (Indicate where other than 60 cycle, 3 phase)		) ese)	Type of LENGTH (Pole miles) (In the case of sunderground lines Supporting Content of the case of sunderground lines			Number Of	
	From	То	Operating	Designed	Ctructure	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated	Line	(b)
1	REMINGTON		115.00	115.00		(1)	(9)	(1)
2	REMINGTON		115.00	115.00	STEEL TWR	0.08		
2	BRODNAX		115.00	115.00		0.00		1
4	BRODNAX		115.00	115.00		0.02		
5	BRODNAX		115.00	115.00	STEEL HERM	22.12		
6	BRODNAX		115.00	115.00	STEEL HERM	0.15		
7	BRODNAX		115.00	115.00	STEEL POLE	2 76		
8	BRODNAX		115.00	115.00	STEEL POLE	1 72		
9	BRODNAX		115.00	115.00	STEEL TWR	0.09		
10	CHESTEREIELD 115	PL AZA (72)	115.00	115.00	STEEL HERM	0.07	0.38	1
11	CHESTEREIELD 115	PI A7A (72)	115.00	115.00	STEEL HERM	0.08	0.00	
12	CHESTEREIELD 115	PI A7A (72)	115.00	115.00	STEEL HERM	0.00		
13	CHESTERFIELD 115	PLAZA (72)	115.00	115.00	STEEL POLE	0.27	0.19	
14	CHESTERFIELD 115	PLAZA(72)	115.00	115.00	STEEL POLE		0.32	
15	CHESTERFIELD 115	PLAZA(72)	115.00	115.00	STEEL POLE	0.29	0.02	
16	CHESTERFIELD 115	PLAZA(72)	115.00	115.00	STEEL POLE	0.45		
17	CHESTERFIELD 115	PLAZA(72)	115.00	115.00	STEEL TWR	0.10	0.09	
18	CHESTERFIELD 115	PLAZA(72)	115.00	115.00	STEEL TWR		4.81	
19	CHESTERFIELD 115	PLAZA(72)	115.00	115.00	STEEL TWR	0.14		
20	CHESTERFIELD 115	PLAZA (72)	115.00	115.00	STEEL TWR	2.55		
21	CHESTERFIELD 115	PLAZA(72)	115.00	115.00	STEEL TWR	0.02		
22	CHESTERFIELD 115	PLAZA (72)	115.00	115.00	STEEL TWR	0.06		
23	CHESTERFIELD 115	PLAZA (72)	115.00	115.00	WOOD HFRM		2.29	
24	CHESTERFIELD 115	PLAZA (72)	115.00	115.00	WOOD HFRM	0.41		
25	CHESTERFIELD 115	PLAZA (72)	115.00	115.00	WOOD HFRM	0.18		
26	CHESTERFIELD 115	PLAZA (72)	115.00	115.00	WOOD HFRM	0.76		
27	CHESTERFIELD 115	PLAZA (72)	115.00	115.00	WOOD POLE		0.66	
28	CHESTERFIELD 115	PLAZA (72)	115.00	115.00	WOOD POLE		0.07	
29	CHESTERFIELD 115	PLAZA (72)	115.00	115.00	WOOD POLE	0.12		
30	CHESTERFIELD 115	PLAZA (72)	115.00	115.00	WOOD POLE	0.10		
31	CHESTERFIELD 115	PLAZA (72)	115.00	115.00	WOOD POLE	0.05		
32	CHESTERFIELD 115	PLAZA (72)	115.00	115.00	WOOD POLE	0.05		
33	ELMONT	FOUR RIVERS (73)	115.00	230.00	CONC HFRM	0.11		1
34	ELMONT	FOUR RIVERS (73)	115.00	230.00	STEEL HFRM	1.42		
35	ELMONT	FOUR RIVERS (73)	115.00	230.00	STEEL POLE	0.16		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent		This Report Is:	Date of Report	Year/Period of Report				
	VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of	2018/Q4			
	TRANSMISSION LINE STATISTICS (Continued)							
	. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if							

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of Conductor and Material (0)         Land rights, and clearing right-of-way)         EXPENSES, EXCEPT DEPRECIATION AND TAXES           100         Land rights, and clearing right-of-way)         Total Cost (0)         Depresion (0)         Maintenance (0)         Rents (0)         Expenses (0)         Rents (0)		COST OF LIN	E (Include in Colur	nn (i) Land.					Т
Conductor (h)         Land (h)         Construction and (h)         Total Cost (h)         Operation Expenses (h)         Maintenance (h)         Rents (h)         Total Solve (h)         In           1033 ACSR         -         -         -         -         1           1033 ACSR         -         -         -         2         3           364 ACSR         -         -         -         -         4           364 ACSR         -         -         -         -         5           364 ACSR         -         -         -         -         6           364 ACSR         -         -         -         -         6           364 ACSR         -         -         -         -         7           364 ACSR         -         -         -         10         7           364 ACSR         -         -         -         10         11           171 ACAR         -         -         -         12         12           214 ACAR         -         -         -         13         14           364 ACSR         -         -         10         13           171 ACAR         -         -	Size of	Land rights,	and clearing right-o	if-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
and Maternal         Line         Chier Costs         Line         Expenses (n)         Line         Expenses (n)         Line         Expenses (n)         Line         Expenses (n)         Line         Line <thline< th=""> <thline< th=""> <thline< th=""> <th< td=""><td>Conductor</td><td>Land</td><td>Construction and</td><td>Total Cost</td><td>Operation</td><td>Maintenance</td><td>Rents</td><td>Total</td><td></td></th<></thline<></thline<></thline<>	Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	
m         C         C         C         C         C         C         C         C         C         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th=""> <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<></thl<>	and Material (i)	(j)	Other Costs (k)	(1)	Expenses (m)	Expenses	(0)	Expenses	No.
1033 AACSR         2           334 ACSR	1033.5 ACSR	0,		()	()	()		(17)	1
338 4 ACSR           3           334 ACSR            4           334 ACSR            6           334 ACSR            6           334 ACSR            6           334 ACSR            6           334 ACSR            8           334 ACSR            8           334 ACSR            10           533 ACSR            11         11           71 ACAR            11         13           71 ACAR            14         14           636 ACSR            16         16           636 ACSR            17         77           71 ACAR            18         16           636 ACSR            17         77           71 ACA	1033.5 ACSR								2
336.4 ACSR           4           336.4 ACSR           6           337.4 ACSR           6           337.4 ACSR           7           638.4 ACSR           7           638.4 ACSR           7           638.4 ACSR           9           638.4 ACSR           10           638.4 ACSR           10           638.4 ACSR           10           638.4 ACSR           11           638.4 ACSR           11           638.4 ACSR           13           71.4 ACAR           13           638.4 ACSR           17           71.4 ACAR           17           721.4 ACAR           17           738.4 ACSR           17           73.4 ACSR           20           73.4 ACSR           20     <	336.4 ACSR								3
336.4 ACSR             6           356.4 ACSR             6           356.4 ACSR             8           356.4 ACSR             8           356.4 ACSR             8           356.4 ACSR             10           556.4 ACSR             11           71 ACAR             11           71 ACAR             13           71 ACAR             14           568 ACSR             16           563 ACSR             17         7           71 ACAR             17         7           71 ACAR             17         7           70	336.4 ACSR								4
658 ACSR         6           3364 ACSR           7           3364 ACSR           8           3364 ACSR           8           3364 ACSR           9           636 ACSR           9           636 ACSR           10           71 ACAR           11           721 ACAR           131           636 ACSR           131           721 ACAR           14           636 ACSR           141           636 ACSR           14           636 ACSR           15           71 ACAR           16           636 ACSR           17           71 ACAR           17           721 ACAR           20           714 ACAR           21           721 ACAR           23           721 ACAR          <	336.4 ACSR								5
336.4 ACSR            7           636.4 ACSR           8           336.4 ACSR           9           636.4 ACSR           10           636.4 ACSR           10           636.4 ACSR           11           71         ACAR          11           636.4 CSR           13           71 ACAR           13           636.4 CSR           13           71 ACAR           14           636 ACSR           15           721 ACAR           16           636 ACSR           17           71 ACAR           17           73 ACAR           17           73 ACAR           17           74 ACSR           17           73 ACAR           20           73 ACAR           21      <	636 ACSR								6
636 ACSR         6         6           304 ACSR         0         0           336 ACSR         0         10           636 ACSR         0         11           1721 ACAR         0         11           173 ACAR         0         11           174 CAR         0         11           175         11         11           174 CAR         0         11           174 CAR         0         20           171 ACAR         0         21           174 CAR         0         22           174 CAR         0         22           174 CA	336.4 ACSR								7
336.4 ACSR            9           636 ACSR           10         10         10           636 ACSR            11         10         11           721 ACAR             11         12           636 ACSR             11         12           636 ACSR             13         14           636 ACSR             16         16           636 ACSR             16         16           636 ACSR             17         16           636 ACSR            11         18         18         18         18         18         18         18         18         18         19         10         11         19         10         10         12         20         11         10         10         12         20         21         ACA         21         21         21         22	636 ACSR								8
636 ACSR         10         10         10           636 ACSR         11         11         11           636 ACSR         11         12         12           636 ACSR         11         13         13           721 ACAR         11         14         14           636 ACSR         11         14         14           636 ACSR         11         14         14           636 ACSR         11         15         15           721 ACAR         11         16         17           636 ACSR         11         17         16           636 ACSR         11         17         17           721 ACAR         11         18         18           636 ACSR         11         19         20           721 ACAR         11         19         20           721 ACAR         11         20         21           738 AACSR         11         12         20           731 ACAR         11         20         22           736 ACSR         11         20         23           736 ACSR         11         20         23           736 ACSR         1	336.4 ACSR								9
636 ACSR         11           721 ACAR         12           721 ACAR	636 ACSR								10
121 ACAR         12         12         12           636 ACSR         1         13         13           636 ACSR         1         14         15           121 ACAR         1         15         15           121 ACAR         1         16         16           636 ACSR         1         16         16           636 ACSR         1         16         17           121 ACAR         1         17         17           121 ACAR         1         17         17           123 ACAR         1         17         17           123 ACAR         1         17         18           3364 ACSR         1         18         18           3364 ACSR         1         10         19           356 ACSR         1         10         12           121 ACAR         1         12         12           124 ABAAC         1         10         12           356 ACSR         1         1         12           3636 ACSR         1         1         12           121 ACAR         1         12         12           3566 ACSR         1 <t< td=""><td>636 ACSR</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td></t<>	636 ACSR								11
636 ACSR         1         13           721 ACAR         1         14           636 ACSR         1         15           721 ACAR         1         15           636 ACSR         1         16           636 ACSR         1         17           721 ACAR         1         17           721 ACAR         1         17           721 ACAR         1         18           636 ACSR         1         17           721 ACAR         1         18           636 ACSR         1         19           563 ACSR         1         10         19           563 ACSR         1         10         10           721 ACAR         1         10         20           721 ACAR         1         10         21           708 AAAC         1         10         23           636 ACSR         1         10         23           636 ACSR         1         10         24           636 ACSR         1         10         24           636 ACSR         1         10         27           721 ACAR         1         20         27 </td <td>721 ACAR</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12</td>	721 ACAR								12
Z21 ACAR       14         363 ACSR       15         Z21 ACAR       16         363 ACSR       17         T21 ACAR       18         364 ACSR       19         364 ACSR       19         364 ACSR       10         T21 ACAR       10         S65 ACSR       10         T21 ACAR       10         T40.8 AAAC       10         T40.8 AAAC       10         S656 ACSR       10	636 ACSR								13
636 ACSR         15           721 ACAR         16           636 ACSR         17           71 ACAR         17           336 4 ACSR         18           336 4 ACSR         19           336 4 ACSR         10           171 ACAR         19           336 4 ACSR         10           171 ACAR         10           172 ACAR         10           173 ACAR         10           174 ACAR         10           175 ACSR         10           175 ACSR         10           176 ACSR         10           177 ACAR         10           171 ACAR         10           171 ACAR         10           171 ACAR         10           1721 ACAR         10           1721 ACAR         10           1721 ACAR         10           1721 ACAR         10           170 AB AAAC         10           170 AB AAAC         10           170 AB AAAC         10	721 ACAR								14
721 ACAR       1       16         636 ACSR       1       17         721 ACAR       18         354 ACSR       19         355 ACSR       10         721 ACAR       10         354 ACSR       10         171 ACAR       10         1721 ACAR       10         171 ACAR       10         1721 ACAR       10         1740.8 AAAC       10         175 ACSR       10         175 ACSR	636 ACSR								15
636 ACSR         17           721 ACAR         18           336.4 ACSR         19           336.4 ACSR         20           721 ACAR         20           721 ACAR         20           721 ACAR         20           721 ACAR         21           740.8 AAAC         21           740.8 AAAC         22           636 ACSR         23           36586 ACSR         23           36586 ACSR         24           21 ACAR         24           22         23           36586 ACSR         24           21 ACAR         24           22 ACSR         24           23         36586 ACSR           24         25           3636 ACSR         24           25         271 ACAR           21 ACAR         26           3636 ACSR         277           21 ACAR         28           3658 ACSR         29           20         29           21 ACAR         29           22         32           356 ACSR         33           37         34           28         35 </td <td>721 ACAR</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>16</td>	721 ACAR								16
721 ACAR       18         3364 ACSR       19         636 ACSR       20         721 ACAR       21         740.8 AAAC       21         636 ACSR       22         636 ACSR       23         36586 ACSR       23         36586 ACSR       24         636 ACSR       25         721 ACAR       26         636 ACSR       27         721 ACAR       28         636 ACSR       29         536 ACSR       29         536 ACSR       29         3658 ACSR       29         3658 ACSR       29         3658 ACSR       29         3658 ACSR       30         721 ACAR       30         721 ACAR       30         721 ACAR       31         705 ACSR       32         795 ACSR       35	636 ACSR								17
336.4 ACSR       19         636 ACSR       20         721 ACAR       21         740.8 AAAC       21         3656 ACSR       22         36586 ACSR       22         36586 ACSR       22         36586 ACSR       24         536 ACSR       24         536 ACSR       24         536 ACSR       25         721 ACAR       26         636 ACSR       27         721 ACAR       26         536 ACSR       27         721 ACAR       28         36586 ACSR       27         721 ACAR       29         536 ACSR       29         536 ACSR       29         30721 ACAR       29         308       21         721 ACAR       29         536 ACSR       30         721 ACAR       31         705 ACSR       33         795 ACSR       35         795 ACSR       35         563,602.218       4,121,865,109 <td>721 ACAR</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>18</td>	721 ACAR								18
636 ACSR         20           721 ACAR         21           740.8 AAAC         22           636 ACSR         23           36586 ACSR         23           36586 ACSR         24           21 ACAR         23           36586 ACSR         23           36586 ACSR         24           21 ACAR         25           721 ACAR         26           636 ACSR         27           721 ACAR         28           36586 ACSR         27           721 ACAR         28           36586 ACSR         29           3636 ACSR         30           721 ACAR         30           721 ACAR         30           721 ACAR         31           795 ACSR         33           795 ACSR         33           795 ACSR         35           563,602.218         4,121,865,109	336.4 ACSR								19
721 ACAR	636 ACSR								20
740.8 AAAC	721 ACAR								21
636 ACSR         23           36586 ACSR         24           636 ACSR         24           636 ACSR         25           71 ACAR         26           636 ACSR         26           636 ACSR         27           71 ACAR         28           36586 ACSR         29           36586 ACSR         29           36586 ACSR         29           3636 ACSR         29           3636 ACSR         29           3636 ACSR         29           3636 ACSR         30           721 ACAR         29           3636 ACSR         30           721 ACAR         30           721 ACAR         30           721 ACAR         31           40.8 AAAC         31           795 ACSR         33           795 ACSR         33           795 ACSR         34           795 ACSR         35           563,602,218         4,121,865,109         4,685,467,327           14,070,455         28,804,187         101,655         42,976,297         36	740.8 AAAC								22
36586 ACSR       24         636 ACSR       25         721 ACAR       26         636 ACSR       27         721 ACAR       28         36586 ACSR       29         3636 ACSR       20         721 ACAR       20         721 ACAR       20         3636 ACSR       30         721 ACAR       30         721 ACAR       30         721 ACAR       31         740.8 AAAC       31         795 ACSR       33         795 ACSR       33         795 ACSR       34         795 ACSR       35         563,602,218       4,121,865,109       4,685,467,327       14,070,455       28,804,187       101,655       42,976,297       36	636 ACSR								23
636 ACSR	36586 ACSR								24
721 ACAR       26         636 ACSR       27         721 ACAR       28         36586 ACSR       29         636 ACSR       29         636 ACSR       29         636 ACSR       30         721 ACAR       31         740.8 AAAC       31         795 ACSR       33         795 ACSR       33         795 ACSR       35         563,602,218       4,121,865,109       4,685,467,327       14,070,455       28,804,187       101,655       42,976,297       36	636 ACSR								25
636 ACSR	721 ACAR								26
721 ACAR	636 ACSR								27
36586 ACSR       0       29         636 ACSR       0       30         721 ACAR       0       31         740.8 AAAC       0       32         795 ACSR       0       33         795 ACSR       0       34         795 ACSR       0       35         563,602,218       4,121,865,109       4,685,467,327       14,070,455       28,804,187       101,655       42,976,297       36	721 ACAR								28
636 ACSR         30         30           721 ACAR         1         31           740.8 AAAC         32         32           795 ACSR         33         33           795 ACSR         34         35           795 ACSR         35         35           563,602,218         4,121,865,109         4,685,467,327         14,070,455         28,804,187         101,655         42,976,297         36	36586 ACSR								29
721 ACAR       31         740.8 AAAC       32         795 ACSR       33         795 ACSR       34         795 ACSR       34         795 ACSR       35         95 ACSR       4,121,865,109         4,685,467,327       14,070,455       28,804,187         101,655       42,976,297       36	636 ACSR								30
740.8 AAAC       32         795 ACSR       33         795 ACSR       34         795 ACSR       35         795 ACSR       35         795 ACSR       35         563,602,218       4,121,865,109       4,685,467,327       14,070,455       28,804,187       101,655       42,976,297       36	721 ACAR								31
795 ACSR         33           795 ACSR         34           795 ACSR         35           795 ACSR         35           563,602,218         4,121,865,109         4,685,467,327           14,070,455         28,804,187         101,655         42,976,297         36	740.8 AAAC								32
795 ACSR         Image: Constraint of the second secon	795 ACSR								33
795 ACSR 35 563,602,218 4,121,865,109 4,685,467,327 14.070,455 28,804,187 101,655 42.976,297 36	795 ACSR								34
<u>563,602,218</u> 4,121,865,109 4,685,467,327 14.070,455 28,804.187 101,655 42.976.297 <b>36</b>	795 ACSR								35
<u>563,602,218</u> 4,121,865,109 4,685,467,327 14.070,455 28,804.187 101,655 42.976.297 <b>36</b>									
<u>563,602,218</u> 4,121,865,109 4,685,467,327 14.070,455 28,804.187 101,655 42.976.297 36									
		563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATION		VOLTAGE (KV (Indicate where	() Ə	Type of	LENGTH (In the	(Pole miles)	Number
INO.			other than 60 cycle, 3 pha	ase)	Supporting	report circ	cuit miles)	Of
	From	То	Operating	Designed	Structure	On Structure of Line	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated (f)	Line (a)	(h)
1	ELMONT	FOUR RIVERS (73)	115.00	230.00	WOOD HFRM	7.05	(3)	(1)
2	ELMONT	FOUR RIVERS (73)	115.00	230.00	WOOD POLE	0.14		
3	CEC	LANDSTOWN (74)	115.00	115.00	CONC HFRM	0.08		1
4	CEC	LANDSTOWN (74)	115.00	115.00	STEEL HFRM	0.10		
5	CEC	LANDSTOWN (74)	115.00	115.00	STEEL HFRM	0.34		
6	CEC	LANDSTOWN (74)	115.00	115.00	STEEL HFRM	0.05		
7	CEC	LANDSTOWN (74)	115.00	115.00	STEEL POLE		0.14	
8	CEC	LANDSTOWN (74)	115.00	115.00	STEEL POLE	0.12		
9	CEC	LANDSTOWN (74)	115.00	115.00	STEEL POLE	0.23		
10	CEC	LANDSTOWN (74)	115.00	115.00	STEEL POLE	0.02		
11	CEC	LANDSTOWN (74)	115.00	115.00	STEEL TWR		1.80	
12	CEC	LANDSTOWN (74)	115.00	115.00	STEEL TWR	0.44		
13	CEC	LANDSTOWN (74)	115.00	115.00	STEEL TWR	0.02		
14	CEC	LANDSTOWN (74)	115.00	115.00	STEEL TWR	0.05		
15	CEC	LANDSTOWN (74)	115.00	115.00	STEEL TWR	0.03		
16	CEC	LANDSTOWN (74)	115.00	115.00	WOOD HFRM	0.12		
17	CEC	LANDSTOWN (74)	115.00	115.00	WOOD HFRM	4.33		
18	CEC	LANDSTOWN (74)	115.00	115.00	WOOD POLE		0.07	
19	CEC	LANDSTOWN (74)	115.00	115.00	WOOD POLE	0.45		
20	WHEALTON	NEWPORT NEWS (75)	115.00	115.00	STEEL HFRM	0.32		1
21	WHEALTON	NEWPORT NEWS (75)	115.00	115.00	STEEL POLE	0.18		
22	WHEALTON	NEWPORT NEWS (75)	115.00	115.00	STEEL POLE	0.29		
23	WHEALTON	NEWPORT NEWS (75)	115.00	115.00	STEEL TWR	2.53		
24	WHEALTON	NEWPORT NEWS (75)	115.00	115.00	STEEL TWR	0.17		
25	YORKTOWN	PENINSULA (76)	115.00	115.00	STEEL HFRM	0.58		1
26	YORKTOWN	PENINSULA (76)	115.00	115.00	STEEL HFRM	0.20		
27	YORKTOWN	PENINSULA (76)	115.00	115.00	STEEL POLE	0.33		
28	YORKTOWN	PENINSULA (76)	115.00	115.00	STEEL POLE	0.18		
29	YORKTOWN	PENINSULA (76)	115.00	115.00	STEEL TWR	0.05		
30	YORKTOWN	PENINSULA (76)	115.00	115.00	WOOD HFRM	5.19		
31	YORKTOWN	PENINSULA (76)	115.00	115.00	WOOD HFRM	3.98		
32	YORKTOWN	PENINSULA (76)	115.00	115.00	WOOD POLE	0.46		
33	YORKTOWN	PENINSULA (76)	115.00	115.00	WOOD POLE	0.16		
34	CAROLINA	ROANOKE RAPIDS HYDRO	115.00	115.00	CONC TWR	0.02		1
35	CAROLINA	ROANOKE RAPIDS HYDRO	115.00	115.00	STEEL HFRM	0.06		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)							
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if			

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LINE (Include in Column (j) Land, Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	(m)	(n)	(0)	(p)	INO.
795 ACSR								1
795 ACSR								2
336.4 ACSR								3
1033.5 ACSR								4
336.4 ACSR								5
636 ACSR								6
336.4 ACSR								7
1033.5 ACSR								8
336.4 ACSR								9
636 ACSR								10
336.4 ACSR								11
1033.5 ACSR								12
336.4 ACSR								13
636 ACSR								14
740.8 AAAC								15
1033.5 ACSR								16
336.4 ACSR								17
336.4 ACSR								18
336.4 ACSR								19
1109 ACAR								20
1033.5 AAC								21
1109 ACAR								22
1033.5 AAC								23
1109 ACAR								24
477 ACSR								25
636 ACSR								26
477 ACSR								27
636 ACSR								28
636 ACSR								29
477 ACSR								30
636 ACSR								31
477 ACSR								32
636 ACSR								33
636 ACSR								34
36617 CU								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATION		VOLTAGE (KV)		Type of LENGTH (Pole miles)			
No.			other than	9	Type of	undergro	case of bund lines	Number
			60 cycle, 3 pha	ise)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	CAROLINA	ROANOKE RAPIDS HYDRO	115.00	115.00	STEEL POLE	0.12		
2	CAROLINA	ROANOKE RAPIDS HYDRO	115.00	115.00	STEEL POLE	0.05		
3	CAROLINA	ROANOKE RAPIDS HYDRO	115.00	115.00	STEEL TWR	0.11		
4	CAROLINA	ROANOKE RAPIDS HYDRO	115.00	115.00	WOOD HFRM		0.39	
5	CAROLINA	ROANOKE RAPIDS HYDRO	115.00	115.00	WOOD HFRM	1.12		
6	CAROLINA	ROANOKE RAPIDS HYDRO	115.00	115.00	WOOD HFRM	0.49		
7	CAROLINA	ROANOKE RAPIDS HYDRO	115.00	115.00	WOOD HFRM	0.07		
8	CAROLINA	ROANOKE RAPIDS HYDRO	115.00	115.00	WOOD POLE	0.32		
9	CAROLINA	ROANOKE RAPIDS HYDRO	115.00	115.00	WOOD POLE	0.20		
10	CAROLINA	ROANOKE RAPIDS HYDRO	115.00	115.00	WOOD POLE	0.22		
11	PENDLETON	VIRGINIA BEACH (78)	115.00	115.00	CONC HFRM	0.04		1
12	PENDLETON	VIRGINIA BEACH (78)	115.00	115.00	STEEL HFRM		0.10	
13	PENDLETON	VIRGINIA BEACH (78)	115.00	115.00	STEEL HFRM	4.06		
14	PENDLETON	VIRGINIA BEACH (78)	115.00	115.00	STEEL POLE	0.72		
15	YORKTOWN	PENINSULA (79)	115.00	115.00	STEEL HFRM		0.58	1
16	YORKTOWN	PENINSULA (79)	115.00	115.00	STEEL HFRM		0.20	
17	YORKTOWN	PENINSULA (79)	115.00	115.00	STEEL POLE		0.31	
18	YORKTOWN	PENINSULA (79)	115.00	115.00	STEEL POLE		0.18	
19	YORKTOWN	PENINSULA (79)	115.00	115.00	STEEL TWR		0.05	
20	YORKTOWN	PENINSULA (79)	115.00	115.00	WOOD HFRM		5.19	
21	YORKTOWN	PENINSULA (79)	115.00	115.00	WOOD HFRM		3.98	
22	YORKTOWN	PENINSULA (79)	115.00	115.00	WOOD POLE		0.44	
23	YORKTOWN	PENINSULA (79)	115.00	115.00	WOOD POLE		0.16	
24	YORKTOWN	PENINSULA (79)	115.00	115.00	WOOD POLE	0.04		
25	BATTLEBORO	ANACONDA (80)	115.00	115.00	STEEL HFRM	13.51		1
26	BATTLEBORO	ANACONDA (80)	115.00	115.00	STEEL POLE	0.47		
27	CAROLINA	SOUTH JUSTICE BRANCH	115.00	115.00	CONC HFRM	0.02		1
28	CAROLINA	SOUTH JUSTICE BRANCH	115.00	115.00	CONC TWR	0.04		
29	CAROLINA	SOUTH JUSTICE BRANCH	115.00	115.00	STEEL HFRM		0.12	
30	CAROLINA	SOUTH JUSTICE BRANCH	115.00	115.00	STEEL HFRM	1.31		
31	CAROLINA	SOUTH JUSTICE BRANCH	115.00	115.00	STEEL POLE		2.95	
32	CAROLINA	SOUTH JUSTICE BRANCH	115.00	115.00	STEEL POLE	0.06		
33	CAROLINA	SOUTH JUSTICE BRANCH	115.00	115.00	STEEL POLE	0.35		
34	CAROLINA	SOUTH JUSTICE BRANCH	115.00	115.00	STEEL TWR			
35	CAROLINA	SOUTH JUSTICE BRANCH	115.00	115.00	STEEL TWR	3.39		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	TRANSMISSION LINE STATISTICS (C	ontinued)	
7. Do not report the same transmission line structure	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate in a footnote if

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	E (Include in Colum	nn (i) Land					Т
Size of	Land rights,	and clearing right-o	f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	-
and Material		Other Costs		Expenses	Expenses	(0)	Expenses	Line
(1)	())	(K)	(1)	(m)	(n)	(0)	(p)	110.
336.4 ACSR								1
636 ACSR								2
36617 CU								3
336.4 ACSR								4
336.4 ACSR								5
36617 CU								6
636 ACSR								7
336.4 ACSR								8
36617 CU								9
636 ACSR								10
1351.5 ACSRAW								11
1351.5 ACSR								12
1351.5 ACSR								13
1351.5 ACSR								14
477 ACSR								15
636 ACSR								16
477 ACSR								17
636 ACSR								18
636 ACSR								19
477 ACSR								20
636 ACSR								21
477 ACSR								22
636 ACSR								23
477 ACSR								24
636 ACSR								25
636 ACSR								26
636 ACSR								27
636 ACSR								28
636 ACSR								29
636 ACSR								30
636 ACSR								31
336.4 ACSR								32
636 ACSR								33
636 ACSR								34
636 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	N	VOLTAGE (KV	)	Type of	LENGTH	(Pole miles)	
No.			other than	<u>;</u>	Type of	undergro	case of bund lines	Number
		1	60 cycle, 3 pha	ise)	Supporting	report cire	Cult miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	CAROLINA	SOUTH JUSTICE BRANCH	115.00	115.00	WOOD HFRM	12.97		
2	CAROLINA	SOUTH JUSTICE BRANCH	115.00	115.00	WOOD POLE	0.68		
3	EVERETTS	VOICE OF AMERICA (82)	115.00	115.00	STEEL HFRM	1.35		1
4	EVERETTS	VOICE OF AMERICA (82)	115.00	115.00	STEEL POLE	0.02		
5	EVERETTS	VOICE OF AMERICA (82)	115.00	115.00	STEEL TWR	0.05		
6	EVERETTS	VOICE OF AMERICA (82)	115.00	115.00	WOOD HFRM	13.47		
7	EVERETTS	VOICE OF AMERICA (82)	115.00	115.00	WOOD HFRM	0.02		
8	EVERETTS	VOICE OF AMERICA (82)	115.00	115.00	WOOD HFRM	4.32		
9	EVERETTS	VOICE OF AMERICA (82)	115.00	115.00	WOOD POLE	0.01		
10	EVERETTS	VOICE OF AMERICA (82)	115.00	115.00	WOOD POLE	0.86		
11	EVERETTS	VOICE OF AMERICA (82)	115.00	115.00	WOOD POLE	0.04		
12	EVERETTS	VOICE OF AMERICA (82)	115.00	115.00	WOOD POLE	0.59		
13	EVERETTS	VOICE OF AMERICA (82)	115.00	115.00	WOOD POLE	0.09		
14	CRAIGSVILLE	STAUNTON (83)	115.00	115.00	CONC POLE	0.01		1
15	CRAIGSVILLE	STAUNTON (83)	115.00	115.00	STEEL HFRM	0.09		
16	CRAIGSVILLE	STAUNTON (83)	115.00	115.00	STEEL POLE		0.05	
17	CRAIGSVILLE	STAUNTON (83)	115.00	115.00	STEEL POLE	2.13		
18	CRAIGSVILLE	STAUNTON (83)	115.00	115.00	STEEL POLE	0.24		
19	CRAIGSVILLE	STAUNTON (83)	115.00	115.00	STEEL POLE	1.16		
20	CRAIGSVILLE	STAUNTON (83)	115.00	115.00	STEEL TWR		0.16	
21	CRAIGSVILLE	STAUNTON (83)	115.00	115.00	STEEL TWR		0.03	
22	CRAIGSVILLE	STAUNTON (83)	115.00	115.00	STEEL TWR	14.00		
23	CRAIGSVILLE	STAUNTON (83)	115.00	115.00	STEEL TWR	2.67		
24	FARMVILLE	PAMPLIN (84)	115.00	115.00	STEEL HFRM	16.11		1
25	FARMVILLE	PAMPLIN (84)	115.00	115.00	STEEL POLE		0.07	
26	FARMVILLE	PAMPLIN (84)	115.00	115.00	STEEL POLE	1.30		
27	FARMVILLE	PAMPLIN (84)	115.00	115.00	STEEL TWR	0.10		
28	LANEXA	HARMONY VILLAGE (85)	115.00	115.00	CONC POLE	0.01		1
29	LANEXA	HARMONY VILLAGE (85)	115.00	115.00	STEEL HFRM		0.01	
30	LANEXA	HARMONY VILLAGE (85)	115.00	115.00	STEEL HFRM	23.36		
31	LANEXA	HARMONY VILLAGE (85)	115.00	115.00	STEEL POLE		0.03	
32	LANEXA	HARMONY VILLAGE (85)	115.00	115.00	STEEL POLE	2.72		
33	LANEXA	HARMONY VILLAGE (85)	115.00	115.00	STEEL TWR	3.03		
34	LANEXA	HARMONY VILLAGE (85)	115.00	115.00	STEEL TWR	0.98		
35	LANEXA	HARMONY VILLAGE (85)	115.00	115.00	WOOD POLE	0.04		
36					TOTAL	5,544.64	1,146.59	529
			1		1			

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	TRANSMISSION LINE STATISTICS (C	ontinued)	
7. Do not report the same transmission line structure	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate in a footnote if

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

	COST OF LIN	F (Include in Colum	nn (i) Land.					T
Size of	Land rights,	and clearing right-o	f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	-
and Material		Other Costs		Expenses	Expenses	(0)	Expenses	Line
(1)	(J)	(K)	(1)	(m)	(n)	(0)	(p)	110.
636 ACSR								1
636 ACSR								2
336.4 ACSR								3
336.4 ACSR								4
336.4 ACSR								5
336.4 ACSR								6
396.3 ACAR								7
36617 ACSR								8
36586 ACSR								9
336.4 ACSR								10
396.3 ACAR								11
36617 ACSR								12
36617 CU								13
36617 ACSR								14
336.4 ACSR								15
636 ACSR								16
336.4 ACSR								17
36617 ACSR								18
545.6 ACAR								19
36617 ACSR								20
636 ACSR								21
36617 ACSR								22
545.6 ACAR								23
1033.5 ACSR								24
768.2 ACSS								25
1033.5 ACSR								26
1033.5 ACSR								27
1033.5 ACSS								28
1033.5 ACSS								29
1033 5 ACSS								30
1033 5 ACSS								31
1033 5 ACSS								32
1033.5 ACSS								32
1109 ACAR								34
36617 ACSR								35
SUUL ACSIC								55
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	ON	VOLTAGE (KV	)	Type of	LENGTH	(Pole miles)	
No.			other than	9	Type of	(In the undergro	case of bund lines	Number
		1	60 cycle, 3 pha	ise)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	NORTHWEST	CHESTERFIELD 115 (86)	115.00	115.00	CONC POLE	0.07		1
2	NORTHWEST	CHESTERFIELD 115 (86)	115.00	115.00	STEEL HFRM	0.69		
3	NORTHWEST	CHESTERFIELD 115 (86)	115.00	115.00	STEEL POLE	0.49		
4	NORTHWEST	CHESTERFIELD 115 (86)	115.00	115.00	STEEL POLE	1.00		
5	NORTHWEST	CHESTERFIELD 115 (86)	115.00	115.00	STEEL TWR	0.26		
6	NORTHWEST	CHESTERFIELD 115 (86)	115.00	115.00	STEEL TWR	20.25		
7	NORTHWEST	CHESTERFIELD 115 (86)	115.00	115.00	WOOD HFRM	2.43		
8	NORTHWEST	CHESTERFIELD 115 (86)	115.00	115.00	WOOD POLE		0.06	
9	NORTHWEST	CHESTERFIELD 115 (86)	115.00	115.00	WOOD POLE	0.22		
10	CEC	CHURCHLAND (87)	115.00	115.00	CONC POLE	0.36		1
11	CEC	CHURCHLAND (87)	115.00	115.00	STEEL	0.03		
12	CEC	CHURCHLAND (87)	115.00	115.00	STEEL HFRM	1.69		
13	CEC	CHURCHLAND (87)	115.00	115.00	STEEL HFRM	6.59		
14	CEC	CHURCHLAND (87)	115.00	115.00	STEEL POLE	0.98		
15	CEC	CHURCHLAND (87)	115.00	115.00	STEEL POLE	1.15		
16	CEC	CHURCHLAND (87)	115.00	115.00	STEEL POLE	0.08		
17	CEC	CHURCHLAND (87)	115.00	115.00	STEEL TWR	0.06		
18	CEC	CHURCHLAND (87)	115.00	115.00	WOOD HFRM	3.27		
19	CEC	CHURCHLAND (87)	115.00	115.00	WOOD POLE	0.74		
20	ACCA	CARVER (88)	115.00	115.00	CONC POLE	0.15		1
21	ACCA	CARVER (88)	115.00	115.00	STEEL HFRM		0.04	
22	ACCA	CARVER (88)	115.00	115.00	STEEL POLE		0.18	
23	ACCA	CARVER (88)	115.00	115.00	STEEL POLE		0.18	
24	ACCA	CARVER (88)	115.00	115.00	STEEL POLE	0.04		
25	ACCA	CARVER (88)	115.00	115.00	STEEL POLE	0.09		
26	ACCA	CARVER (88)	115.00	115.00	STEEL TWR		0.19	
27	ACCA	CARVER (88)	115.00	115.00	STEEL TWR		0.08	
28	ACCA	CARVER (88)	115.00	115.00	STEEL TWR		0.13	
29	ACCA	CARVER (88)	115.00	115.00	STEEL TWR	1.46		
30	HARMONY VILLAGE	HAYES (89)	115.00	115.00	CONC HFRM	0.04		1
31	HARMONY VILLAGE	HAYES (89)	115.00	115.00	CONC POLE	0.07		
32	HARMONY VILLAGE	HAYES (89)	115.00	115.00	CONC POLE	11.23		
33	HARMONY VILLAGE	HAYES (89)	115.00	115.00	STEEL POLE	11.88		
34	HARMONY VILLAGE	HAYES (89)	115.00	115.00	STEEL POLE	0.32		
35	HARMONY VILLAGE	HAYES (89)	115.00	115.00	STEEL TWR	0.04		
		、 <i>、 、 、</i>						
26					ΤΟΤΑΙ	551141	1 1/4 50	500
30	1				I UIAL	3,344.04	1,140.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	vice. Report Lower voltage Lines and h	igher voltage lines as one l	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum and clearing right-o	nn (j) Land, f-wav)	EXPE	ENSES, EXCEPT DI	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	_ Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
336.4 ACSR								1
477 ACSR								2
336.4 ACSR								3
477 ACSR								4
1033.5 ACSR								5
477 ACSR								6
477 ACSR								7
477 ACSR								8
477 ACSR								9
636 ACSR								10
636 ACSR								11
1033.5 ACSR								12
636 ACSR								13
1033.5 ACSR								14
636 ACSR								15
721 ACAR								16
636 ACSR								17
636 ACSR								18
636 ACSR								19
636 ACSR								20
1351.5 ACSR								21
1351.5 ACSR								22
636 ACSR								23
1351.5 ACSR								24
636 ACSR								25
636 ACSR								26
721 ACAR								27
768.2 ACSS								28
636 ACSR								29
636 ACSR								30
636 ACSR								31
721 ACAR								32
636 ACSR								33
721 ACAR								34
636 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report			
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNAT	ON	VOLTAGE (KV	<i>'</i> )	Type of	LENGTH	(Pole miles)	
No.			other than	9	i ype oi	(In the undergro	case of bund lines	Number
			60 cycle, 3 pha	ise)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(C)	(d)	(e)	(f)	(g)	(h)
1	HARMONY VILLAGE	HAYES (89)	115.00	115.00	WOOD HFRM	0.14		
2	HARMONY VILLAGE	HAYES (89)	115.00	115.00	WOOD POLE	0.69		
3	BALCONY FALLS	LEXINGTON (9)	115.00	115.00	CONC HFRM	0.09		1
4	BALCONY FALLS	LEXINGTON (9)	115.00	115.00	CONC POLE	0.23		
5	BALCONY FALLS	LEXINGTON (9)	115.00	115.00	STEEL HFRM	0.09		
6	BALCONY FALLS	LEXINGTON (9)	115.00	115.00	STEEL HFRM	1.85		
7	BALCONY FALLS	LEXINGTON (9)	115.00	115.00	STEEL POLE	0.26		
8	BALCONY FALLS	LEXINGTON (9)	115.00	115.00	STEEL POLE	1.05		
9	BALCONY FALLS	LEXINGTON (9)	115.00	115.00	STEEL TWR	10.83		
10	BALCONY FALLS	LEXINGTON (9)	115.00	115.00	STEEL TWR	0.11		
11	BALCONY FALLS	LEXINGTON (9)	115.00	115.00	WOOD HFRM	5.98		
12	BALCONY FALLS	LEXINGTON (9)	115.00	115.00	WOOD POLE	3.21		
13	CAROLINA	PALMER SPRINGS (90)	115.00	115.00	CONC HFRM	0.08		1
14	CAROLINA	PALMER SPRINGS (90)	115.00	115.00	CONC TWR	0.01		
15	CAROLINA	PALMER SPRINGS (90)	115.00	115.00	STEEL HFRM		0.61	
16	CAROLINA	PALMER SPRINGS (90)	115.00	115.00	STEEL HFRM	0.76		
17	CAROLINA	PALMER SPRINGS (90)	115.00	115.00	STEEL HFRM	20.41		
18	CAROLINA	PALMER SPRINGS (90)	115.00	115.00	STEEL POLE		0.77	
19	CAROLINA	PALMER SPRINGS (90)	115.00	115.00	STEEL POLE	1.92		
20	CAROLINA	PALMER SPRINGS (90)	115.00	115.00	WOOD HFRM	7.98		
21	BREMO	SHERWOOD (91)	115.00	230.00	CONC HFRM		0.07	1
22	BREMO	SHERWOOD (91)	115.00	230.00	STEEL POLE		6.12	
23	BREMO	SHERWOOD (91)	115.00	230.00	STEEL POLE	23.66		
24	BREMO	SHERWOOD (91)	115.00	230.00	STEEL POLE	0.07		
25	BREMO	SHERWOOD (91)	115.00	230.00	STEEL TWR	0.05		
26	BREMO	SHERWOOD (91)	115.00	230.00	WOOD HFRM	0.04		
27	BREMO	SHERWOOD (91)	115.00	230.00	WOOD POLE	0.03		
28	BREMO	SHERWOOD (91)	115.00	230.00	WOOD POLE	0.02		
29	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	CONC POLE		0.02	1
30	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	CONC POLE	0.14		
31	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	STEEL HFRM		10.01	
32	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	STEEL HFRM	0.41		
33	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	STEEL POLE		0.32	
34	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	STEEL POLE	0.07		
35	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	STEEL POLE	0.39		
36					TOTAL	5 544 64	1 146 50	520
50	1		1		<b>_</b>	5,577.04	1,170.37	527

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of 2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate in a footnote if			

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN Land rights,	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and Other Costs	Total Cost	Operation Expenses	Maintenance Expenses	Rents	Total Expenses	Line
(i)	(j)	(k)	(I)	'(m)	'(n)	(0)	'(p)	NO.
721 ACAR								1
721 ACAR								2
477 ACSR								3
477 ACSR								4
1534 ACAR								5
477 ACSR								6
1534 ACAR								7
477 ACSR								8
1534 ACAR								9
477 ACSR								10
477 ACSR								11
477 ACSR								12
768.2 ACSS								13
768.2 ACSS								14
768.2 ACSS								15
477 ACSR								16
768.2 ACSS								17
768.2 ACSS								18
768.2 ACSS								19
477 ACSR								20
721 ACAR								21
721 ACAR								22
636 ACSR								23
721 ACAR								24
636 ACSR								25
636 ACSR								26
636 ACSR								27
721 ACAR								28
477 ACSR								29
477 ACSR								30
477 ACSR								31
477 ACSR								32
477 ACSR								33
1033.5 ACSR								34
477 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,29	7 36

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	f Respondent       This Report Is:         IA ELECTRIC AND POWER COMPANY       (1) X An Original         (2) A Resubmission       A Resubmission		Year/Period of Report End of 2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATI	ON	VOLTAGE (K) (Indicate where	/) e	Type of	LENGTH (In the	(Pole miles)	Number
NO.			60 cycle, 3 pha	ase)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	On Structure of Line	On Structures of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	Designated (f)	Line (g)	(h)
1	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	STEEL POLE	0.01		( )
2	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	STEEL TWR		0.44	
3	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	STEEL TWR		0.16	
4	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	STEEL TWR		0.32	
5	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	STEEL TWR	0.07		
6	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	STEEL TWR	0.15		
7	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	STEEL TWR	0.04		
8	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	WOOD HFRM		15.55	
9	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	WOOD HFRM	1.00		
10	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	WOOD POLE		0.16	
11	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	WOOD POLE		0.06	
12	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	WOOD POLE	0.16		
13	CHESTERFIELD 115	LANEXA (92)	115.00	230.00	WOOD POLE	0.03		
14	UNION CAMP	SOUTHAMPTON (93)	115.00	230.00	CONC HFRM	0.05		1
15	UNION CAMP	SOUTHAMPTON (93)	115.00	230.00	CONC POLE	0.05		
16	UNION CAMP	SOUTHAMPTON (93)	115.00	230.00	STEEL POLE		0.21	
17	UNION CAMP	SOUTHAMPTON (93)	115.00	230.00	STEEL POLE	0.15		
18	UNION CAMP	SOUTHAMPTON (93)	115.00	230.00	STEEL TWR		0.55	
19	UNION CAMP	SOUTHAMPTON (93)	115.00	230.00	STEEL TWR	0.13		
20	UNION CAMP	SOUTHAMPTON (93)	115.00	230.00	STEEL TWR	4.83		
21	REEVES AVE	INDUSTRIAL PARK (94)	115.00	230.00	STEEL POLE	2.88		1
22	REEVES AVE	INDUSTRIAL PARK (94)	115.00	230.00	STEEL TWR	0.03		
23	ACCA	LAKESIDE (95)	115.00	115.00	STEEL POLE	3.14		1
24	ACCA	LAKESIDE (95)	115.00	115.00	STEEL TWR	0.16		
25	ACCA	LAKESIDE (95)	115.00	115.00	STEEL TWR	0.02		
26	PARMELE	EVERETTS (96)	115.00	115.00	CONC POLE	0.18		1
27	PARMELE	EVERETTS (96)	115.00	115.00	STEEL HFRM	0.16		
28	PARMELE	EVERETTS (96)	115.00	115.00	STEEL HFRM	0.06		
29	PARMELE	EVERETTS (96)	115.00	115.00	STEEL POLE	2.54		
30	PARMELE	EVERETTS (96)	115.00	115.00	STEEL POLE	0.07		
31	PARMELE	EVERETTS (96)	115.00	115.00	STEEL POLE	0.02		
32	PARMELE	EVERETTS (96)	115.00	115.00	STEEL TWR	0.14		
33	PARMELE	EVERETTS (96)	115.00	115.00	WOOD POLE		0.03	
34	PARMELE	EVERETTS (96)	115.00	115.00	WOOD POLE	9.24		
35	PARMELE	EVERETTS (96)	115.00	115.00	WOOD POLE	0.03		
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of 2018/Q4			
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure to	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate in a footnote if			

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

Size of	COST OF LIN	E (Include in Colum and clearing right-o	nn (j) Land, f-way)	EXPE	ENSES, EXCEPT DE	EPRECIATION AND	TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	(j)	(k)	(I)	(m)	(n)	(o)	(p)	No.
721 ACAR								1
1033.5 ACSR								2
477 ACSR								3
721 ACAR								4
1033.5 ACSR								5
477 ACSR								6
721 ACAR								7
477 ACSR								8
477 ACSR								9
477 ACSR								10
721 ACAR								11
477 ACSR								12
721 ACAR								13
545.6 ACAR								14
1590 AAC								15
545.6 ACAR								16
545.6 ACAR								17
545.6 ACAR								18
1590 AAC								19
545.6 ACAR								20
2500 ACAR								21
2500 ACAR								22
1109 ACAR								23
1109 ACAR								24
636 ACSR								25
36557 CU								26
36557 CU								27
336.4 ACSR								28
36557 CU								29
336.4 ACSR								30
366.4 ACSR								31
36557 CU								32
36557 CU								33
36557 CU								34
336.4 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	/ 36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line DESIGNATION No.		VOLTAGE (KV (Indicate where other than 60 cycle 3 pha	VOLTAGE (KV) (Indicate where other than 60 cycle 3 phase)		Type of LENGTH (Pole miles) (In the case of underground lines report circuit miles)		Number Of	
		То	Operating	Designed	Supporting	On Structure	On Structures	Circuits
	(a)	(b)	(c)	(d)	Structure (e)	Designated	Line	(b)
1			115.00	115.00		(1)	(9)	(1)
2		POE (97)	115.00	115.00		0.04		1
2		POE (97)	115.00	115.00		3.02		
3		POE (97)	115.00	115.00	STEEL HEDM	0.41		
4		POE (97)	115.00	115.00	STEEL HERM	1.22		
5		POE (97)	115.00	115.00		3.57		
7		POE (97)	115.00	115.00		0.25		
0		POE (97)	115.00	115.00		0.23		
0		POE (97)	115.00	115.00	STEEL TWD	0.54	0.12	
10		POE (97)	115.00	115.00	STEEL TWR	0.05	0.12	
11		POE (97)	115.00	115.00	STEEL TWR	1.83		
10			115.00	115.00		0.02		
12			115.00	115.00	STEEL HEDM	0.03	0.06	1
14			115.00	115.00	STEEL HERM	15.64	0.00	1
14			115.00	115.00		15.04	0.12	
10			115.00	115.00		0.51	0.13	
17			115.00	115.00	STEEL TWD	0.01		
10			115.00	115.00	STEEL TWR	0.03	3 /1	1
10			115.00	115.00	STEEL TWR	0.07	5.41	1
20			115.00	115.00		3.56		
20			115.00	115.00		0.25		
21		NASA (T1)	115.00	115.00	STEEL TWR	0.23		1
22			115.00	115.00		0.03		1
23			115.00	115.00	STEEL TWR	0.13		1
24			115.00	115.00		0.03		1
20	TENINGUEA		113.00	113.00	WOODTITIKW	0.13		
20	ΤΟΤΑΙ					2 082 35	240.44	187
21						2,002.33	240.44	107
20		ROSSLYN (122)	69.00	00.93			0.61	1
30		ROSSLYN (122)	69.00	69.00		2 14	0.01	
31	BRUNSWICK	GASBURG DP (132)	69.00	115.00	STEEL POLE	9 38		1
32	BRUNSWICK	GASBURG DP (132)	69.00	115.00	STEEL TOLL	0.08		
33	BALLSTON	ROSSLYN (143)	69.00	69.00		0.00	1 74	1
34	BALLSTON	ROSSLYN (143)	69.00	69.00	UGUG	0.69		
35	BEARSKIN	GRETNA (173)	69.00	115.00	CONC HERM	0.11		1
36					TOTAL	5,544.64	1,146.59	529

Name of Respondent	This Report Is:	Date of Report	Year/Perio	od of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of	2018/Q4		
TRANSMISSION LINE STATISTICS (Continued)						
7. Do not report the same transmission line structure t	wice. Report Lower voltage Lines and h	igher voltage lines as one	line. Designate	in a footnote if		

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

-	COST OF LIN	E (Include in Colum	ın (j) Land,	EXPE	NSES EXCEPT DE	PRECIATION AND	TAXES	
Size of	Land rights,	and clearing right-of	f-way)		NOLO, EXCLI I DE		TALLO	
and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	l ine
(i)	(i)	Other Costs	(1)	Expenses	Expenses	(o)	Expenses	No.
	07	(14)	(1)	(11)	(1)	(-)	(P)	1
626 ACSP								2
								2
								1
636 ACSR								5
								6
571 7 ACSS								7
636 ACSR								8
571 7 ACSS								9
1109 ACAR								10
571.7 ACSS								11
1109 ACAR								12
768.2 ACSS								13
336.4 ACSR								14
768.2 ACSS								15
336.4 ACSR								16
336.4 ACSR								17
721 ACAR								18
336.4 ACSR								19
336.4 ACSR								20
336.4 ACSR								21
500 CU								22
500 CU								23
500 CU								24
500 CU								25
	150,427,132	1,091,454,787	1,241,881,919	4,868,273	9,966,034	35,172	14,869,479	26
	150,427,132	1,091,454,787	1,241,881,919	4,868,273	9,966,034	35,172	14,869,479	27
								28
2500 CU								29
2500 CU								30
336.4 ACSR								31
336.4 ACSR								32
2500 CU								33
2500 CU								34
477 ACSR								35
	563,602,218	4,121,865,109	4,685,467,327	14,070,455	28,804,187	101,655	42,976,297	36

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report		
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4		
TRANSMISSION LINE STATISTICS					

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line	DESIGNATIO	NC	VOLTAGE (KV	<i>'</i> )	Type of	LEŅGŢH	(Pole miles)	
No.			other than	9	Type of	(In the undergro	case of bund lines	Number
		1	60 cycle, 3 pha	ase)	Supporting	report cire	cuit miles)	Of
	From	То	Operating	Designed	Structure	of Line	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	BEARSKIN	GRETNA (173)	69.00	115.00	STEEL HFRM	0.64		
2	BEARSKIN	GRETNA (173)	69.00	115.00	STEEL HFRM	0.07		
3	BEARSKIN	GRETNA (173)	69.00	115.00	STEEL HFRM	0.77		
4	BEARSKIN	GRETNA (173)	69.00	115.00	STEEL POLE	0.10		
5	BEARSKIN	GRETNA (173)	69.00	115.00	STEEL POLE	6.75		
6	BEARSKIN	GRETNA (173)	69.00	115.00	STEEL POLE	0.16		
7	BEARSKIN	GRETNA (173)	69.00	115.00	STEEL TWR	0.16		
8	BEARSKIN	GRETNA (173)	69.00	115.00	WOOD HFRM	2.30		
9	BEARSKIN	GRETNA (173)	69.00	115.00	WOOD POLE	0.91		
10	PENTAGON	ROSSLYN (174)	69.00	69.00	UG UG	2.41		1
11	PENTAGON	ROSSLYN (178)	69.00	69.00	UG UG		2.40	1
12	PENTAGON	ROSSLYN (178)	69.00	69.00	UG UG	0.02		
13	PENTAGON	WAR (186)	69.00	69.00	UG UG	0.11		1
14	PENTAGON	WAR (187)	69.00	69.00	UG UG	0.12		1
15	PENTAGON	WAR (188)	69.00	69.00	UG UG	0.16		1
16	ALTAVISTA	GRETNA (35)	69.00	115.00	CONC POLE			1
17	ALTAVISTA	GRETNA (35)	69.00	115.00	STEEL HFRM	0.10		
18	ALTAVISTA	GRETNA (35)	69.00	115.00	STEEL HFRM	0.56		
19	ALTAVISTA	GRETNA (35)	69.00	115.00	STEEL HFRM	0.25		
20	ALTAVISTA	GRETNA (35)	69.00	115.00	STEEL POLE	19.89		
21	ALTAVISTA	GRETNA (35)	69.00	115.00	STEEL POLE	9.70		
22	ALTAVISTA	GRETNA (35)	69.00	115.00	STEEL POLE	0.05		
23	ALTAVISTA	GRETNA (35)	69.00	115.00	STEEL POLE	1.15		
24	ALTAVISTA	GRETNA (35)	69.00	115.00	STEEL TWR	0.12		
25	ALTAVISTA	GRETNA (35)	69.00	115.00	STEEL TWR	0.41		
26	ALTAVISTA	GRETNA (35)	69.00	115.00	STEEL TWR	0.05		
27	ALTAVISTA	GRETNA (35)	69.00	115.00	WOOD HFRM	1.60		
28	ALTAVISTA	GRETNA (35)	69.00	115.00	WOOD HFRM	0.31		
29	ALTAVISTA	GRETNA (35)	69.00	115.00	WOOD POLE	0.05		
30	ALTAVISTA	GRETNA (35)	69.00	115.00	WOOD POLE	0.12		
31	BRUNSWICK	DANIELTOWN DP (50)	69.00	69.00	STEEL HFRM	0.27		1
32	BRUNSWICK	DANIELTOWN DP (50)	69.00	69.00	STEEL POLE	12.03		
33	BRUNSWICK	DANIELTOWN DP (50)	69.00	69.00	STEEL TWR	0.06		
34								
35	TOTAL					73.80	4.75	11
36					TOTAL	5.544.64	1,146,59	529
00	1	1			1	0,011.04	1,110.07	
Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	End of	d of Report 2018/Q4				
----------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------	---------------------------------------	--------	------------------------	--	--	--	
TRANSMISSION LINE STATISTICS (Continued)								
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if								

you do not include Lower voltage lines with higher voltage lines. If two or more transmission line structures support lines of the same voltage, report the pole miles of the primary structure in column (f) and the pole miles of the other line(s) in column (g)

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

10. Base the plant cost figures called for in columns (j) to (l) on the book cost at end of year.

COST OF LINE (Include in Column (j) Lan		nn (j) Land,					T	
Size of	Land rights,	and clearing right-o	f-way)	EXPE	ENSES, EXCEPT D	EPREGIATION ANL	J TAXES	
Conductor	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	line
	(i)	Other Costs	(1)	Expenses	Expenses	(0)	Expenses	No.
	0)	(K)	(1)	(11)	(1)	(-)	(P)	1
330.4 AUSK								1
477 ACSR								2
								3
177 ACSR								5
477 AC3R 721 ΔCΔR								6
								7
								, 8
								0
1250 CU								10
1250 CU								10
1250 CU								12
1000 CU								13
1000 CU								14
1000 CU								15
336.4 ACSR								16
336.4 ACSR								17
477 ACSR								18
721 ACAR								19
336.4 ACSR								20
477 ACSR								21
545.6 ACAR								22
721 ACAR								23
336.4 ACSR								24
477 ACSR								25
721 ACAR								26
545.6 ACAR								27
721 ACAR								28
545.6 ACAR								29
721 ACAR								30
336.4 ACSR								31
336.4 ACSR								32
336.4 ACSR								33
	1,541,317	7 13,172,749	14,714,066	164,181	336,101	1,186	501,468	3 34
	1,541,317	13,172,749	14,714,066	164,181	336,101	1,186	501,468	35
	E40 400 010	A 101 0/E 100	1 205 447 227	14 070 455	20.004.107	101 / ГГ	40.074.00	1 66
	203,002,218	4,121,805,109	4,005,407,327	14,070,455	28,804,187	101,655	42,970,29	36

Nam		COMPANY Th (1)	is Report Is:		Date (Mo, I	of Report Da, Yr)	Year/Period c End of 2	f Report 018/Q4		
(2)     A Resubmission     / /       TRANSMISSION LINES ADDED DURING YEAR										
1. R	eport below the information	called for concerning	Transmission lines	added or a	ltered du	iring the year. It	is not necessa	ry to report		
mino	r revisions of lines.									
2. P	2. Provide separate subheadings for overhead and under- ground construction and show each transmission line separately. If actual									
costs	costs of competed construction are not readily available for reporting columns (I) to (o), it is permissible to report in these columns the									
Line	LINE DES	SIGNATION	Line	SUPPC	DRTING S	TRUCTURE	CIRCUITS PE	R STRUCTUR		
No.	From	То	in	Тур	е	Number per	Present	Ultimate		
	(a)	(b)	(c)	(d)		Miles (e)	(f)	(g)		
1	LONE PINE	CREWE	0.54	STEEL POL	E	29.60	2	2		
2	FREDERICKSBURG	WOODPECKER TAP	15.14	STEEL HFR	AME	8.50	1	1		
3	BRNK	BRINK TAP	4.15	STEEL POL	E	11.50	1	1		
4	LAKE GASTON	FIVE FORKS	13.07	STEEL HFR	AME	8.11	1	1		
5	THOLE STREET	SEWELLS POINT	8.40	STEEL POL	E	5.35	2	2		
6	WHEELER	GAINESVILLE	6.76	STEEL POL	E	10.20	2	2		
7	REMINGTON CT	WARRENTON	11.83	STEEL POL	E	9.21	2	2		
8	WHEELER	WHEELER DP	0.03	STEEL HFR	AME	1.00	1	1		
9	BRAMBLETON	POLAND ROAD	3.60	STEEL POL	E	13.60	2	2		
10	PANTEGO	TROWBRIDGE	24.63	STEEL HFR	AME	8.12	1	1		
11	SOUTH JUSTICE	SCOTLAND NECK	17.11	STEEL HFR	AME	9.50	1	1		
12	CARSON	585/77	15.22	STEEL TOW	/ER	4.90	1	1		
13	CUNNINGHAM	534/513	11.54	STEEL TOW	/ER	5.02	1	1		
14	CENTRAL TAP	DRAKES BRANCH	0.57	STEEL HFR	AME	17.20	1	1		
15	YORKTOWN	SKIFFES	4.49	STEEL		5.30	1	2		
16	WHEALTON	SKIFFES	22.60	STEEL		7.90	2	2		
17	ROUND TABLE	ROUND TABLE	0.14	STEEL		4.00	2	2		
18	PALMER SPRINGS	BEECHWOOD	4.58	STEEL POL	E	11.13	1	1		
19	54/42	WOODLAND SUB	21.88	STEEL HFR	AME	7.08	2	2		
20	ORANGE TAP	DOUBLE DAY	4.57	STEEL POL	E	8.09	2	2		
21	CHASE CITY	RIDGE ROAD TAP	9.49	STEEL POL	E	6.32	2	2		
22	CHASE CITY	RIDGE ROAD TAP	9.49	STEEL POL	E	6.32	2	2		
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										
41										
42										
43										
								ļ		
			200.02							
44	IUTAL		209.83			197.95	33	34		

**OFFICIAL COPY** 

Aug 29 2019

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report					
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original	(Mo, Da, Yr)	End of 2018/Q4					
	(2) A Resubmission	//						
TRANSMISSION LINES ADDED DURING YEAR (Continued)								

costs. Designate, however, if estimated amounts are reported. Include costs of Clearing Land and Rights-of-Way, and Roads and Trails, in column (I) with appropriate footnote, and costs of Underground Conduit in column (m).
3. If design voltage differs from operating voltage, indicate such fact by footnote; also where line is other than 60 cycle, 3 phase, indicate

3. If design voltage differs from operating voltage, indicate such fact by footnote; also where line is other than 60 cycle, 3 phase, indicate such other characteristic.

	CONDUCT	ORS	Voltage	LINE COST			Line		
Size	Specification	Configuration and Spacing	KV (Operating)	Land and Land Rights	Poles, Towers and Fixtures	Conductors and Devices	Asset Retire. Costs	Total	No.
(h)	(i)	(j)	(k)	(I)	(m)	(n)	(O)	(p)	
768.2	ACSS/IW	VARIES 18.3	115		5,128,426	1,282,106		6,410,532	1
1033.5	ACSR	HORIZ VARIES	115		4,103,206	1,025,802		5,129,008	2
636	ACSR	HORIZ 16.6	115	296,924	4,518,238	1,129,560		5,944,722	3
768.2	ACSS/TW	HORIZ 18	115		7,996,597	719,760	27,811	8,744,168	4
768.2	ACSS/TW	VERT VARIES	115		6,931,320	6,005,357	632,668	13,569,345	5
VARIES	VARIES	VARIES	230	4,032,440	7,538,990	1,748,204		13,319,634	6
636	ACSR	VERT 20.6	230	5,489,621	30,919,857	27,089,527		63,499,005	7
636	ACSR	VARIES	230		86,048			86,048	8
795	ACSR	VERT 20.6	230	10,449,659	10,674,444	2,668,611		23,792,714	9
768.2	ACSS/TW	HORIZ 18	115	5,047,883	25,148,359	6,287,090	6,915	36,490,247	10
768.2	ACSS/TW	HORIZ 18	115	2,651,307	27,817,936	6,954,484		37,423,727	11
1351.5	ACSR	DELTA 24.3	500		45,524,290	11,381,073	5,987,322	62,892,685	12
1351.5	ACSR	DELTA 24.3	500		17,408,600	4,352,150		21,760,750	13
636	ACSR	HORIZ 18	115		1,641,054	52,374	45,292	1,738,720	14
636	ACSR	VARIES	115		2,589,466	647,366	50,046	3,286,878	15
636	ACSR	VERT VARIES	230		51,435,568	11,651,392	544,759	63,631,719	16
636	ACSR	VARIES	230		1,883,969	344,629	33,747	2,262,345	17
636	ACSR	DELTA 15	115		5,738,082	446,295	96,069	6,280,446	18
636	ACSR	HORIZ VARIES	115		5,456,872	4,271,998	1,270,130	10,999,000	19
636	ACSR	VERT VARIES	115	1,194,771	14,417,373	251,680	396,979	16,260,803	20
768.2	ACSS/TW	VERT 18.3	115		6,908,718	1,727,180	720,371	9,356,269	21
768.2	ACSS/TW	VERT 18.3	115		185,769	3,236,438		3,422,207	22
									23
									24
									25
									26
									27
									28
									29
									30
									31
									32
									33
									34
									35
									36
									37
									38
									39
									40
									40
									42
									42
									43
				20 142 40E	201 052 102	02 272 074	0 010 100	116 200 072	
				27,102,005	204,053,182	93,213,010	9,812,109	410,300,972	44

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	VOLTAGE (In		MVa)	
No.			Primary	Secondary	Tertiary	
1	(a)	(b)	(C)	(d)	(e)	
			115.00	34.50		
2			115.00	13.20		
3			115.00	34.30		
4			34.50	4.10		
5			115.00	13.20		
7			24.50	13.20		
/ 0			34.00	4.10		
0		T T	40.00	115.00	12 20	
9			130.00	12.00	13.20	
10		T	129.00	60.00	12.20	
12			130.00	12.50	13.20	
12			220.00	12.00		
13			230.00	34.50		
14			230.00	12 50		
10			34.50	12.50		
10			230.00	34.50		
17			230.00	34.50		
18			230.00	34.50		
19			34.50	13.20	40.00	
20			230.00	34.50	13.20	
21			34.50	12.50	10.00	
22	BAINS STORE		115.00	34.50	13.20	
23	BALLSTON		230.00	69.00		
24	BALLSTON	D	230.00	34.50		
25	BANISTER	D	138.00	34.50		
26	BARRACKS ROAD	D	230.00	34.50		
27	BASIN		115.00	13.20		
28	BASIN	T	230.00	115.00	13.20	
29			230.00	34.50		
30	BATTLEBORO	D	115.00	34.50	2.40	
31	BATTLEFIELD	D	34.50	13.20		
32	BAYSIDE	D	34.50	13.20		
33	BAYSIDE	D	115.00	34.50	13.20	
34	BAYSIDE	D	115.00	13.20		
35	BEARSKIN	Т	138.00	69.00	13.20	
36	BEAUMEADE	D	230.00	34.50		
37	BECO	D	230.00	34.50		
38	BELLE HAVEN	D	34.50	12.50		
39	BELLWOOD	D	115.00	13.20		
40	BELVOIR	D	230.00	34.50		

Name of Respondent	This Report Is: Date of Report		Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS (Continued)		•

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		QUIPMENT	Line
(In Service) (In MVa)	In Service	Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(in inva) (k)	
243	3					1
80	2					2
56	2					3
7	1					4
22	1					5
22	1					6
13	2					7
11	1					8
224	2					9
22	1					10
112	1					11
20	1					12
90	2					13
34	1					14
42	2					15
327	4					16
95	2					17
150	2					18
40	2					19
100	2					20
42	2					21
50	1					22
168	1					23
84	1					24
22	1	1				25
150	2					26
22	1					27
448	2					28
150	2					29
40	2					30
13	1					31
20	1					32
56	1					33
22	1					34
112	1					35
318	4					30
243	3					31
14	1					38
20	1					39
168	2					40

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation		VOLTAGE (In MVa)		
No.			Primary	Secondary	Tertiary	
	(a)	(b)	(c)	(d)	(e)	
1		D	115.00	11.00		
2		D	115.00	12.50		
3	BIRDNECK	D	230.00	34.50		
4	BLOXOMS CORNER	D	115.00	23.00		
5	BOWERS HILL	D	230.00	34.50		
6	BOYKINS	D	115.00	34.50		
7	BRADDOCK	D	34.50	12.50		
8	BRADDOCK	D	230.00	34.50		
9	BRAMBLETON	D	230.00	34.50		
10	BRAMBLETON	Т	500.00	230.00		
11	BREMO	D	230.00	34.50		
12	BREMO	Т	138.00	115.00	13.20	
13	BREMO	Т	230.00	115.00	13.20	
14	BREMO	Т	138.00	115.00		
15	BRIARFIELD	D	23.00	6.00		
16	BRISTERS	Т	500.00	230.00		
17	BRISTERS	Т	230.00	115.00	13.20	
18	BRODNAX	D	115.00	13.20		
19	BRUNSWICK	Т	115.00	69.00	13.20	
20	BUCHANAN	D	46.00	12.50		
21	BUCKINGHAM	D	34.50	13.20		
22	BUCKINGHAM	D	230.00	34.50		
23	BUENA VISTA	D	115.00	12.50		
24	BULL RUN	Т	230.00	115.00	13.20	
25	BURKE	D	230.00	34.50		
26	BURTON	D	115.00	34.50	13.20	
27	CANNON BRANCH	D	230.00	34.50		
28	CANNON BRANCH	Т	230.00	115.00	13.20	
29	CAROLINA	D	115.00	13.20		
30	CAROLINA	Т	230.00	115.00	13.20	
31	CARROLL	D	34.50	13.20		
32	CARSON	Т	500.00	230.00		
33	CARTERSVILLE	D	230.00	34.50		
34	CARVER	D	115.00	34.50		
35	CARVER	D	115.00	13.20		
36	CASHIE	D	230.00	34.50		
37	CASH'S CORNER	Т	230.00	115.00		
38	CENTRAL	D	115.00	12.50		
39	CENTRALIA	D	115.00	13.20		
40	CENTREVILLE	D	230.00	34.50		

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS (Continued)		

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	I ransformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(In MVa) (k)	
87	2			07		1
22	1					2
84	1					3
100	2					4
75	1					5
13	1					6
22	1					7
159	2					8
84	1					9
1680	6	1				10
34	1					11
112	1					12
448	2					13
225	3	1				14
8	3					15
840	3	1				16
224	1					17
13	1					18
60	2					19
13	6	1				20
11	1					21
67	2	1				22
45	2					23
336	2					24
159	2					25
112	2					26
34	1					27
224	1					28
120	3					29
224	1					30
14	1					31
1680	6	2				32
34	1					33
56	1					34
120	3					35
34	1					36
90	3	1				37
22	1			1		38
35	2					39
134	2					40
	_					
	1	1	1		1	1

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	VOLTAGE (In		OLTAGE (In M\	In MVa)	
No.			Primary	Secondary	Tertiary	
	(a)	(b)	(C)	(d)	(e)	
1	CHANCELLOR	D	115.00	34.50		
2	CHANCELLOR	Т	500.00	115.00		
3	CHARLES CITY RD	D	230.00	34.50		
4	CHARLOTTESVILLE	D	34.50	12.50		
5	CHARLOTTESVILLE	D	230.00	34.50		
6	CHASE CITY	D	115.00	13.20		
7	CHERRYDALE	D	34.50	12.50		
8	CHESTERBROOK	D	34.50	13.20		
9	CHESTERFIELD 230	Т	230.00	115.00	13.20	
10	CHICKAHOMINY	Т	500.00	230.00	34.50	
11	CHICKAHOMINY	D	230.00	13.20		
12	CHOWAN	D	230.00	34.50		
13	CHURCHLAND	D	115.00	13.20		
14	CHURCHLAND	Т	230.00	115.00	13.20	
15	CHURCHLAND	D	230.00	34.50		
16	CIA	D	230.00	34.50		
17	CITY HALL	D	34.50	11.00		
18	CLARENDON	D	230.00	34.50		
19	CLARENDON	Т	230.00	69.00		
20	CLARK	D	230.00	34.50		
21	CLARKSVILLE	D	115.00	13.20		
22	CLIFTON	Т	500.00	230.00		
23	CLIFTON FORGE	D	138.00	46.00	13.20	
24	CLIFTON FORGE	D	138.00	12.50		
25	CLIFTON FORGE	Т	230.00	138.00	13.20	
26	CLOVER	Т	500.00	230.00		
27	CLOVERHILL	D	230.00	34.50		
28	CLUBHOUSE	Т	230.00	115.00	13.20	
29	COLINGTON	D	115.00	34.50		
30	COLONIAL HEIGHTS	D	13.20	4.16		
31	COLONY	D	115.00	34.50		
32	COLONY	D	115.00	13.20		
33	COLUMBIA	D	34.50	12.50		
34	COLUMBIA FURNACE	D	34.50	23.00	4.16	
35	COPELAND PARK	D	115.00	23.00		
36	COPELAND PARK	D	230.00	23.00		
37	CORRECTIONAL	D	230.00	34.50		
38	COTTAGE PARK	D	34.50	13.20		
39	COVINGTON	D	46.00	12.50		
40	COVINGTON	D	138.00	46.00	13.20	

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS (Continued)		•

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	I ransformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(In MVa) (k)	
106	2					1
672	6	1				2
67	2					3
13	1					4
159	2					5
22	1					6
14	1					7
14	1					8
224	1					9
840	3	1				10
22	1					11
34	1					12
22	1					13
224	1					14
150	2					15
129	2					16
64	2					17
159	2					18
168	1					19
234	3					20
22	1					21
1680	6	2				22
20	1					23
22	1					24
250	1					25
2520	9	2				26
84	1					27
168	1					28
56	3	1				29
5	1					30
168	2					31
22	1					32
5	1					33
15	1					34
22	1					35
84	1					36
34	1					37
24	2					38
25	2					39
90	2					40

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line Name and Legation of Substation		Character of Cubetation	VOLTAGE (In MVa)		
No.	Name and Location of Substation	Character of Substation	Primary	Secondary	Tertiary
	(a)	(b)	(C)	(d)	(e)
1	CRADOCK	D	115.00	34.50	
2	CRAIGSVILLE	D	115.00	23.00	
3	CRANES CORNER	D	230.00	34.50	
4	CRESWELL	D	115.00	34.50	
5	CREWE	D	115.00	13.20	
6	CRITTENDEN	D	230.00	34.50	
7	CROMWELL ROAD	D	34.50	4.16	
8	CROZET	D	230.00	34.50	
9	CRYSTAL	D	230.00	34.50	
10	CULPEPER	D	115.00	34.50	
11	DAVIS CORNER	D	115.00	34.50	13.20
12	DAVIS CORNER	D	115.00	13.20	
13	DAVIS DRIVE SUB	D	230.00	34.50	
14	DAYTON	D	230.00	34.50	
15	DEEP CREEK	D	115.00	13.20	
16	DELTAVLLE	D	34.50	12.50	
17	DENBIGH	D	230.00	34.50	
18	DIAMOND SPRINGS	D	34.50	13.20	
19	DINWIDDIE	D	34.50	13.20	
20	DISPUTANTA	D	115.00	13.20	
21	DOMINION	D	115.00	34.50	
22	DOOMS 115	D	115.00	23.00	
23	DOOMS 500	Т	230.00	115.00	13.20
24	DOOMS 500	Т	500.00	230.00	
25	DOZIER	D	34.50	13.20	
26	DOZIER	D	115.00	13.20	
27	DRANESVILLE	D	230.00	34.50	
28	DRY RUN	D	46.00	12.50	
29	DRYBURG	D	115.00	12.50	
30	DULLES	D	230.00	34.50	
31	DUMFRIES	D	230.00	34.50	
32	DUNNSVILLE	D	230.00	34.50	
33	DUPONT	D	115.00	13.20	
34	EAGLE ROCK	D	46.00	12.50	
35	EARLEYS	D	115.00	34.50	
36	EARLEYS	Т	230.00	115.00	13.20
37	EAST END	D	23.00	6.00	-
38	EAST OCEAN VIEW	D	34.50	13.20	
39	EDENTON	D	230.00	13.20	
40	EDGEWATER	D	34.50	4.16	
			0.00		

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS (Continued)		

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity (In MVa)	No.
(f)	(g)	(h)	(i)	(j)	(k)	<u> </u>
67	2					1
13	1					2
120	2					3
22	1					4
22	1					5
50	1					6
5	1					7
67	2					8
392	3					9
101	2					10
90	2					11
42	2					12
84	1					13
100	2					14
45	2					15
6	1					16
129	2					17
14	1					18
4	1					19
6	1					20
22	1					21
96	2					22
673	3					23
1680	6	2				24
6	1					25
42	2					26
243	3					27
14	1					28
2	1					29
243	3					30
125	2					31
84	2					32
20	1					33
4	3	1				34
45	2					35
336	2					36
5	3					37
24	2					38
67	2					39
6	1					40

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Leastion of Substation		V	VOLTAGE (In MVa)		
No.	Name and Location of Substation		Primary	Secondary	Tertiary	
	(a)	(b)	(c)	(d)	(e)	
1	EDINBURG	D	115.00	34.50		
2	EDINBURG	Т	138.00	115.00	13.20	
3	EDWARDS FERRY	D	230.00	34.50		
4	ELIZABETH CITY	D	230.00	34.50		
5	ELKO	D	230.00	34.50		
6	ELM	D	34.50	12.50		
7	ELM FARM	D	115.00	34.50		
8	ELMONT	Т	230.00	115.00	13.20	
9	ELMONT	D	230.00	34.50		
10	ELMONT	Т	500.00	230.00		
11	EMPORIA	D	115.00	12.50		
12	ENDLESS CAVERNS	D	115.00	34.50		
13	ENDLESS CAVERNS	Т	230.00	115.00	13.20	
14	ENGLESIDE	D	34.50	12.50		
15	ENON	D	34.50	13.20		
16	ENON	D	230.00	34.50		
17	ENTERPRISE	D	230.00	34.50		
18	EVERETTS	Т	230.00	115.00	13.20	
19	EVERETTS	D	230.00	34.50		
20	FAIRFAX	D	34.50	12.50		
21	FAIRFIELD	D	115.00	23.00		
22	FALLS CHURCH	D	34.50	12.50		
23	FALLS CHURCH	D	230.00	34.50		
24	FARMVILLE	D	115.00	12.50		
25	FARMVILLE	Т	230.00	115.00	13.20	
26	FARMVILLE	D	230.00	34.50		
27	FENTRESS	D	230.00	34.50	13.20	
28	FENTRESS	Т	500.00	230.00		
29	FIELDS	D	115.00	34.50		
30	FISHERSVILLE	D	115.00	23.00		
31	FLAGGY RUN	D	34.50	13.20		
32	FORT HUNT	D	34.50	12.50		
33	FORT LEE	D	115.00	13.20		
34	FORT MYER	D	34.50	12.50		
35	FORT PICKETT	D	115.00	12.50		
36	FRANCONIA	D	230.00	34.50		
37	FRANKLIN	D	115.00	13.20		
38	FREDERICKSBURG	D	115.00	34.50		
39	FREDERICKSBURG	D	115.00	13.20		
40	FREDERICKSBURG	Т	230.00	115.00	13.20	

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS (Continued)		

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	I ransformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(in inva) (k)	
100	2					1
224	2					2
84	1					3
159	2					4
118	2					5
22	2					6
56	1					7
336	2					8
106	2					9
1680	6	2				10
22	1					11
45	2					12
672	3					13
42	2					14
22	1					10
50	1					10
168	2					17
448	2					10
100	2					20
40	2					20
10						22
42	2					23
100	2					24
336	2					25
50	2					26
75	1					27
1680	6	1				28
22	1	•				29
45	2					30
13	1					31
40	2				 	32
67	3					33
9	1					34
20	1					35
168	2					36
45	2					37
84	1					38
22	1					39
392	2					40

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	VOLTAGE (In MVa)		/a)
No.		Character of Substation	Primary	Secondary	Tertiary
	(a)	(b)	(c)	(d)	(e)
1	FULLER ROAD		230.00	34.50	
2	FREDERICKSBURG		230.00	34.50	
3			230.00	115.00	13.20
4			230.00	34.50	
5			230.00	34.50	
6	GARRISONVILLE		230.00	34.50	
7	GARYSVILLE		34.50	13.20	
8	GLASGOW		115.00	46.00	13.20
9	GLASGOW		115.00	12.50	
10	GLEBE	D	230.00	34.50	
11	GLEN CARLYN	D	230.00	34.50	
12		D	34.50	13.20	
13	GORDONSVILLE	D	115.00	34.50	
14	GORDONSVILLE	Т	230.00	115.00	13.20
15	GOSHEN	D	115.00	46.00	4.16
16	GOSHEN	D	115.00	23.00	
17	GRAFTON	D	115.00	34.50	
18	GRASSFIELD	D	115.00	34.50	13.20
19	GREAT BRIDGE	D	115.00	34.50	13.20
20	GREEN HILL	D	34.50	4.16	
21	GREEN RUN	D	230.00	34.50	13.20
22	GREENWAY	D	230.00	34.50	
23	GREENWICH	Т	230.00	115.00	13.20
24	GREENWICH	D	230.00	34.50	13.20
25	GRETNA	D	69.00	12.50	
26	GROTTOES	D	23.00	12.50	
27	GROTTOES	D	115.00	23.00	
28	GROTTOES	D	115.00	12.50	
29	GROTTOES	Т	230.00	115.00	13.20
30	GROVE AVENUE	D	34.50	13.20	
31	GROVELAND	D	34.50	13.20	
32	GUM SPRINGS	D	230.00	34.50	
33	HAMILTON	D	230.00	34.50	
34	HAMPTON	D	23.00	6.00	
35	HANOVER	D	230.00	13.20	
36	HANOVER	D	230.00	34.50	
37	HARBOUR VIEW	D	230.00	34.50	
38	HARMONY VILLAGE	Т	230.00	115.00	13.20
39	HARMONY VILLAGE	D	230.00	34.50	
40	HARRISONBURG	D	115.00	34.50	

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS (Continued)		

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	I ransformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(In MVa) (k)	
34	1					1
84	1					2
224	1					3
168	2					4
150	2					5
84	1					6
8	1					7
22	1					8
22	1					9
168	2					10
234	3					11
11	1					12
22	1					13
448	2					14
30	3	1				15
13	1					16
50	1					17
67	2					18
67	2					19
5	1					20
196	2					21
318	4					22
448	2					23
50	1					24
11	3	1				25
9	1					26
13	1					27
22	1					28
224	1					29
14	1					30
9	1					31
150	2					32
84	1					33
6	3					34
34	1					35
50	1					36
67	2					37
168	1					38
75	1					39
56	2					40

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	VOLTAGE (In MVa)		/a)
No.		Character of Substation	Primary	Secondary	Tertiary
	(a)	(b)	(c)	(d)	(e)
1	HARRISONBURG	T	230.00	115.00	13.20
2	HARRISONBURG	T	230.00	69.00	13.20
3	HARROWGATE	D	115.00	13.20	
4	HARROWGATE	D	230.00	34.50	
5	HARVELL	D	115.00	13.20	
6	HATHAWAY	Т	230.00	115.00	13.20
7	HAYES	D	115.00	34.50	
8	HAYES	Т	230.00	115.00	13.20
9	HAYFIELD	D	230.00	34.50	
10	HERMITAGE	D	115.00	13.20	
11	HERMITAGE	D	115.00	34.50	
12	HERNDON PARK	D	230.00	34.50	
13	HERTFORD	D	34.50	13.20	
14	HICKORY	D	230.00	34.50	13.20
15	HICKORY	Т	230.00	115.00	13.20
16	HILLWOOD	D	34.50	13.20	
17	HILTON	D	34.50	6.00	
18	HODGES FERRY	D	115.00	34.50	
19	HODGES FERRY	D	115.00	13.20	
20	HOLLAND	D	115.00	13.20	
21	HOLLIN HALL	D	34.50	13.20	
22	HOLLYMEADE	D	230.00	34.50	
23	HOPEWELL	D	34.50	13.20	
24	HOPEWELL	D	230.00	34.50	13.20
25	HORNERTOWN	D	115.00	13.20	
26	HORNERTOWN	D	230.00	34.50	
27	HULL ST	D	230.00	34.50	
28	HUNTER	D	230.00	34.50	
29	HYDRAULIC ROAD	D	230.00	34.50	
30	IDYLWOOD	D	230.00	34.50	
31	IGLOO	D	34.50	12.50	
32	ILDA	D	34.50	13.20	
33	INDUSTRIAL PARK	D	115.00	34.50	13.20
34	INDUSTRIAL PARK	D	115.00	13.20	
35	IRONBRIDGE	D	230.00	34.50	
36	IVOR	D	115.00	13.20	
37	IVY	D	23.00	6.00	
38	JACKSON RIVER	D	46.00	12.50	
39	JARRATT	D	115.00	13.20	
40	JEFFERSON STREET	D	230.00	34.50	
-					

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS (Continued)		•

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	I ransformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(In MVa) (k)	
224	1					1
224	6	1				2
45	2					3
45	1					4
40	1					5
448	2					6
67	2					7
224	1					8
159	2					9
34	1					10
84	1					11
159	2					12
14	1					13
84	1					14
112	1					15
28	2					16
9	3					17
56	1					18
22	1					19
4	1					20
22	1					21
84	1					22
80	2					23
392	5					24
42	2					25
129	2					26
174	3					27
150	2					28
84	1					29
336	3					30
14	1					31
9	1					32
124	2					33
45	2					34
179	3					35
6	1					36
5	3					37
9	3					38
6	1					39
318	4					40

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	VOLTAGE (In MVa)		/a)
No.			Primary	Secondary	Tertiary
	(a)	(b)	(c)	(d)	(e)
1	JETERSVILLE	D	115.00	34.50	
2	KANAWHA TRAIL	D	138.00	46.00	
3	KEENE MILL	D	230.00	34.50	
4	KELFORD	D	115.00	34.50	
5	KENBRIDGE	D	115.00	12.50	
6	KINDERTON	D	115.00	13.20	
7	KING GEORGE	D	34.50	13.20	
8	KINGS FORK	D	115.00	13.20	
9	KINGS FORK	D	230.00	34.50	
10	KINGS MILL	D	115.00	34.50	
11	KINGS MILL	D	230.00	34.50	
12	KITTY HAWK	Т	230.00	115.00	13.20
13	KITTY HAWK	D	230.00	34.50	13.20
14	LABURNUM	D	34.50	4.16	
15	LADYSMITH	Т	500.00	230.00	
16	LAFAYETTE	D	34.50	4.16	
17	LAKE GASTON	D	115.00	34.50	
18	LAKELAND	D	34.50	4.16	
19	LAKERIDGE	D	230.00	34.50	
20	LAKESIDE	D	115.00	13.20	
21	LAKESIDE	Т	230.00	115.00	13.20
22	LAKESIDE	D	230.00	34.50	
23	LANCASTER	D	115.00	34.50	
24	LANCASTER	D	115.00	13.20	
25	LANDSTOWN	Т	230.00	115.00	13.20
26	LANDSTOWN	D	230.00	34.50	13.20
27	LANEXA	D	115.00	13.20	
28	LANEXA	Т	230.00	115.00	13.20
29	LAUREL AVE	D	34.50	4.16	
30	LAWRENCEVILLE	D	115.00	34.50	
31	LAWRENCEVILLE	D	115.00	12.50	
32	LEBANON	D	115.00	34.50	
33	LEBANON	D	115.00	13.20	
34	LEE D.P.	D	34.50	12.50	
35	LEESBURG	D	34.50	13.20	
36	LEMON	D	34.50	13.20	
37	LENOX	D	34.50	4.16	
38	LEXINGTON	Т	230.00	115.00	13.20
39	LEXINGTON	Т	500.00	230.00	
40	LIBERTY	Т	230.00	115.00	13.20

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS (Continued)		

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	I ransformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(In MVa) (k)	
22	1					1
6	3	1				2
159	2					3
56	2					4
14	1					5
20	1					6
7	1					7
14	1					8
109	2					9
56	1					10
50	1					11
504	3	1				12
159	2					13
5	3					14
840	3	1				15
6	1					16
22	1					17
5	1					18
90	2					19
67	2					20
448	2					21
159	2					22
42	2					23
22	1					24
448	2					25
125	2					26
14	1					27
336	2					28
9	2					29
20	1					30
13	1					31
22	1					32
22	1					33
7	1					34
33	2					35
13	1					36
5	1					37
336	2					38
672	6	1				39
448	2					40

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line Name and Location of Substation		Character of Cubetation	VOLTAGE (In MVa)		
No.	Name and Location of Substation	Character of Substation	Primary	Secondary	Tertiary
	(a)	(b)	(C)	(d)	(e)
1	LIGHTFOOT	D	230.00	34.50	
2	LILLEY	D	34.50	12.50	
3	LIVINGSTON HEIGHT	D	34.50	13.20	
4	LOCKS	D	115.00	34.50	
5	LOCKS	D	115.00	13.20	
6	LOCKS	D	230.00	34.50	
7	LOCKS	Т	230.00	115.00	13.20
8	LONDON BRIDGE	D	115.00	34.50	13.20
9	LONG CREEK	D	115.00	34.50	13.20
10	LOUDOUN	Т	230.00	115.00	13.20
11	LOUDOUN	Т	500.00	230.00	
12	LOUISA	D	230.00	34.50	
13	LOVETTSVILLE	D	138.00	34.50	
14	LOW MOOR	Т	230.00	138.00	13.20
15	LYNNHAVEN	D	34.50	13.20	
16	LYNNHAVEN	D	230.00	34.50	13.20
17	MACKEYS	Т	230.00	115.00	13.20
18	MADISON ST	D	13.20	4.16	
19	MAGRUDER	D	115.00	34.50	
20	MAGRUDER	D	115.00	13.20	
21	MANCHESTER	D	115.00	13.20	
22	MARGARETTSVILLE	D	115.00	13.20	
23	MASSANUTTEN	D	34.50	12.50	
24	MCKENNEY	D	34.50	13.20	
25	MCLAUGHLIN	D	115.00	34.50	13.20
26	MCLEAN	D	34.50	13.20	
27	MECHANICSVILLE	D	34.50	13.20	
28	MERCK 5	D	115.00	34.50	
29	MERCURY	D	115.00	23.00	
30	MERRIFIELD	D	34.50	13.20	
31	MERRY POINT	D	34.50	13.20	
32	METCALF	D	115.00	12.50	
33	MIDDLEBURG	D	115.00	34.50	
34	MIDDLETON D.P.	D	34.50	13.20	
35	MIDLOTHIAN 34.5	D	230.00	34.50	
36	MIDLOTHIAN 500	Т	500.00	230.00	
37	MINE ROAD	D	230.00	34.50	
38	MONTROSS	D	34.50	13.20	
39	MORRISVILLE	Τ	500.00	230.00	
40	MOUNT EAGLE	D	230.00	34.50	
		-	200.00	0 1.00	

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS (Continued)		•

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	I ransformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(In MVa) (k)	
234	3					1
14	1					2
14	1					3
56	1					4
42	2					5
84	1					6
336	2					7
56	1					8
78	2					9
336	2					10
1680	6	2				11
45	1					12
106	4	1				13
250	1	1				14
42	2					15
159	2					16
336	2					17
7	6	1				18
45	2					19
22	1					20
106	2					21
2	3					22
9	1					23
4	1					24
106	2					25
45	2					26
40	2					27
22	1					28
34	1					29
40	2					30
22	1					31
14	1					32
96	3					33
4	1					34
159	2					35
840	3	1				36
159	2					37
5	1					38
2220	6	2				39
50	1					40

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report	
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4	
SUBSTATIONS				

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	VOLTAGE (In MVa)		
No.			Primary	Secondary	Tertiary
	(a)	(b)	(c)	(d)	(e)
1	MOUNT LAUREL	D	115.00	13.20	
2	MOUNTAIN ROAD	D	230.00	34.50	
3	MT JACKSON	D	115.00	34.50	
4	MURPHY	D	115.00	34.50	
5	MYRTLE	D	115.00	34.50	
6	NAGS HEAD	D	115.00	34.50	
7	NASH	D	230.00	34.50	13.20
8	NEW MARKET	D	34.50	12.50	
9	NEWPORT NEWS #2	D	23.00	6.00	
10	NEWPORT NEWS #2	D	230.00	23.00	
11	NEW ROAD	Т	230.00	115.00	13.20
12	NIVO	D	230.00	34.50	
13	NOKESVILLE	D	230.00	34.50	
14	NORTH ALEXANDERIA	D	230.00	34.50	
15	NORTH ANNA	Т	500.00	230.00	
16	NORTH POLE	D	230.00	34.50	
17	NORTH VA. BEACH	D	34.50	13.20	
18	NORTHEAST	D	115.00	13.20	
19	NORTHEAST	Т	230.00	115.00	13.20
20	NORTHEAST	D	230.00	34.50	
21	NORTHERN NECK	D	115.00	34.50	
22	NORTHERN NECK	Т	230.00	115.00	13.20
23	NORTHHAMPTON	D	230.00	34.50	
24	NORTHWEST	D	115.00	13.20	
25	NORTHWEST	Т	230.00	115.00	13.20
26	NORTHWEST	D	230.00	34.50	
27	OAK GROVE	D	230.00	34.50	
28	OAK RIDGE	D	115.00	12.50	
29	OAKWOOD	D	115.00	34.50	13.20
30	OAKWOOD	D	115.00	13.20	
31	OCCOQUAN	D	230.00	34.50	
32	OCEAN VIEW	D	34.50	4.16	
33	OCRAN	D	115.00	13.20	
34	OFFICE HALL D.P.	D	34.50	13.20	
35	OKISKO	D	34.50	12.50	
36	OLD CHURCH	D	230.00	34.50	
37	ORANGE	D	115.00	34.50	
38	ORANGE	D	115.00	12.50	
39	OTTER RIVER	D	115.00	12.50	
40	ox	Т	500.00	230.00	

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS (Continued)		

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	I ransformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(In MVa) (k)	
22	1					1
125	2					2
22	1					3
78	2					4
22	1					5
113	6					6
50	1					7
3	1					8
5	3					9
224	2	1				10
336	2					11
252	3					12
34	1					13
84	1					14
1680	6	1				15
106	2					16
22	2					17
42	2					18
448	2					19
308	3					20
56	2					21
336	4					22
34	1					23
22	1					24
168	1					25
252	3					26
95	2					27
45	2					28
162	3					29
22	1					30
150	2					31
9	2					32
22	1					33
6	1					34
5	1					35
134	2					36
22	1					37
45	1					38
45	2					39
1680	6	2				40

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	VOLTAGE (In MVa)		
No.	Name and Location of Substation		Primary	Secondary	Tertiary
	(a)	(b)	(c)	(d)	(e)
1			230.00	115.00	13.20
2			230.00	34.50	
3	PAGAN		34.50	13.20	
4			34.50	23.00	
5			115.00	34.50	
6	PANTEGO		115.00	34.50	
7	PARMELE		115.00	12.50	
8	PASQUOTANK		230.00	34.50	
9	PEARSONS		230.00	34.50	
10	PENDER	D	230.00	34.50	
11	PENDLETON	D	115.00	34.50	13.20
12	PENINSULA	D	34.50	13.20	
13	PENINSULA	D	115.00	34.50	
14	PENINSULA	Т	230.00	115.00	13.20
15	PENINSULA	D	230.00	34.50	
16	PENNIMAN	D	230.00	34.50	
17	PENTAGON	Т	230.00	69.00	
18	PERTH	D	115.00	34.50	
19	PICKETT STREET	D	34.50	13.20	
20	PINE ST	D	34.50	11.00	
21	PLAZA	D	115.00	13.20	
22	PLAZA	Т	230.00	115.00	13.20
23	PLAZA	D	230.00	34.50	
24	PLEASANT VIEW	D	230.00	34.50	
25	PLEASANT VIEW 500	Т	500.00	230.00	
26	PLYMOUTH	D	230.00	34.50	
27	POE	D	34.50	13.20	
28	POE	Т	230.00	115.00	13.20
29	POE	D	230.00	34.50	
30	POINT HARBOR	D	230.00	34.50	13.20
31	POLAND ROAD	D	230.00	34.50	
32	POOLESVILLE	D	230.00	34.50	
33	POPLAR CHAPEL	D	115.00	34.50	
34	PORT NORFOLK	D	34.50	4.16	
35	PORTSMOUTH	Т	230.00	115.00	13.20
36	POSSUM POINT 230	Т	230.00	115.00	13.20
37	POSSUM POINT 500	Т	500.00	230.00	
38	РОТОМАС	D	34.50	4.16	
39	POWHATAN	D	230.00	34.50	
40	PRENTIS PARK	D	34.50	4.16	

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS (Continued)		•

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	In Service	Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(k)	
224	1					1
168	2					2
14	1					3
4	2	1				4
45	2					5
13	1					6
13	1					7
34	1					8
75	1					9
252	3					10
112	2					11
11	1					12
45	2					13
224	1					14
45	1					15
34	1					16
504	3					17
45	2					18
13	1					19
17	2					20
42	2					21
168	1					22
56	1					23
234	3					24
840	3	1				25
67	2					26
67	2					27
336	2					28
159	2					29
34	1					30
168	2					31
50	1					32
22	1					33
9	2					34
448	2					35
336	2					36
840	3	1				37
6	3					38
100	2					39
5	1					40

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	VOLTAGE (In MVa)		/a)
No.			Primary	Secondary	Tertiary
	(a)	(b)	(c)	(d)	(e)
1		T	230.00	115.00	13.20
2	PRINCESS ANNE	D	115.00	34.50	13.20
3	PROVIDENCE FORGE	D	115.00	34.50	
4	PUNGO RIVER	D	34.50	13.20	
5	PURCELLVILLE	D	34.50	13.20	
6	Q ST	D	34.50	13.20	
7	QUANTICO	D	115.00	13.20	
8	RADNOR HEIGHTS	D	230.00	34.50	
9	RADNOR HEIGHTS	D	34.50	13.20	
10	RAVENSWORTH	D	230.00	34.50	
11	REDDFIELD	D	230.00	34.50	
12	REEDY CREEK	D	115.00	34.50	
13	REEVES AVE	D	115.00	34.50	13.20
14	REEVES AVE	Т	230.00	115.00	13.20
15	REMINGTON	D	115.00	34.50	
16	REMINGTON	Т	230.00	115.00	13.20
17	REMINGTON CT	Т	230.00	115.00	13.20
18	RESTON	D	230.00	34.50	
19	RIDERS CREEK	D	115.00	34.50	
20	RIVER ROAD	D	115.00	13.20	
21	RIVER ROAD	D	230.00	34.50	
22	ROBERSONVILLE	D	12.50	4.16	
23	ROBERSONVILLE	D	115.00	12.50	
24	ROCKBRIDGE	D	46.00	12.50	
25	ROCKBRIDGE	D	115.00	13.20	
26	ROCK LANDING	D	230.00	34.50	
27	ROCKVILLE	D	230.00	34.50	
28	ROSEMONT	D	34.50	13.20	
29	ROSSLYN	D	69.00	13.80	
30	SANDBRIDGE	D	34.50	13.20	
31	SAPONY	D	230.00	34.50	
32	SCOTLAND NECK	D	115.00	13.20	
33	SEABOARD	D	115.00	13.20	
34	SEAFORD	D	115.00	34.50	
35	SEDGE HILL	Т	230.00	115.00	13.20
36	SEWELLS POINT	Т	230.00	115.00	13.20
37	SEWELLS POINT	D	230.00	34.50	13.20
38	SHACKLEFORD	D	115.00	34.50	
39	SHEA #1	D	34.50	13.20	
40	SHEA #1	D	34.50	4.16	

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report	
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4	
	SUBSTATIONS (Continued)			

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	In Service	Transformers	Type of Equipment	Number of Units	Total Capacity (In MVa)	No.
(f)	(g)	(h)	(i)	(j)	(in in va) (k)	
168	1					1
22	1					2
56	1					3
9	1					4
32	2					5
20	1					6
42	2					1
84	1					8
45	2					9
75	1					10
84	1					11
22	1					12
252	3					13
336	2					14
79	2					15
224	1					10
224	1					17
234	3					10
22	1					19
42	2					20
159	2					21
11	2					22
13	1	0				23
11	3	3				24
80	2					20
04	1					20
34	1					28
124	1					20
134	4					30
20	1					31
22	1					32
14	1					33
14	2					34
43	2					35
448	2					36
168	1					37
34	1					38
20	1					39
6	1					40
	1					
				1		1

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report	
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4	
	SUBSTATIONS			

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Leastion of Substation	Character of Substation	VOLTA		AGE (In MVa)	
No.	Name and Location of Substation		Primary	Secondary	Tertiary	
	(a)	(b)	(c)	(d)	(e)	
1	SHEA #2	D	115.00	34.50		
2	SHELLBANK	D	230.00	23.00		
3	SHELLBANK	D	115.00	13.20		
4	SHELLBANK	Т	230.00	115.00	13.20	
5	SHELLHORN ROAD	D	230.00	34.50		
6	SHERWOOD	D	115.00	34.50		
7	SHIRLEY DUKE	D	34.50	13.20		
8	SHOCKOE	D	115.00	34.50		
9	SHOCKOE	D	115.00	13.20		
10	SHORT PUMP	D	230.00	34.50		
11	SIDEBURN	D	230.00	34.50		
12	SINAI	D	115.00	13.20		
13	SISISKY	D	115.00	13.20		
14	SLIGO	D	230.00	34.50	13.20	
15	SMITHFIELD	D	230.00	34.50		
16	SOMERSET	D	115.00	34.50		
17	SOUTH BOSTON	D	115.00	12.50		
18	SOUTH CREEK	D	34.50	12.50		
19	SOUTH CREEK	D	115.00	34.50		
20	SOUTH HERTFORD	D	230.00	34.50		
21	SOUTH HILL	D	115.00	13.20		
22	SOUTH NORFOLK	D	34.50	13.20		
23	SOUTH NORFOLK	D	230.00	34.50	13.20	
24	SOUTH NORFOLK	D	230.00	13.20		
25	SOUTHWEST	D	230.00	34.50		
26	SPOTSYLVANIA SUB	Т	500.00	115.00		
27	SPRINGFIELD	D	34.50	13.20		
28	ST ANDREWS	D	13.20	4.16		
29	ST JOHNS	D	115.00	13.20		
30	ST JOHNS	Т	230.00	115.00	13.20	
31	STAFFORD	D	230.00	34.50		
32	STAUNTON	D	23.00	12.50		
33	STAUNTON	D	115.00	23.00		
34	STAUNTON	Т	230.00	115.00	13.20	
35	STERLING PARK	D	230.00	34.50		
36	STONY CREEK	D	34.50	13.20		
37	STRATFORD HILLS	D	115.00	13.20		
38	STUART GARDENS	D	23.00	6.00		
39	STUARTS DRAFT	D	115.00	23.00		
40	STUMPY LAKE	D	230.00	34.50	13.20	
-						

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS (Continued)		

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	In Service	Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(in inva) (k)	
100	2					1
168	2					2
22	1					3
224	1					4
84	1					5
100	2					6
28	2					/
120	2					8
95	2					9
234	3					10
75	1					10
22	1					12
22	1					13
106	2					14
106	2					10
22	1					10
44	2					17
11	1					10
22	1					20
34	۱ ۲					21
43	1					22
100	1					23
34	1					24
224	2					25
336	3	1				26
42	2					27
5	1					28
13	1					29
168	1					30
159	2					31
11	1					32
67	2					33
224	1					34
318	4					35
4	1					36
45	2					37
5	3			1		38
56	2			1		39
159	2					40

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	VOLTAGE (In MV		′a)	
No.		Character of Substation	Primary	Secondary	Tertiary	
	(a)	(b)	(c)	(d)	(e)	
1	SUFFOLK	Т	230.00	115.00	13.20	
2	SUFFOLK	D	230.00	34.50		
3	SUFFOLK	Т	500.00	230.00		
4	SULLY	D	230.00	34.50		
5	SUNBURY	D	230.00	34.50		
6	SUNSET HILLS	D	230.00	34.50		
7	SWINKS MILL	D	230.00	34.50		
8	ТАВВ	D	230.00	34.50		
9	TAR RIVER	D	115.00	12.50		
10	TARBORO	D	115.00	13.20		
11	TARBORO	Т	230.00	115.00	13.20	
12	TAUSSIG	D	115.00	34.50	13.20	
13	TEMPLE AVE.	D	115.00	34.50		
14	THALIA	D	34.50	13.20		
15	THALIA	D	230.00	34.50	13.20	
16	THIRD STREET	D	23.00	12.50		
17	THOLE ST	D	115.00	34.50	13.20	
18	THOMPSONS CORNER	D	115.00	34.50	13.20	
19	THOMPSONS CORNER	D	115.00	13.20		
20	THRASHER	D	230.00	34.50	13.20	
21	TIMBERVILLE	D	115.00	13.20		
22	TOANO	D	115.00	34.50		
23	TRABUE	D	230.00	34.50		
24	TRAP	D	34.50	13.20		
25	TREGO	D	12.50	2.40		
26	TREGO	D	115.00	2.40		
27	TROWBRIDGE	Т	230.00	115.00	13.20	
28	TUNIS	D	115.00	34.50		
29	TURNER	D	115.00	34.50		
30	TURNER	D	230.00	34.50		
31	TWELFTH ST.	D	115.00	34.50		
32	TWELFTH ST.	D	115.00	13.20		
33	TWITTYS CREEK	D	34.50	12.50		
34	TWITTYS CREEK	D	115.00	34.50		
35	TYLER	D	230.00	34.50		
36	TYSONS	D	230.00	34.50		
37	UNIONVILLE DP	D	115.00	12.50		
38	VALLEY	т	500.00	230.00		
39	VAN DORN	D	230.00	34.50		
40	VERONA	D	115.00	23.00		

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report	
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4	
	SUBSTATIONS (Continued)			

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT			Line
(In Service) (In MVa)	In Service	Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(in inva) (k)	
672	3					1
159	2					2
1680	6	1				3
150	2					4
25	1					5
84	1					6
120	2					7
129	2					8
22	1					9
20	1					10
280	2					11
112	2					12
22	1					13
40	2					14
224	2					15
9	1					10
56	1					17
140	2					10
42	2					20
224	3					20
42	2					22
120	2					23
120	2					24
3	3					25
6	1					26
336	2					27
56	2					28
45	1					29
45	1					30
168	2					31
150	2					32
6	1					33
22	1					34
168	2			+		35
309	4					36
13	1					37
1680	6	2				38
150	2					39
25	2					40

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report	
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4	
	SUBSTATIONS			

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	V	VOLTAGE (In MV	
No.	Name and Education of Substation		Primary	Secondary	Tertiary
	(a)	(b)	(c)	(d)	(e)
1	VICTORIA	D	115.00	12.50	
2	VIENNA	D	34.50	13.20	
3	VIRGINIA BEACH	D	115.00	34.50	13.20
4	VIRGINIA BEACH	D	115.00	13.20	
5	VIRGINIA BEACH	Т	230.00	115.00	13.20
6	VIRGINIA HILLS	D	34.50	13.20	
7	VIRGINIA HILLS	D	230.00	34.50	
8	WAKEFIELD	D	13.20	4.16	
9	WAKEFIELD	D	115.00	34.50	
10	WAKEFIELD	D	115.00	13.20	
11	WALLER	D	230.00	34.50	
12	WALNEY	D	230.00	34.50	
13	WALTHALL	D	115.00	34.50	
14	WAN	D	115.00	34.50	
15	WARRENTON	D	230.00	34.50	
16	WARSAW	D	34.50	13.20	
17	WARWICK	D	115.00	13.20	
18	WARWICK	D	230.00	34.50	
19	WATKINS CORNER	D	115.00	34.50	
20	WAVERLY	D	115.00	13.20	
21	WAXPOOL	D	230.00	34.50	
22	WAYNESBORO	D	115.00	23.00	
23	WELCO	D	115.00	34.50	
24	WESTCOTT	D	34.50	13.20	
25	WEST LANDING	D	230.00	34.50	13.20
26	WEST STAUNTON	D	230.00	23.00	
27	WESTHAVEN	D	34.50	4.16	
28	WESTMINSTER	D	34.50	13.20	
29	WESTMORELAND	D	230.00	34.50	
30	WESTPOINT	D	115.00	34.50	
31	WEYERS CAVE	D	115.00	34.50	
32	WHEALTON	Т	230.00	115.00	13.20
33	WHITAKERS	D	115.00	34.50	13.20
34	WHITAKERS	D	115.00	34.50	
35	WHITEHALL DP	D	34.50	23.00	
36	WHITE MARSH	D	115.00	34.50	
37	WHITE STONE	D	115.00	13.20	
38	WILLIAMSBURG	D	34.50	13.20	
39	WILLOUGHBY	D	34,50	13.20	
40	WILLSTON	- D	34 50	13.20	
+0		-	04.00	10.20	

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report	
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4	
	SUBSTATIONS (Continued)		•	

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT			Line
(In Service) (In MVa)	I ransformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(In MVa) (k)	
14	1		· · · · · · · · · · · · · · · · · · ·			1
42	2					2
168	2					3
42	2					4
448	2					5
36	2					6
168	2					7
3	1					8
13	1					9
9	1					10
159	2					11
234	3					12
67	2					13
90	4	1				14
168	2					15
9	1					16
40	2					17
150	2					18
56	2					19
33	2					20
168	2					21
50	1					22
56	2					23
40	2					24
90	2					25
106	2					26
7	2					27
10	1					28
34	1					29
56	2					30
22	1					31
448	2					32
22	1					33
34	1					34
8	1					35
56	1					36
14	1					37
14	1					38
13	1					39
14	1					40

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	<ul> <li>(1) X An Original</li> <li>(2) A Resubmission</li> </ul>	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Leastian of Substation	Character of Substation	VOLTAGE (In		√Va)	
No.	Name and Location of Substation	Character of Substation	Primary	Secondary	Tertiary	
	(a)	(b)	(c)	(d)	(e)	
1	WINCHESTER	D	34.50	13.20		
2	WINCHESTER	D	230.00	34.50		
3	WINFALL	D	230.00	34.50		
4	WINTERPOCK	D	230.00	34.50		
5	WOODBRIDGE	D	230.00	34.50		
6	WOODLAND	D	115.00	34.50		
7	WOODSTOCK	D	34.50	12.50		
8	WYTHE	D	23.00	6.00		
9	YADKIN	Т	230.00	115.00	13.20	
10	YADKIN	D	230.00	34.50		
11	YADKIN	Т	500.00	230.00		
12	YORKTOWN	Т	230.00	115.00	13.20	
13	Total Transmssn & Distribution		96574.30	25717.66	1484.02	
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of2018/Q4
	SUBSTATIONS (Continued)		

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	I ransformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(In MVa) (k)	
67	2					1
150	2					2
67	2					3
168	2					4
168	2					5
22	1					6
6	2					7
5	3					8
448	2					9
75	1					10
2520	9	2				11
224	1					12
90307	1112	54				13
						14
						15
						16
						17
						18
						19
						20
						21
						22
						23
						24
						25
						26
						27
						28
						29
						30
						31
						32
						33
						34
						35
						36
						37
						38
						39
						40

## NCUC Docket No. E-100, Sub 157

## **2019 Dominion IRP**

## **ADDENDUM 3:**

**Federal Energy Regulatory Commission Form 715**
# FERC Form 715

# Part 1 – Identification and Certification

# FERC Form No. 715 Part 1 IDENTIFICATION AND CERTIFICATION

In compliance with the requirements of this FERC Form No. 715 "Annual Transmission Planning Evaluation Report" set forth by 18 CFR § 141.300, PJM Interconnection, L.L.C. (PJM) is providing this information on behalf of its transmission owners subject to the reporting requirements of this FERC Form No. 715. The following is a list of the PJM transmission owners whose information is included in this report.

- AMP Transmission, LLC
- American Electric Power Service Corporation
- Baltimore Gas and Electric Company
- City of Cleveland, Department of Public Utilities, Division of Cleveland Public Power
- City of Rochelle (NextEra)
- Commonwealth Edison Company
- Dayton Power and Light Company
- Duke Energy Ohio and Kentucky
- Duquesne Light Company
- East Kentucky Power Cooperative
- Essential Power Rock Springs, LLC
- FirstEnergy Operating Companies:
  - Allegheny Power
  - American Transmission Systems, Inc.
  - o Jersey Central Power and Light
    - Company
  - Metropolitan Edison Company

- Pennsylvania Electric Company
- Trans-Allegheny Interstate Line Company
- Hudson Transmission Partners, LLC
- Neptune Regional Transmission System, LLC
- ITC Interconnection, LLC
- Ohio Valley Electric Coop
- PECO Energy Company
- Pennsylvania Power and Light Company
- Pepco Holdings, Inc. (PHI)
  - Atlantic City Electric Company
  - o Delmarva Power and Light Company
  - Potomac Electric Power Company
- Public Service Electric and Gas Company
- Rockland Electric Company
- Southern Maryland Electric Cooperative
- UGI Utilities, Inc. Electric Division
- Virginia Electric & Power Company

This Part 1 contains each member transmission owner's <u>Identification and Certification</u> Form. Requests for this information is to be directed to the regional contact below.

#### **Regional Contact Information**

e-mail:

Address:	PJM
	2750 Monroe Blvd.
	Audubon, PA 19403
<b>Contact Person:</b>	Mark J. Kuras
Title:	Senior Lead Engineer
	Reliability Compliance
Phone:	(610) 666-8924

mark.kuras@pjm.com

# FERC FORM 715 ANNUAL TRANSMISSION PLANNING AND EVALUATION REPORT Part 1: Identification and Certification April 1, 2019

<b>Transmitting Utility Name</b>	Virginia Electric & Power Co
<u>Transmitting Utility</u> <u>Mailing Address</u>	10900 Nuckols Road Glen Allen, Virginia 23060
Contact Person	
Name	David C. Witt
Title	Engineer III
Phone	804-771-6373
e-mail Address	david.c.witt@dominionenergy.com

# **Certifying Official**

By affixing my signature I certify that the information supplied in this filing by my Transmitting Utility is accurate. 001

Signature	StAChl.
Name	Steve Chafin
Title	Dir. Electric Transmission Planning & Strategic Initiatives
Phone	804-771-3032
e-mail Address	steve.chafin@dominionenergy.com

# FERC Form 715

Part 2 – Power Flow Base Cases

As Virginia Electric and Power Company's 2019 FERC Form 715 was filed by PJM, Part 2 to the Form 715 is not specific to the Company, and is therefore not being provided with the Company's 2019 IRP submittal.

FERC Form 715

Part 3 – Transmitting Utility Maps and Diagrams

**CONFIDENTIAL** INFORMATION REDACTED

# FERC Form 715

# Part 4 – Transmission Planning Reliability Criteria

Dominion Energy – Electric Transmission Planning Criteria

Version 16 Effective 3/15/2019 Page 1



# ELECTRIC TRANSMISSION PLANNING CRITERIA

Electric Transmission Planning Department Version 16 Effective 3/15/2019

Approved By Name and Title	Signature	Date Approved
J. R. Bailey Manager Electric Transmission Planning & Strategic Initiatives	ARBay	3/11/2019

i?

# Table of Contents

А.	SCOPE AND OBJECTIVE					
В.	NATI	ONAL A	ND REGIONAL CRITERIA AND GUIDES	4		
	B.1.	NERC p	lanning standards	4		
	B.2.	al reliability planning standards	4			
	B.3.	PJM pla	anning standards	4		
C.	TRAN	ISMISSI	ON PLANNING, STEADY-STATE CRITERIA	5		
	C.1.	Plannir	ng principles and standards	5		
		C.1.1.	Voltage limits at generating stations	14		
	C.2.	Detaile	d steady-state criteria	14		
		C.2.1.	System load level	14		
			C.2.1.1. Peak period studies	14		
			C.2.1.2. Off-peak period studies	14		
			C.2.1.3. Critical stress case development and studies	14		
		C.2.2.	Power transfers	15		
		C.2.3.	Equipment ratings	15		
		C.2.4.	Circuit breaker interrupting capability	16		
		C.2.5.	Reactive power planning	16		
		C.2.6.	Radial transmission lines	16		
		C.2.7.	Network transmission lines – Limitations on direct-connect loads	17		
		C.2.8.	Substation – Limitation on direct-connect loads	17		
		C.2.9.	End of life criteria	17		
	C.3.	Selection	on of generation dispatch used in DEV Power Flow Studies	19		
D.	TRAN	ISMISSI	ON PLANNING, SYSTEM STABILITY CRITERIA	20		
	D.1.	Introdu	iction	20		
	D.2.	Genera	I criteria	20		
	D.3.	Study ł	norizon	21		
	D.4.	Study of	ycle	22		
	D.5.	Dynam	ics data collection	22		
	D.6.	Selection	on of a reference power flow case	22		
	D.7.	Selection	on of generation dispatch	22		
	D.8.	Selection	on of contingencies	23		
	D.9.	What t	o look for in study results	23		
	D.10.	Implem	nentation procedure	24		
		D.10.1.	For existing installations	24		

		D.10.2. For new installations or capacity additions	25			
E.	NUCL	EAR PLANT INTERFACE COORDINATION	25			
	E.1.	Introduction	25			
	E.2.	NRC regulations	25			
	E.3.	Design requirements	26			
	E.4.	Underfrequency studies	26			
	E.5.	Angular stability studies	27			
	E.6.	System analysis protocol	27			
	E.7.	Changes to the system	27			
F.	REFE	RENCES	28			
G.	ABBREVIATIONS & DEFINITIONS					
H.	REVIS	SION HISTORY	29			

#### Version 16 Effective 3/15/2019 Page 4 of 32

# A. Scope and objective

The function of the transmission system is to transport power from generating resources to distribution systems in order to serve the demand of the end-user customers. Reliable transmission system operation implies maintaining continuity of service at sufficient voltage levels without overloading equipment under a wide range of operating conditions.

Virginia Electric and Power Company is commonly referred to as Dominion Energy Virginia (DEV). For the purpose of this document, "DEV transmission system" refers to the transmission system owned by Dominion Energy Virginia. "Transmission system" refers to networked and radial facilities within the DEV system at voltage levels of 69, 115, 138, 230, and 500 kV. This document provides approved criteria upon which the needs for reinforcements and enhancements to the DEV transmission system are determined.

DEV's transmission planning criteria ensures adherence to the transmission planning standards of the North American Electric Reliability Corporation (NERC) and those of the SERC Reliability Corporation (SERC), one of the eight regional reliability organizations (RRO) of NERC. Unless noted, the Criteria in this document apply to generation, transmission, and end user facilities.

# B. National and regional criteria and guides

# B.1. NERC planning standards

The North American Electric Reliability Corporation was established to promote the reliability of the bulk electric systems of North America. NERC coordinates reliability standards for the power systems of the United States, the bordering provinces of Canada, and a portion of Mexico. NERC has developed planning standards to ensure the reliable operation of the interconnected bulk electric systems. These standards can be found at the NERC homepage.

The DEV Transmission Planning Criteria provides a description of how DEV performs simulated testing of the interconnected transmission system to determine its ability to withstand probable and extreme contingencies.

#### B.2. Regional reliability planning standards

NERC consists of eight regional reliability organizations. DEV is a member of the SERC Reliability Corporation (SERC), one of the eight regional reliability organizations of NERC. DEV plans the bulk electric system (BES) in coordination with PJM, its Transmission Planner (TP), to meet the requirements of NERC and SERC.

#### B.3. PJM planning standards

The DEV transmission system is integrated into planning and operations of the PJM Interconnections, L.L.C. RTO (PJM). PJM manages a regional planning process for generation and transmission expansion to ensure the continued reliability of the electric system. PJM annually develops a Regional Transmission Expansion Plan (RTEP) to meet system enhancement requirements for firm transmission service, load growth, interconnection requests and other system enhancement drivers. The criteria PJM uses in developing the RTEP is set forth in PJM Manual 14B – PJM Region Transmission Planning Process.

#### Version 16 Effective 3/15/2019 Page 5 of 32

# C. Transmission planning, steady-state criteria

# C.1. Planning principles and standards

The transmission system must perform reliably for a wide range of conditions. Because system operators can exercise only limited direct control, it is essential that studies be made in advance to identify the facilities necessary to assure a reliable transmission system in future years.

The voltages and equipment loadings on the transmission system should be within acceptable limits, both during normal operation and for an appropriate range of potential system faults and equipment outages. The more probable contingency conditions should not result in voltages or equipment loadings beyond emergency limits. These 'emergency limits' can vary based on equipment type and allowable time period.

Tables 1A and 1B specify outage events that are analyzed by DEV at the forecasted load levels to determine if any thermal or voltage violations exist. Thermal capability is given with equipment ratings in amps or MVA. Voltage limits are in reference to the nominal design voltage. Adherence to the criteria given in these tables ensures that DEV's transmission system meets the applicable reliability requirements of NERC, SERC, and PJM.

System readjustment is allowed when attempting to reduce line loadings or improve voltage profile (only as allowed by NERC Criteria). System readjustments considered in planning analysis include:

- · Generation re-dispatch (excludes nuclear generation)
- Phase angle regulator adjustment¹
- · Load tap changer adjustment
- Capacitor bank switching
- Line switching
- Inductor switching

Loadings on DEV transmission facilities over their normal rating, following a contingency, must be adjusted back down to normal rating within the time frame of the appropriate term emergency rating. Any of the above listed system readjustments are allowable in this situation as DEV employs 8 hour short-term emergency ratings and 15 minute load dump ratings on transmission equipment, which allows sufficient time to implement any adjustments that reduce loadings to the normal rating.

Loadings on facilities over their short-term emergency ratings, following a contingency, must be adjusted back down to the short-term emergency rating within the time frame of the short term emergency rating using the system readjustments listed above.

¹ For DEV, phase angle regulator adjustment is used to relieve loadings on the 115kV system in Yorktown and Chesapeake Energy areas. Phase shifting transformers control the division of real power among parallel paths. Chesapeake Energy Center and Yorktown Power Station have phase shifters between the 230 kV and 115 kV systems. The phase shifter transfers load from one voltage level to the other. Phase angle adjustment will be allowed within the parameters noted in PJM's Manual 14B – PJM Region Transmission Planning Process (RTEP Reliability Planning section).

If the criteria described in this document cannot be met, mitigation plans are developed. A valid mitigation plan will bring the system into compliance through the most judicious use of a variety of feasible options. These include the development of an operator action plan in conjunction with the use of short term ratings, generation re-dispatch, phase angle regulator adjustments, bus-tie switching, Remedial Action Schemes, or the installation of a physical reinforcement.

A Remedial Action Scheme (RAS), as interpreted from the NERC Reliability Standards Glossary of Terms, is designed to detect abnormal system conditions and take automatic corrective action to provide acceptable transmission system performance. The RAS isolates equipment other than faulted elements and/or reconfigures equipment outside of a zone containing faulted elements. An RAS may be applied as required to address thermal, voltage, or stability issues in accordance with NERC Transmission Planning (TPL) Standards and is subject to the RAS requirements of NERC Protection and Control (PRC) Standards 012 through 017. An RAS does not include automatic restoration to service of un-faulted elements within a faulted zone, under frequency and under voltage load shedding schemes, conventional generator out of step tripping schemes, or remote backup tripping schemes. DEV reviews all existing RASs periodically and adjusts settings as deemed necessary. DEV primarily installs RASs as a temporary measure until a more robust solution can be completed to provide acceptable system performance. Operating steps implemented as part of a Remedial Action Scheme shall be considered, provided that the failure of such system does not result in cascading outages or overloads.

In addition to those events and circumstances included in Tables 1A and 1B, Table 1C defines more severe but less probable scenarios that should also be considered for analysis to evaluate resulting consequences. As permitted in the NERC Planning Standards, judgment shall dictate whether and to what extent a mitigation plan would be appropriate.

### Table 1A Steady-State Performance PLANNING Events and Dominion Energy CRITERIA HIGH VOLTAGE (HV): 230 kV, 138 kV, 115 kV & 69kV Facilities

NERC TPL-001 Events (excludes DC)						Dominion Energy Criteria		
Category	Initial Condition	Event ¹	Fault Type ²	Interruption of Firm Transmission Service Allowed ⁴	Non- Consequential Load Loss Allowed	Thermal Limits	Low Voltage Limit **	High Voltage Limit **
<b>P0</b> No Contingency	Normal System	None	N/A	No	No	94% N	95%	105%
<b>P1</b> Single Contingency	Normal System	Loss of one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶	3Ø	No°	No ¹²	94% STE	93%	105%
		1. Opening of a line section w/o a fault ⁷	N/A	No ⁹	No ¹²	94% STE	93%	105%
P2		2. Bus Section Fault	SLG	Yes	Yes	Notes "A", "B" & "C"	90%	105%
Single Contingency	Normal System	3. Internal Breaker Fault ⁸ (non-Bus-tie Breaker)	SLG	Yes	Yes	Notes "A", "B" & "C"	90%	105%
		4. Internal Breaker Fault (Bus- tie Breaker) ⁸	SLG	Yes	Yes	Notes "A", "B" & "C"	90%	105%
P3 Multiple Contingency [see Dominion Energy Note "D" & "E"]	Loss of generator unit followed by System adjustments ⁹	Loss of one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶	3Ø	No°	No ¹²	94% STE	93%	105%
P4 Multiple Contingency (Fault plus stuck breaker ¹⁰ ) [see Dominion Energy Note "E"]	Normal System	Loss of multiple elements caused by a stuck breaker ¹⁰ (non-Bus-tie Breaker) attempting to clear a Fault on one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶ 5. Bus Section	SLG	Yes	Yes	Notes "A", "B" & "C""	90%	105%
P5 Multiple Contingency (Fault plus relay failure to operate) [see Dominion Energy Note "E"]	Normal System	Delayed Fault Clearing due to the failure of a non-redundant relay ¹³ protecting the Faulted element to operate as designed, for one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶ 5. Bus Section	SLG	Yes	Yes	Notes "A", "B" & "C"	90%	105%

Table 1A continued on next page

#### Table 1A Steady-State Performance PLANNING Events and Dominion Energy CRITERIA *(continued)* HIGH VOLTAGE (HV): 230 kV, 138 kV, 115 kV & 69kV Facilities

NERC TPL-001 Events (excludes DC) Dominion Energy Criteria							riteria	
Category	Initial Condition	Event ¹	Fault Type ²	Interruption of Firm Transmission Service Allowed ⁴	Non- Consequential Load Loss Allowed	Thermal Limits	Low Voltage Limit **	High Voltage Limit **
P6 Multiple Contingency ( <i>Two</i> overlapping singles) [see Dominion Energy Note "E"]	Loss of one of the following followed by System adjustments. ⁹ 1. Transmission Circuit 2. Transformer ⁵ 3. Shunt Device ⁶	Loss of one of the following: 1. Transmission Circuit 2. Transformer ⁵ 3. Shunt Device ⁶	3Ø	Yes	Yes	Notes "A", "B" & "C"	90%	105%
P7 Multiple Contingency (Common Structure)	Normal System	The loss of any two adjacent (vertically or horizontally) circuits on common structure ¹¹	SLG	Yes	Yes	Notes "A", "B" & "C"	90%	105%

#### Dominion Energy Notes for Table 1A

See separate listing Table 1 (A & B) Footnotes for superscript numbered footnotes.

Note "A" - For thermal overloads greater than 100% of Load Dump (LD) rating, system reinforcements will be required.

Note "B" - For thermal overloads less than 100% of Load Dump (LD) rating but greater than 100% of Short Term Emergency (STE) rating, system reinforcements may NOT be required if system adjustments can reduce thermal overloads to less than 100% of Short Term Rating (STE).

Note "C" - For thermal overloads less than 100% of Load Dump (LD) rating but greater than 100% of Short Term Emergency (STE) rating, system reinforcements may NOT be required if the loss of consequential load up to 300MW achieves a return to less than the STE rating.

Note "D" - See Section C.2.1.3 - Critical stress case development and studies for details.

Note "E" - Areas of the system that become radial post-contingency will be included for monitoring of thermal and voltage violations for all load levels served by the radial.

** Percent of Nominal Voltage (Note: Voltage limits for North Anna and Surry Power Stations are governed by the requirements of their respective Nuclear Plant Interface Requirements (NPIR) with Dominion Energy Electric Transmission as noted in Section E.3).

N – Normal Rating

STE – Short Term Emergency

LD – Load Dump

## Table 1B Steady-State Performance PLANNING Events and Dominion Energy CRITERIA EXTRA HIGH VOLTAGE (EHV): 500kV Facilities

NERC TPL-001 Events (excludes DC)				Dominion Energy Criteria				
NERC Category	Initial Condition	Event ¹	Fault Type ²	Interruption of Firm Transmission Service Allowed ⁴	Non- Consequential Load Loss Allowed	Thermal Limits	Low Voltage Limit **	High Voltage Limit **
PO No Contingency	Normal System	None	N/A	No	No	94% N	102.5%	107%
P1 Single Contingency	Normal System	Loss of one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶	3Ø	No ⁹	No ¹²	94% STE	101%	108%
		1. Opening of a line section w/o a fault ⁷	N/A	No ⁹	No ¹²	94% STE	101%	108%
P2	Normal System	2. Bus Section Fault	SLG	No ⁹	No	Notes "F", "G" & "H"	100%	108%
Contingency	Normal System	3. Internal Breaker Fault ⁸ (non-Bus-tie Breaker)	SLG	No ⁹	No	Notes "F", "G" & "H"	100%	108%
		4. Internal Breaker Fault (Bus- tie Breaker) ⁸	SLG	Yes	Yes	Notes "F", "G" and "H"	100%	108%
P3 Multiple Contingency [see Dominion Energy Note "I" & "J"]	Loss of generator unit followed by System adjustments ⁹	Loss of one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶	3Ø	No ⁹	No ¹²	94% STE	101%	108%
P4 Multiple Contingency (Fault plus stuck breaker ¹⁰ ) [see Dominion Energy Note "J"]	Normal System	Loss of multiple elements caused by a stuck breaker ¹⁰ (non-Bus-tie Breaker) attempting to clear a Fault on one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶ 5. Bus Section	SLG	No°	No	Notes "F", "G" & "H"	100%	108%
P5 Multiple Contingency (Fault plus relay failure to operate) [see Dominion Energy Note "J"]	Normal System	Delayed Fault Clearing due to the failure of a non-redundant relay ¹³ protecting the Faulted element to operate as designed, for one of the following: 1. Generator 2. Transmission Circuit 3. Transformer ⁵ 4. Shunt Device ⁶ 5. Bus Section	SLG	No ⁹	No	Notes "F", "G" & "H"	100%	108%

Table 1B continued on next page

# Table 1B Steady-State Performance PLANNING Events and Dominion Energy CRITERIA (continued) EXTRA HIGH VOLTAGE (EHV): 500kV Facilities

NERC TPL-001 Events (excludes DC)					Dominic	Dominion Energy Criteria		
NERC Category	Initial Condition	Event ¹	Fault Type ²	Interruption of Firm Transmission Service Allowed ⁴	Non- Consequential Load Loss Allowed	Thermal Limits	Low Voltage Limit **	High Voltage Limit **
P6 Multiple Contingency ( <i>Two</i> overlapping singles) [see Dominion Energy Note "J"]	Loss of one of the following followed by System adjustments. ⁹ 1. Transmission Circuit 2. Transformer ⁵ 3. Shunt Device ⁶	Loss of one of the following: 1. Transmission Circuit 2. Transformer ⁵ 3. Shunt Device ⁶	3Ø	Yes	Yes	Notes "F", "G" & "H"	100%	108%
P7 Multiple Contingency (Common Structure)	Normal System	The loss of any two adjacent (vertically or horizontally) circuits on common structure ¹¹	SLG	Yes	Yes	Notes "F", "G" & "H"	100%	108%

#### Dominion Energy Notes for Table 1B

See separate listing Table 1 (A & B) Footnotes for superscript numbered footnotes.

Note "F" – For thermal overloads greater than 100% of Load Dump (LD) rating, system reinforcements will be required.

Note "G" - For thermal overloads less than 100% of Load Dump (LD) rating but greater than 100% of Short Term Emergency (STE) rating system reinforcements may NOT be required if system adjustments can reduce thermal overloads to less than 100% of Short Term Rating (STE).

Note "H" - For thermal overloads less than 100% of Load Dump (LD) rating but greater than 100% of Short Term Emergency (STE) rating, system reinforcements may NOT be required if the loss of consequential load up to 300MW achieves a return to less than the STE rating.

Note "I" - See Section C.2.1.3 - Critical stress case development and studies for details.

Note "J" - Areas of the system that become radial post-contingency will be included for monitoring of thermal and voltage violations for all load levels served by the radial.

** Percent of Nominal Voltage (Note: Voltage limits for North Anna and Surry Power Stations are governed by the requirements of their respective Nuclear Plant Interface Requirements (NPIR) with Dominion Energy Electric Transmission as noted in Section E.3).

N – Normal Rating

STE – Short Term Emergency

LD – Load Dump

			Dominion Energy			iteria	
Category		Event Note "K"	Interruption of Firm Transmission Service Allowed	Non- Consequential Load Loss Allowed	Thermal Limits	Low Voltage Limit **	High Voltage Limit **
<b>N-2</b> Two Contingencies	Loss of a single generator, Transmission Circuit, shunt device, or transformer forced out of service followed by another single generator, Transmission Circuit, shunt device, or transformer forced out of service <u>prior to System adjustments</u> .		YES	YES	100% LD	90%	Note "Q"
		a. Loss of a tower line with three or more circuits. ¹¹	YES	YES	100% LD Note "L"	90%	Note "Q"
	Local area	b. Loss of all Transmission lines on a common Right-of-Way ¹¹ .	YES	YES	100% LD Note "M"	90%	Note "Q"
LAE Local Area Events	events affecting the Transmission System such as:	c. Loss of a switching station or substation (loss of one voltage level plus transformers).	YES	YES	100% LD Note "N"	90%	Note "Q"
		d. Loss of all generating units at a generating station.	YES	YES	100% LD Note "O"	90%	Note "Q"
		e. Loss of a large Load or major Load center.	YES	YES	100% LD Note "P"	90%	Note "Q"
<b>WAE</b> Wide Area Events	Wide area events affecting the Transmission System based on System topology such as:	<ul> <li>a. Loss of two generating stations resulting from conditions such as:</li> <li>i. Loss of a large gas pipeline into a region or multiple regions that have significant gasfired generation.</li> <li>ii. Loss of the use of a large body of water as the cooling source for generation.</li> <li>iii. Wildfires.</li> <li>iv. Severe weather, e.g., hurricanes, tornadoes, etc.</li> <li>v. A successful cyber attack.</li> <li>vi. Shutdown of a nuclear power plant(s) and related facilities for a day or more for common causes such as problems with similarly designed plants.</li> </ul>	YES	YES	100% LD for both HV and EHV		Note "Q"
		b. Other events based upon operating experience that may result in wide area disturbances.	YES	YES			Note "Q"

Table 1C Steady-State Performance EXTREME Events and Dominion Energy CRITERIA

** Percent of Nominal Voltage (Note: Voltage limits for North Anna and Surry Power Stations are governed by the requirements of their respective Nuclear Plant Interface Requirements (NPIR) with Dominion Energy Electric Transmission as noted in Section E.3). N – Normal Rating, STE – Short Term Emergency, LD – Load Dump

#### Dominion Energy Notes for Table 1C

See separate listing Table 1 (A, B & C) Footnotes for superscript numbered footnotes.

Note "K" - For all extreme events evaluated:

- Simulate the removal of all elements that Protection Systems and automatic controls are expected to disconnect for each Contingency.
- Simulate Normal Clearing unless otherwise specified.

Note "L" - The loss of three or more transmission circuits on a common structure should not result in cascading outages beyond the load area

Aug 29 2019

Page 12 of 32

immediately involved. The overall supply system to a major load area should be able to withstand the loss of all circuits on a common structure and still supply most of the load in the area with tolerable voltage (at least 90% of nominal). A major load area would be an area similar to the Norfolk/Virginia Beach area or the Northern Virginia area.

Version 16 Effective 3/15/2019

Note "M" – The loss of transmission circuits on a common right of way should not result in cascading outages beyond the load area immediately involved. The overall supply system to a major load area should be able to withstand the loss of all circuits on a common right of way and still supply most of the load in the area with tolerable voltage (at least 90% of nominal). A major load area would be an area similar to the Norfolk/Virginia Beach area or the Northern Virginia area.

Note "N" – The loss of a switching station or substation (one voltage level plus transformers) should not result in cascading outages or intolerably low voltages (less than 90% of nominal voltage) nor should any overhead transmission facility be loaded to more than its load dump rating during the period required to make prompt power supply adjustments to reduce overloads to less than its emergency rating (STE). The consequential load due to the loss in the affected station is not to exceed 300 MW.

Note "O" – The loss of all generation at a generating station should not result in cascading outages or intolerably low voltages (less than 90% of nominal voltage) nor should any overhead transmission facility be loaded to more than its load dump rating during the period required to make prompt power supply adjustments to reduce overloads to less than its emergency rating (STE).

Note "P" – The loss of a large load or major load center should not result in cascading outages or intolerably low voltages (less than 90% of nominal voltage) nor should any overhead transmission facility be loaded to more than its load dump rating during the period required to make prompt power supply adjustments to reduce overloads to less than its emergency rating (STE).

Note "Q" - High Voltage (HV): 105%; Extra High Voltage (EHV): 108%

#### Table 1 (A, B & C) Footnotes [NERC Standard TPL-001-4]

- 1. If the event analyzed involves BES elements at multiple System voltage levels, the lowest System voltage level of the element(s) removed for the analyzed event determines the stated performance criteria regarding allowances for interruptions of Firm Transmission Service and Non-Consequential Load Loss.
- 2. Unless specified otherwise, simulate Normal Clearing of faults. Single line to ground (SLG) or three-phase (3Ø) are the fault types that must be evaluated in Stability simulations for the event described. A 3Ø or a double line to ground fault study indicating the criteria are being met is sufficient evidence that a SLG condition would also meet the criteria.
- Bulk Electric System (BES) level references include extra-high voltage (EHV) Facilities defined as greater than 300kV and high voltage (HV) Facilities defined as the 300kV and lower voltage Systems. The designation of EHV and HV is used to distinguish between stated performance criteria allowances for interruption of Firm Transmission Service and Non-Consequential Load Loss.
- 4. Curtailment of Conditional Firm Transmission Service is allowed when the conditions and/or events being studied formed the basis for the Conditional Firm Transmission Service.
- 5. For non-generator step up transformer outage events, the reference voltage, as used in footnote 1, applies to the low-side winding (excluding tertiary windings). For generator and Generator Step Up transformer outage events, the reference voltage apply to the BES connected voltage (high-side of the Generator Step Up transformer). Requirements which are applicable to transformers also apply to variable frequency transformers and phase shifting transformers.
- 6. Requirements which are applicable to shunt devices also apply to FACTS devices that are connected to ground.
- 7. Opening one end of a line section without a fault on a normally networked Transmission circuit such that the line is possibly serving Load radial from a single source point.
- 8. An internal breaker fault means a breaker failing internally, thus creating a System fault which must be cleared by protection on both sides of the breaker.
- 9. An objective of the planning process should be to minimize the likelihood and magnitude of interruption of Firm Transmission Service following Contingency events. Curtailment of Firm Transmission Service is allowed both as a System adjustment (as identified in the column entitled 'Initial Condition') and a corrective action when achieved through the appropriate re-dispatch of resources obligated to re-dispatch, where it can be demonstrated that Facilities, internal and external to the Transmission Planner's planning region, remain within applicable Facility Ratings and the re-dispatch does not result in any Non-Consequential Load Loss. Where limited options for re-dispatch exist, sensitivities associated with the availability of those resources should be considered.
- 10. A stuck breaker means that for a gang-operated breaker, all three phases of the breaker have remained closed. For an independent pole operated (IPO) or an independent pole tripping (IPT) breaker, only one pole is assumed to remain closed. A stuck breaker results in Delayed Fault Clearing.
- 11. Excludes circuits that share a common structure (Planning event P7, Extreme event steady state 2a) or common Right-of-Way (Extreme event, steady state 2b) for 1 mile or less.
- 12. An objective of the planning process is to minimize the likelihood and magnitude of Non-Consequential Load Loss following planning events. In limited circumstances, Non-Consequential Load Loss may be needed throughout the planning horizon to ensure that BES performance requirements are met. However, when Non-Consequential Load Loss is utilized under footnote 12 within the Near-Term Transmission Planning Horizon to address BES performance requirements, such interruption is limited to circumstances where the Non-Consequential Load Loss meets the conditions shown in Attachment 1. In no case can the planned Non-Consequential Load Loss for a non-US Registered Entity should be implemented in a manner that is consistent with, or under the direction of, the applicable governmental authority or its agency in the non-US jurisdiction.
- 13. Applies to the following relay functions or types: pilot (#85), distance (#21), differential (#87), current (#50, 51, and 67), voltage (#27 & 59), directional (#32, & 67), and tripping (#86, & 94).

#### Version 16 Effective 3/15/2019 Page 14 of 32

# C.1.1. Voltage limits at generating stations

Plant auxiliary power equipment requires adequate voltages in order to maintain reliable operation of online generators as well as to provide for reliable startup capability for offline generators. Minimum transmission voltage limits specific to generating stations, are used to ensure plant auxiliary equipment is provided with adequate voltages during both online and offline operation. These limits apply to all classes of generation except wind turbines, for which the system transmission voltage limits are adequate.

In cases where plant auxiliary power is supplied by power transformers not equipped with a load tap changer (LTC) or equivalent voltage control device, the voltage limits at the low side of the Generator Step-up Unit (GSU) are established as 0.95 per unit (minimum) and 1.05 per unit (maximum) unless otherwise specified by the generator owner.

# C.2. Detailed steady-state criteria

# C.2.1. System load level

# C.2.1.1. Peak period studies

The peak load period must be studied to determine future requirements for the transmission system. The basic references for system peak load to be used in studies for future years are the total corporate system load projection provided by the PJM Load Analysis. The actual peak load in any given future year is likely to be higher or lower than the forecast value. A '50/50' forecast provides a peak load projection with a 50% probability that the actual peak will be higher than the level forecasted in that year.

# C.2.1.2. Off-peak period studies

Studies should also be conducted for the purpose of determining risks and consequences at light load or shoulder peak conditions, and for any other period for which system adequacy cannot be evaluated from peak period study results. For these off peak periods, it is assumed that the number of hours of occurrence is substantially higher than the number of hours at or near peak load levels. In addition, severe drought conditions effecting hydro generation plant availability and its impact on the transmission system are also studied.

# C.2.1.3. Critical stress case development and studies

DEV studies the transmission system under both normal and critical system stress conditions. For NERC Category P3 Analysis, DEV will outage the most critical generator in the area being studied, and the resulting power flow case is considered a critical stress case. Under this critical stress case condition, the generator being studied is taken off-line and the remaining generators connected to the DEV System are proportionally increased to make-up for the lost generation. If there are not enough generation resources available within the DEV system, or the use of DEV generation resources would not provide an adequate base case, then PJM generation resources should be utilized to make-up any generation deficiency. This resulting critical stress case is then analyzed for NERC Compliance based on the transmission contingency events listed in Table 1A and Table 1B Category P3(Multiple Contingency).

# C.2.2. Power transfers

All studies should consider known firm power transfers affecting the DEV transmission system. This includes known firm transmission service reservations, including those with rollover rights, as well as parallel path power transfers through the system that may impact system reliability.

DEV is part of a larger regional power system that must be capable of withstanding certain levels of power transfers between or through sub areas of the region. PJM conducts load and generator deliverability tests for specific sub areas as part of the Regional Transmission Expansion Plan (RTEP) process to determine whether the system can accommodate these transfers. The DEV transmission system must meet this transfer Load and Generator Deliverability Requirement. A description of the deliverability testing procedures can be found in PJM Manual 14B – PJM Region Transmission Planning Process. SERC Reliability Corporation also performs transfer limit testing to trend the strength of the transmission system. The results of these studies may also indicate a need to increase transfer strength on the DEV system.

DEV routinely tests the capability of the transmission system to transfer reasonable amounts of power (approximately 2000 MW) in excess of firm purchases, sales and transfers, between and among the Company and the neighboring utilities. Such tests are conducted under two basic scenarios: (1) with all transmission facilities in service at or below the maximum continuous normal rating; and (2) with one transmission circuit or transformer out of service while maintaining the loading on all remaining transmission facilities at or below the maximum continuous emergency rating. Any new facilities connected to the transmission system shall not significantly decrement, the First Contingency Incremental Transfer Capability (FCITC) for transfers between utilities. A FCITC decrement in excess of 5% will be considered significant in most cases.

# C.2.3. Equipment ratings

Allowable loadings for transmission facilities are maintained by DEV in an equipment ratings database. In most cases, equipment is given at least a normal rating and one emergency rating. Some equipment is given multiple emergency ratings. These ratings differ by allowable duration, and are referred to as short-term, long-term, and load dump.

The specific procedure used for determining equipment ratings is outlined in the DEV Transmission Facility Ratings Methodology technical reference document.

# Version 16 Effective 3/15/2019 Page 16 of 32

# C.2.4. Circuit breaker interrupting capability

All Facilities must equal or exceed the fault duty capability necessary to meet system short circuit requirements as determined through short circuit analyses, and shall fully comply with the latest ANSI/IEEE C37 standards for circuit breakers, switch gear, substations, and fuses.

Under normal conditions, the current through a circuit breaker shall not exceed the maximum continuous ratings of that breaker. Further, a circuit breaker shall have sufficient capability to interrupt a close-in single phase fault or three phase-to-ground fault.

# C.2.5. Reactive power planning

The objective of system reactive power planning is to efficiently coordinate the reactive requirements of the transmission and distribution systems to satisfy voltage criteria. Meeting this objective ensures voltage stability, provides generator auxiliary power systems on the distribution system with adequate voltage, and minimizes transmission losses and reactive interchange. System reactive requirements can be controlled by changing generation excitation, operating synchronous condensers, changing transformer tap positions, switching transmission and distribution level static capacitors, switching shunt reactors, and adjusting solid-state reactive compensation devices (SVCs, etc.).

The DEV system is planned so that transmission voltages will be maintained within an acceptable range for normal and emergency conditions as described in Tables 1A and 1B.

Low transmission voltage will lead to undesirable effects in both the transmission and distribution systems, such as higher losses, reduced insulation life, and reduced effectiveness of capacitors. These effects would also increase the difficulty in recovering from low transmission voltage situations. The outage events analyzed to assess voltage adequacy are the same as those listed in Tables 1A and 1B. Distribution facilities which are maintaining power factors at the Transmission Point of Interconnection (POI) that are less than PJM's requirement (per Manual 14B – PJM Region Transmission Planning Process) and DEV's requirement (97.3% lagging) may not be able to maintain satisfactory voltage to customers served from these distribution facilities when transmission system voltages are at or near the lower voltage limits of normal and emergency transmission system operations.

Conversely, high transmission voltages that exceed operating voltage schedules can stress generation, distribution, and transmission equipment and lead to premature fatigue or even failure.

# C.2.6. Radial transmission lines

A Radial transmission line is defined as a single line that has one transmission source, serves load, and does NOT tie to any other transmission source (line or substation).

Unlike load served from a network transmission line having two sources where a downed conductor or structure can be sectionalized for load to be served before repairs are completed, load served from a single source radial transmission line cannot be reenergized until all repairs to the line are completed. Accordingly, loading on single source radial transmission lines will be limited to the following:

- 100 MW Maximum
- 700 MW-Mile Exposure (MW-Mile = Peak MW X Radial Line Length)

Once a radial loading limit exceeds any of these thresholds, an additional transmission source is required. Acceptable transmission source includes but is not limited to the following:

- Network from a separate transmission substation source (Preferred)
- Loop back to same transmission substation source
- Normally open network or loop transmission source

# C.2.7. Network transmission lines – Limitations on direct-connect loads

A network transmission line is defined as one that connects two network transmission sources (connect to other lines & substations) and a "Tap point" is defined as a direct connection of a customer to a network transmission line without addition of any transmission breaker or breakers to <u>split</u> the line. Network transmission lines facilitate network flows and could serve directly connected (Tapped) loads. In the Dominion Energy system, 500, 230, 138, 115 and 69kV lines are considered transmission, and all with the exception of 500kV could be tapped to serve customer load.

In general, the number of direct-connect loads (tapped facilities) should be limited to four (4); however, Good Utility Practice and sound engineering judgment must be exercised in application of this criteria.

# C.2.8. Substation – Limitation on direct-connect loads

The amount of direct-connect load at any substation will be limited to 300MW.

# C.2.9. End of life criteria

Electric transmission infrastructure reaches its end of life as a result of many factors. Some factors such as extreme weather and environmental conditions can *shorten* infrastructure life, while others such as maintenance activities can *lengthen* its life. Once end of life is recognized, in order to ensure continued reliability of the transmission grid, a decision must be made regarding the best way to address this end-of-life asset.

For this criterion, "end of life" is defined as the point at which infrastructure is at risk of failure, and continued maintenance and/or refurbishment of the infrastructure is no longer a valid option to extend the life of the facilities consistent with Good Utility Practice and Dominion Energy Transmission Planning Criteria. The infrastructure to be evaluated under this end-of-life criteria are all transmission lines at 69 kV and above.

The decision point of this criterion is based on satisfying two metrics:

- 1) Facility is nearing, or has already passed, its end of life, and
- *2)* Continued operation risks negatively impacting reliability of the transmission system.

For facilities that satisfy both of these metrics, this criterion mandates either replacing these facilities with in-kind infrastructure that meets current Dominion Energy standards or employing an alternative solution to ensure the Dominion Energy transmission system satisfies all applicable reliability criteria.

Dominion Energy will determine whether the two metrics are satisfied based on the following assessment:

# 1. End of Life

Factors that support a determination that a facility has reached its end of life include, but are not limited to,

- Condition of the facility, taking into consideration:
  - Industry recommendations on service life for the particular type of facility
  - The facility's performance history
    - Documented evidence indicating that the facility has reached the end of its useful service life
  - The facility's maintenance and expense history
- <u>Third-party assessment -</u> While not required, Dominion Energy has the option of seeking a third-party assessment of a facility to determine if industry specialists agree the facility has reached the end of its useful service life

# 2. Reliability and System Impact

The reliability impact of continued operation of a facility will be determined based on a planning power flow assessment and operational performance considerations. The end-of-life determination for a facility to be tested for reliability impact will be assessed by evaluating the impact on short and long term reliability with and without the facility in service in the power flow model. The existing system with the facility removed will become the base case system for which all reliability tests will be performed.

The primary four (4) reliability tests to be considered are:

- 1. NERC Reliability Standards
- 2. PJM Planning Criteria As documented in PJM Manual 14B PJM Region Transmission Planning Process
- 3. Dominion Energy Transmission Planning Criteria contained in this

document

 Operational Performance – This test will be based on input from PJM and/or Dominion Energy System Operations as to the impact on reliably operating the system without the facility

Additional factors to be evaluated under system impact may include but not be limited to:

- 1. Market efficiency
- 2. Stage 1A ARR sufficiency
- 3. Public policy
- 4. SERC reliability criteria

Failure of any of these reliability tests, along with the end-of-life assessment discussed herein, will indicate a violation of the End-of-Life Criteria and necessitate replacement as mandated earlier in this document.

After the end of service life and reliability impact of a facility are evaluated and it has been determined that the facility violates the End-of-Life Criteria, a determination will be made as to whether replacement of the facility is the most effective solution for an identified reliability need, or whether an alternative solution should be employed. One or more of the following factors may be considered in determining whether to proceed with facility replacement or with an alternative solution:

- Planning analysis which may include power flow studies
- Operational performance
- System Reliability
- · Effectiveness of the alternative as compared to the replacement facility
- Future load growth in the study area
- Future transmission projects or interconnects that impact the study area
- Constructability comparison
- Cost comparison

#### C.3. Selection of generation dispatch used in DEV Power Flow Studies

The PJM RTEP Power Flow case for the year under study is the starting point for DEV Power Flow Studies. The generation dispatch in the PJM RTEP case is developed based on PJM's Study Methodologies as outlined in PJM's Manual 14B. DEV may modify this generation dispatch to develop a Base Power Flow case which is used as the starting point of DEV's Analysis to support PJM's RTEP Study Process. These modifications may include the following:

 Generating Units which have significant environmental limitations which severely limit the units availability in real time operation may be modeled as

being off-line.

- Generating Units which have been identified in DEV's IRP Filings in Virginia/North Carolina as being "Potential" Generation Retirements may be modeled as being off-line.
- Known outages of a generating unit which are consistent with NERC TPL-001 selection criteria may be modeled as being off-line.

The base power flow dispatch provided to DEV in a power flow case which is used to analyze the reliability impact (Feasibility Study/System Impact Study) of generators in the PJM Generation Queue is typically modified by DEV. Since the case provided to DEV typically has all queue generation located on the DEV System as being off-line, DEV will modify the generation dispatch for power flow studies. Specifically, will turn on all higher order queue generators then the queue request under study as the base case condition for the generator under study. To account for this additional generation, generators located on the PJM System are proportional re-dispatched to account for this additional generation.

# D. Transmission planning, system stability criteria

# D.1. Introduction

There are many different variables that affect the results of a stability study. These factors include:

- pre-fault and post-fault system configuration
- system load level and load characteristics
- generation dispatch patterns and unit dynamic characteristics
- · type and locations of system disturbances
- total fault clearing time(s)
- · the amount of flow interrupted as a result of switching out a faulted element
- · level of detail and accuracy of available models/data
- · proximity to other generating units

Many of these factors change in the operating arena on a continuous basis. Every effort should be made to evaluate the most severe, yet credible/probable combinations of line/faults/equipment failures in planning arena. If the system operating condition is known a couple of days in advance of any scheduled maintenance outage, a more accurate assessment/ analysis can be performed which could be more restrictive or less restrictive than the ones studied in planning arena.

# D.2. General criteria

The criteria for performing stability simulations near generating stations on the Dominion Energy Virginia (DEV) system supports PJM in its role as Transmission Planner (TP).

For breaker failure backup clearing, it will be assumed that only one pole fails to operate where

three separate mechanisms (independent poles) are available as in the case of all 500 kV breakers on DEV system. Stability analysis is not required for units that are not part of the Bulk Electric System (BES) as defined by NERC. In general, generators rated 20 MVA or less in size and with aggregate plant capacity less than or equal to 75 MVA are not part of the BES. The results of stability studies are generally valid for about 15 to 20 seconds following a disturbance. Therefore, disturbance simulations will be carried out to 15 to 20 seconds. The transformer taps are fixed at the pre-disturbance level throughout the simulations since the tap movements take more than 30 seconds.

# D.3. Study horizon

Generally, stability studies are performed for the near-term horizon (1-5 years) since the required corrections, if and when warranted, are generally of the following types and can be implemented in a relatively short period of time:

- Shorten the fault clearing time(s) by resetting breaker failure timer(s), replacing relays, or replacing circuit breakers
- Add dual primary protection schemes to mitigate delayed clearing
- Add or tune a power system stabilizer (PSS)
- Apply Remedial Action Scheme (RAS)
- Add out-of-step (OOS) protection
- Install series capacitors
- Establish operating restrictions for a contingency period of short duration covering forced or maintenance outages.

There are several other reasons stability studies concentrate in the near-term horizon. The system representation (load, generation, etc.) in study base cases for a long-term horizon (6-10 years) is inherently uncertain from a dynamics perspective. Some of the future generation in these cases may not materialize and hence may yield erroneous results indicating either unnecessary improvements or a false sense of security. A large number of merchant plants have been delayed or cancelled altogether in the past. The delays or cancellations of such merchant plants require re-studies. The further one goes out in study time horizon, the possible combinations of such uncertainties multiply. Since stability studies are very time consuming, extensive long-term studies become impractical. SERC has recognized this and has acknowledged in its supplement that stability studies for a longer-term planning horizon are not required for full compliance except for new generation that falls into the long-term study horizon.

For identified stability problems that cannot be remedied with the aforementioned solutions, i.e. the probability of the operating condition and/or contingency occurring is deemed high, new transmission infrastructure may be required to ensure stability for safe and reliable operation of the electric grid. In cases where a near-term horizon stability study indicates a potential correction that may require much longer lead time, such as requiring a new transmission line, or if a Generation Interconnection request is for a long-term horizon, the long-term stability study would then be performed.

#### Version 16 Effective 3/15/2019 Page 22 of 32

# D.4. Study cycle

It is not practical to perform dynamic simulations for all generating plants every year for all categories listed in Table 1 of the TPL Standards. Therefore, PJM will perform simulations to cover all generating plants over a three-year study cycle unless changing system conditions warrant a shorter interval. In case of a new generation addition or a capacity addition to an existing plant, it should be properly studied prior to its in-service date. Stability analysis in such cases will first be performed by PJM as the Generation Interconnection queue administrator. DEV will review the results of PJM stability analysis and perform any subsequent analysis, if and when deemed necessary.

# D.5. Dynamics data collection

PJM will collect dynamic data and submit to SERC as outlined in the Eastern Interconnection Reliability Assessment Group (ERAG) Multi-Regional Modeling Working Group (MMWG) Procedural Manual.

Dominion Energy Electric Transmission Planning is responsible for submitting dynamic data to PJM for Transmission Owner equipment with dynamic characteristics such as SVCs and STATCOMs.

# D.6. Selection of a reference power flow case

Planning arena studies for stability analysis are performed using an estimated snap-shot of the expected system operating conditions for the study period selected. The power flow base cases that match dynamics data for the Eastern Interconnection are prepared by the Multiregional Modeling Working Group (MMWG) for selected years on an annual basis. The dynamically reduced SERC cases are prepared using three of the MMWG cases, generally every other year. The internal DEV power flow base cases are updated on a regular basis to incorporate the most updated information on facility ratings/upgrades, load, etc.

It is a general practice to incorporate the DEV system representation from the most updated internal base case for the study year into one of the SERC reduced base cases depending on the study year. A validation review is then performed on the combined case to make sure that the stability case thus prepared initializes error free and a 30-second "Drift Run" is performed to insure that the steady-state stability is maintained. This is steady-state condition, NERC TPL-001, Category PO.

# D.7. Selection of generation dispatch

The economic dispatch used in internal power flow base cases may not represent conditions which could pose a stability risk. Therefore, the power flow cases may be stressed to test the area or generation under study. For example, increased transfers near generating facilities can have an adverse impact on transient stability and therefore need to be accounted for when creating stressed yet credible system dispatches for the stability studies.

Unit dispatch for transient stability studies also differs from the conventional power flow analysis. Units in the study region are generally dispatched to maximum real power output (Pmax), and at leading power factor at the low side of the GSU provided that the equipment voltage limits are not violated. Specifically, units under study and electrically close that fall

within the study region² should be dispatched to absorb approximately 50% of the minimum reactive capability (Qmin) without violating the terminal voltage limits (generally 0.95 pu).

# D.8. Selection of contingencies

In general, contingency simulations are based on Table 1 of NERC Reliability Standard TPL-001-4. However, all contingencies may not be applicable in a given study due to either breaker arrangement or type of protection scheme employed. Also, if the stability is maintained for a more severe fault condition (e.g. three-phase or two-phase-to-ground), it is not necessary to simulate a fault of less severity (e.g. single-phase-to-ground). If identical equipment is removed from service due to a fault at various locations in a substation, leaving identical post-fault/postswitching system condition, it is not necessary to apply the fault at more than one of such locations. Much depends on the type of station equipment, station arrangement and type of protection schemes applied at a given location.

As for simulating transmission line faults, if there are only two lines from a plant, both should be tested using different power flow cases with different dispatch patterns (see Selection of Generation Dispatch above), faulting the line with highest flow in each case. For a multiple line station, the line carrying the highest power should be the first one to be selected and the remaining lines(s) should be selected based on system experience and sound engineering judgment. In case of any doubt, faults on all lines may need to be simulated. If stability is maintained for a more severe fault scenario (e.g. 3-phase fault), a less severe fault scenario (e.g. SLG) need not be simulated everything else remaining same.

If a line length is short, it may be necessary to check contingencies at the next station. For breaker-failure scenarios, contingencies are selected that would simulate the weakest system condition based on station breaker arrangement and system knowledge. If the failed breaker would trip a generating unit(s) due to breaker arrangement, that contingency may be omitted depending on the results of more severe contingencies.

The voltage stability analysis shall first be performed by power flow studies. Once potential voltage instability problem is identified in a power flow study (or observed in the field), a time-domain analysis shall then be performed for confirmation and mitigation of the problem.

# D.9. What to look for in study results

Checks are performed to make sure all on-line units initialize properly without any error messages. A 30-second "drift run" should be performed prior to any stability analysis to ensure successful initialization. This corresponds to the steady-state condition defined as Category "P0" in Table 1 of NERC TPL-001.

Checks are performed to make sure the system is stable with acceptable voltages for selected contingencies, and the damping ratio is 3% or better for inter-area oscillations and 4% or better for local mode oscillations. Solutions identified in section D3 are considered for situations where transient voltage or oscillation damping is not met, or if transient stability is not maintained. If the inter-area oscillations have an unacceptable damping ratio and other entities' units are found to be participating significantly, then it may require a joint study between the affected parties. Power system stabilizers are recommended, especially if

² Engineering judgment must be applied in selecting the generators that *electrically close* to unit(s) under study.

oscillation damping criteria is marginally satisfied. N-1-1 contingencies with no redispatch are considered to ensure transient stability is maintained with positive damping. This provides a safety margin for any planned conditions and/or unexpected contingencies that could occur. If the oscillation damping is positive but does not meet the criteria above, operation restriction may be applied to ensure sufficient oscillation damping for both local and inter-area modes of oscillations. Generator out-of-step (OOS) protection is highly recommended on all BES generating units to ensure the protection and safety of the generator itself.

For system conditions and selected contingencies that results in generator transient instability, additional analysis is performed to quantify the risk of cascading events and potential for blackout conditions. Cascading failure analysis will consider a risk-based study of the loss of the generating unit based on expected protection and control as well as unexpected tripping. Depending on the size and expanse of the affected area, other solution options, operating restrictions, or transmission investments may be considered.

Since the transmission planning studies are performed for an estimated operating condition for a future date, the post disturbance thermal loading and voltage levels may vary widely when real disturbance occurs. This is because the load, generation dispatch and available reactive resources in real time may be quite different than the ones studied in planning arena. For this reason, the thermal limits and voltage conditions should be checked using the real-time contingency analysis tool.

# D.10. Implementation procedure

Stability analysis may warrant corrections or additional requirements in order to meet the stability criteria listed in this document. The implementation procedure for such items depends on the type of corrections warranted and the nature of installation. The following is a general guideline for Transmission Planning to get such fixes implemented.

# D.10.1. For existing installations

- Corrections related to transmission fault clearing times near generating stations that can be resolved by changes to existing relay set points shall be communicated to Electric Transmissions Circuit Calculations group for implementation. PJM should also be informed as to the results of this analysis.
- A Capital project shall be generated for corrections related to transmission fault clearing times near generation stations that require baseline improvements such as new or additional equipment. All Capital projects shall first be validated, approved and assigned cost and construction responsibility by the PJM Regional Transmission Expansion Planning (RTEP) process.
- Output restrictions and/or unit trip(s) for the next pending contingency condition identified by DEV in routine planning studies, will be communicated to the SOC. In turn, the SOC shall inform PJM for implementation as appropriate.
- In case of scheduled maintenance or construction outages, the results/recommendations shall be conveyed to the person through whom

the stability analysis request came to the stability engineers. For example, if a Project Manager requests such analysis to the load Planning Engineer, the stability engineer shall forward his analysis to the load Planning Engineer. If SOC requests such analysis, the results/recommendations shall be forwarded to SOC which in turn shall inform PJM for implementation as appropriate.

# D.10.2. For new installations or capacity additions

New generating resources are studied as part of the PJM Generation Interconnection Queue process. PJM shall document the fault clearing time requirements and/or any additional protection requirements in its Impact Study report. PJM shall also communicate the requirements on the generation side to the GO requesting the Interconnection in PJM Queue. For the transmission related requirements, Dominion Energy shall communicate these to the Substation Engineering group for design and implementation.

# E. Nuclear plant interface coordination

# E.1. Introduction

Nuclear power plants have special needs for backup station service not found in other plants. In order to safely shut down a nuclear unit, the station service must have an adequate supply of power under tight voltage tolerances to the safety systems. Although nuclear plants have diesel generators as a backup supply, their preferred power source is the transmission grid. This allows multiple levels of redundancy which is the hallmark of the nuclear plant's endeavor to the highest level of safety.

# E.2. NRC regulations

The Federal Nuclear Regulatory Commission (NRC) lays out certain regulations on the design and operation of Nuclear Plants. **Appendix A of Regulation 10 CFR 50** "General Design Criteria for Nuclear Power Plants" states:

"Criterion 17--Electric power systems. An onsite electric power system and an offsite electric power system shall be provided to permit functioning of structures, systems, and components important to safety. The safety function for each system (assuming the other system is not functioning) shall be to provide sufficient capacity and capability to assure that (1) specified acceptable fuel design limits and design conditions of the reactor coolant pressure boundary are not exceeded as a result of anticipated operational occurrences and (2) the core is cooled and containment integrity and other vital functions are maintained in the event of postulated accidents.

The onsite electric power supplies, including the batteries, and the onsite electric distribution system, shall have sufficient independence, redundancy, and testability to perform their safety functions assuming a single failure.

*Electric power from the transmission network to the onsite electric distribution system shall be supplied by two physically independent circuits (not necessarily on separate* 

rights of way) designed and located so as to minimize to the extent practical the likelihood of their simultaneous failure under operating and postulated accident and environmental conditions. A switchyard common to both circuits is acceptable. Each of these circuits shall be designed to be available in sufficient time following a loss of all onsite alternating current power supplies and the other offsite electric power circuit, to assure that specified acceptable fuel design limits and design conditions of the reactor coolant pressure boundary are not exceeded. One of these circuits shall be designed to be available within a few seconds following a loss-of-coolant accident to assure that core cooling, containment integrity, and other vital safety functions are maintained.

Provisions shall be included to minimize the probability of losing electric power from any of the remaining supplies as a result of, or coincident with, the loss of power generated by the nuclear power unit, the loss of power from the transmission network, or the loss of power from the onsite electric power supplies."

The above regulation General Design Criterion 17 is often abbreviated "GDC-17."

# E.3. Design requirements

PJM and Dominion Energy Electric Transmission Planning will design the system to meet the GDC-17 requirements. In order to provide adequate voltage to safety systems, the Nuclear group periodically provides Nuclear Plant Interface Requirements (NPIR) to Dominion Energy Electric Transmission. Dominion Energy transmission planners should consult the latest version of applicable Interface Agreements between Dominion Energy Electric Transmission and the nuclear plants for applicable normal and emergency voltage limits, voltage drops and contingency scenarios.

Because emergency systems require adequate voltage immediately following an event, transmission LTC's should be locked post-contingency.

For violations of the NPIRs, the transmission planner will contact the GDC-17 coordinator for Electric Transmission Planning. PJM/Dominion Energy Electric Transmission Planning will notify Dominion Energy Nuclear of any NPIR criteria violations. Transmission study criteria violations based on standard PJM/Dominion Energy criteria testing will be handled by the procedures described in the PJM agreements and manuals. For study violations that are beyond applicable PJM criteria, Dominion Energy Nuclear will determine if any further action is required and respond to Dominion Energy Electric Transmission Planning. Dominion Energy Electric Transmission Planning. Dominion Energy Electric Transmission Planning. Nuclear.

For contingencies more severe than those within the NPIRs, standard planning voltage range criteria will be applied.

# E.4. Underfrequency studies

The underfrequency load shed program (UFLS) should be designed to coordinate with station underfrequency trip settings. The North Anna reactor coolant pump (RCP) is set to trip at 56.55 Hz with a time delay of 100 milliseconds. The Surry reactor coolant pump (RCP) is set to trip at 58.05 Hz with a time delay of 100 milliseconds.

# E.5. Angular stability studies

Angular stability studies are performed on nuclear plants using the standard methodology used for any synchronous machine. The results of these studies should be forwarded to Nuclear Engineering.

# E.6. System analysis protocol

The Nuclear Switchyard Interface Agreement System Analysis Protocol (CO-AGREE-000-IA1-4 or its successor) outlines the types and frequency of studies which may be performed in support of the nuclear plant. It also specifies the type of communications necessary and the frequency of the analysis. In order to show compliance with NERC Standard NUC-001-2 (or its successor), the GDC-17 coordinator shall retain evidence of communications with the appropriate nuclear contacts.

# E.7. Changes to the system

The NERC standard NUC-001-2, R8 states that the "...Transmission Entities shall inform the Nuclear Plant Generator Operator of actual or proposed changes to electric system design, configuration, operations, limits, protection systems, or capabilities that may impact the ability of the electric system to meet the NPIRs."

# F. References

- NERC Planning Standard TPL-001 .
- Transmission System Performance SERC Supplement
- NERC Reliability Standard NUC-001
- Nuclear Switchyard Interface Agreement CO-AGREE-000-IA1
- Nuclear Switchyard Interface Agreement System Analysis Protocol CO-AGREE-000-IA1-4
- PJM Manual 39 Nuclear Plant Interface Coordination
- Manual 14B PJM Region Transmission Planning Process

# G. Abbreviations & definitions

- AAR Auction Revenue Rights (see PJM Manual 06 Financial Transmission Rights for more details)
- ANSI American National Standards Institute
- ERAG Eastern Interconnection Reliability Assessment Group
- FCITC First Contingency Incremental Transfer Capability
- Good Utility Practice Any of the practices, methods, and acts engaged in or approved by a significant portion of the electric utility industry during the relevant time period, or any of the practices, methods and acts that, in the exercise of reasonable judgment in light of the facts known at the time the decision is made, could have been expected to accomplish the desired result at a reasonable cost consistent with good business practices, reliability, safety and expedition.
- GSU Generator Step-up Transformer
- IEEE Institute of Electrical and Electronic Engineers
- MMWG Multi-Regional Modeling Working Group
- NERC North American Electric Reliability Corporation
- POI Point of Interconnection
- RTO Regional Transmission Organization
- PSS Power System Stabilizer
- SERC SERC Reliability Corporation

# H. Revision History

Revision Date	Revision #	Description	Revised By	Effective Date
08/24/1999	0.0*	Original document created to meet the requirements of NERC Planning Standard I.C.S1.M1.	ET Planning staff	08/24/1999
05/01/2001	1.0*	See Details for Revision 1.0 below	ET Planning staff	05/01/2001
09/07/2005	2.0*	See Details for Revision 2.0 below	ET Planning staff	09/07/2005
05/29/2007	3.0*	See Details for Revision 3.0 below	ET Planning staff	05/29/2007
12/22/2009	4.0*	See Details for Revision 4.0 below	ET Planning staff	12/22/2009
12/22/2011	5.0*	See Details for Revision 5.0 below	William F. Bigdely	12/22/2011
10/10/2012	6.0	See Details for Revision 6.0 below	William F. Bigdely	10/10/2012
11/22/2013	7.0	See Details for Revision 7.0 below	William F. Bigdely	11/22/2013
03/31/2014	8.0	See Details for Revision 8.0 below	William F. Bigdely	03/31/2014
07/16/2014	9.0	See Details for Revision 9.0 below	William F. Bigdely	07/16/2014
01/09/2015	10.0	See Details for Revision 10.0 below	William F. Bigdely	01/15/2015
03/26/2015	11.0	See Details for Revision 11.0 below	William F. Bigdely	03/27/2015
12/15/2015	12.0	See Details for Revision 12.0 below	William F. Bigdely	01/01/2016
05/15/2017	13.0	See Details for Revision 13.0 below	William F. Bigdely	06/01/2017
03/29/2018	14.0	See Details for Revision 14.0 below	William F. Bigdely	04/01/2018
12/13/2018	15.0	See Details for Revision 15.0 below	William F. Bigdely 01/01/2019	
03/11/2019	16.0	See Details for Revision 16.0 below	William F. Bigdely	03/15/2019

*For these revisions, the planning guideline was an attachment within the DEV facilities connection requirements document. Associated comments for these revisions do not necessarily apply to the contents of the planning guideline specifically.

#### **Details for Revision 1.0**

Revised to include information regarding Dominion's generation interconnection procedures/process

#### **Details for Revision 2.0**

Revised to reflect transition from old NERC Planning Standards to NERC Reliability Standards, including changing the naming convention of all referenced standards throughout the document.

#### **Details for Revision 3.0**

- Revised to reflect the following:
  - o Updates to NERC Reliability Standards
  - o Dominion's PJM Membership
  - o References to new SERC regional studies processes

#### **Details for Revision 4.0**

- · Revised to reflect the following :
  - o PJM Generation Queue Changes Section 4
  - o General Revisions all sections

#### Version 16 Effective 3/15/2019 Page 30 of 32

#### Details for Revision 5.0

- · Revised the following:
  - Section 2.12: Clarified content regarding synchronizing of facilities.
  - Exhibit A: Changed loading criteria to not exceed emergency rating of transmission facility.
  - Various errata changes.

#### **Details for Revision 6.0**

- · Overhaul and expansion of entire Planning Criteria.
- · Document previously called "Transmission Planning Guidelines"

#### **Details for Revision 7.0**

- Updated to include future reference to TPL-001-4 (R1 and R7 NERC enforcement date of 01-01-2015)
- Updated titles for approval process
- Various errata changes

#### **Details for Revision 8.0**

- Expanded description for Section G.1. TAPPING LINE BELOW 100 MW LOAD to emphasize the requirement of a fused bypass arrangement.
- · Recreated diagrams throughout for consistency of style.

#### **Details for Revision 9.0**

- · Added section C.2.8 End of life criteria
- · Reformatted headers to improve PDF navigation via bookmarks.

#### **Details for Revision 10.0**

- · Clarifications and annual review.
- · Reformatted approval area and moved to title page.
- · Reformatted Revision History and moved to end of document (Section J).
- Modified throughout to reflect NERC Reliability Standard TPL-001-4, including replacement of Tables 1A and 1B and deletion of "Category D Multiple Testing Requirements" (previously Section C.2.7 in Revision 9.0 document).
- · Section C.2.6 Radial lines: Expanded to introduce new criteria and metrics.
- Section C.2.7 Network transmission lines Limitations on direct-connect loads: Inserted new section.
- Section D.4 Study cycle Clarified that PJM (not DEV) performs simulations to cover all generating plants over a three-year study cycle (not five-year).
- · Section G: Modified electrical arrangements and clarified lines of demarcation.

#### **Details for Revision 11.0**

- · Section C1, Table 1A Notes Added Note "C"
- Section C1, Table 1B Notes Added Note "G"; re-numbered other notes to differentiate from Table 1A [Note G became Note I in v15]
- · Section D7 Selection of generation dispatch Rephrased the content to improve clarity.
# Version 16 Effective 3/15/2019 Page 31 of 32

### **Details for Revision 12.0**

- Changed references of Special Protection System (SPS) to Remedial Action Scheme (RAS).
- Tables 1A and 1B: Removed references to DC line (does not apply to Dominion), and
- Table 1A, Note B and Table 1B, Note F: Clarified "may NOT be required if the loss of consequential and non-consequential load up to 300MW achieves a return to the STE rating."
- · Section E.3. Updated NPIR Limits.
- Former Section F (Transmission Line Connections Generation) and former Section G (Load Criteria – End User) have been removed from this document and integrated into the Facility Interconnection Requirements as Sections 5 and 6.
- · Section G Abbreviations & definitions: Added definition of "Good Utility Practice".

# **Details for Revision 13.0**

- · Revised references for new Dominion Energy corporate identity.
- Section C.1. Added Table 1C Steady-State Performance EXTREME Events and Dominion Energy CRITERIA, and associated notes; refined notes for Tables 1A and 1B.
- · Added Section C.2.8. Substation Limitation on direct-connect loads.

# **Details for Revision 14.0**

- · Clarified that some notes to Tables A, B and C are "Dominion Energy" notes.
- Edited Dominion Energy Note "B" for Table 1A and Note "F" for Table 1B to remove phrase "and non-consequential" [load]. [Note F became Note H in v15]
- Edited Dominion Energy Note "C" for Table 1A and Note "G" for Table 1B to refer to new section C.2.1.3. [Note G became Note I in v15]
- · Added Section C.2.1.3 Critical stress case development and studies

# **Details for Revision 15.0**

- · Reviewed to ensure alignment with Facility Interconnection Requirements, v15, effective 1/1/2019.
- Tables 1A, 1B, 1C: Added new notes to Tables 1A and 1B, requiring re-labeling of notes in Tables 1A, 1B and 1C as follows:

Previously	Now
А	А
В	B (edited)
-	C (NEW)
С	D
-	E (NEW)
D	F

reviously	Now	
E	G	
F	Н	
G	Ι	
-	J (NEW)	
Н	К	
I	L	

Previously	Now
J	М
K	Ν
L	0
М	Р
Ν	Q

- Section C.1. Planning principles and standards Simplified reference to Nuclear generation redispatch.
- · Section C.2.9. End of life criteria Edited discussion and list of factors considered.
- · Section C.3. Selection of generation dispatch used in DEV Power Flow Studies New section.
- · Section E Nuclear plant interface coordination:
  - E.3. Design Requirements Removed tables of NPIR voltage limits, voltage drops, and contingency scenarios.
  - E.7. Changes to the system Simplified content to contain only the NUC-001-2, R8 quotation.

# **Details for Revision 16.0**

- Table 1A, Note B: Deleted specific reference to 230 kV (table applies to several voltages).
- Table 1B, Notes F & G: Removed specific references to 500 kV (500 kV is inherent to this table).

# FERC Form 715

# Part 5 – Transmission Planning Assessment Practices

# Virginia Electric & Power CO (VEPCO) FERC Form 715 Part V – Transmission Planning Assessment Practices

# General procedures to assess the transmission system:

Base case parameters for the conditions under study are established. The most common situation studied is the projected peak load, summer peak and winter peak, for a particular year. Studies at other than peak loads, off-peak and light load conditions, are also conducted. Loads, generation dispatch, power interchange, and system improvements are modeled in the base case for the year and conditions under study. These models are developed to represent the composite transmission/generation system into the future, although not for every year or season.

Such studies analyze the effect of single contingency outages of transmission lines, transformers, and generation units. In addition, the effects of less probable contingencies are also analyzed. These less probable contingencies involve outages such as loss of all generating units at a station, loss of all transmission lines on a common right-of-way, and other events resulting in loss of two or more components. If violations of the Planning Criteria are identified by the studies, alternative solutions are developed and analyzed. The recommended alternative plan then becomes part of the 10-year Transmission Plan. Similar studies are also conducted by PJM in the process of developing the PJM Regional Transmission Plan (RTEP).

Special studies are required to analyze particular situations. Some examples are transient stability, voltage and reactive control, steady state stability, and inertial power flow studies.

In performing such studies, VEPCO follows the practices outlined in the NERC Reliability Standards, PJM Planning Criteria, and the VEPCO Transmission Planning Criteria described in Part IV.

# FERC Form 715

**Part 6 – Evaluation of Transmission System Performance** 

As Virginia Electric and Power Company's 2019 FERC Form 715 was filed by PJM, Part 6 to the Form 715 is not specific to the Company, and is therefore not being provided with the Company's 2019 IRP submittal.

# **CERTIFICATE OF SERVICE**

I hereby certify that a copy of the foregoing <u>2019 Integrated Resource Plan</u> <u>Update Filing</u>, Public version, submitted in Docket No. E-100, Sub 157 has been delivered via U.S. mail or electronically upon all parties of record in the above-captioned docket.

This, the 29th day of August, 2019.

/s/Andrea R. Kells

Andrea R. Kells McGuireWoods LLP 434 Fayetteville Street, Suite 2600 (27601) P.O. Box 27507 Raleigh, North Carolina 27611 Telephone: (919) 755-6614 *akells@mcguirewoods.com* 

Attorney for Virginia Electric and Power Company, d/b/a Dominion Energy North Carolina