Dominion Resources Services, Inc. Law Department 120 Tredegar St.- Riverside 2, Richmond, VA 23219

Web Address: www.dom.com

Horace P. Payne, Jr. Senior Counsel Direct: (804) 819-2682 Fax: (804) 819-2183 Horace.p.payne@dom.com

August 31, 2011

Dominio OFFICIAL COPY FILED

SEP @ 1 2011

Clerk's Office N.C. Utilities Commission

VIA OVERNIGHT DELIVERY

Ms, Renne Vance. Chief Clerk North Carolina Utilities Commission 430 North Salisbury Street **Dobbs Building** Raleigh, North Carolina 27603-5918

Re: Integrated Resource Plan of Dominion North Carolina Power Docket No. E-100, Sub 128

Dear Ms. Vance:

Watson

Sircen

Haver

tiburn

Encern

an

iæ Or.

3/08/

ZECCN

Acek

Kiti

Comm Pursuant to N.C. Gen. Stat. § 62-2 and 62-110.1 and Commission Rule R8-60(h)(2), Virginia Electric and Power Company d/b/a Dominion North Carolina Power ("DNCP" or "Company") encloses for filing with the Commission its updates to the Integrated Resource Plan for 2011 (the "2011 IRP"). Pursuant to Rule R8-67(b), DNCP's Renewable Energy and Efficiency Portfolio Standards ("REPS") Compliance Plan is being filed with this IRP as "NC IRP Addendum 1."

Portions of the 2011 IRP contain confidential information regarding the Company's forecasts for market commodity prices, busbar costs and assumptions, construction forecasts and other proprietary information. If this information were to be publicly disclosed, it would allow competitors, vendors and other market participants to gain an undue advantage, which may ultimately result in harm to ratepayers. Therefore, enclosed are the original and thirty (30) copies of the 2011 IRP with the confidential information redacted. In addition, enclosed under separate cover marked as "Confidential" are the original and seventeen (17) copies of the unredacted 2011 IRP. The highlighted portions in either yellow Some or green shall be considered confidential. DNCP will make this information available to other parties pursuant to an appropriate nondisclosure agreement. These documents are to be *filed under seal*.

In addition, the FERC Form 715 is considered *confidential* because it contains critical energy infrastructure information, including the Company's transmission capacity and known constraints. In keeping with our practice last year, the Company is filing four (4) copies of the most recent FERC Form 715 under seal and respectfully requests that the Commission treat this information as confidential and protect it from public disclosure pursuant to N.C. General Stat. § 132-1.2.

This 2011 IRP is also being filed with the Virginia State Corporation Commission pursuant to Va. Code § 56-597. North Carolina and Virginia have similar requirements for IRP filings, but each requires its biennial filing in alternate years. Pursuant to Rule R8-60(h)(2), the major changes from the 2010 IRP to this 2011 IRP are:

The annual load forecast is updated. ٠

Ms. Renne Vance August 31, 2011 Page 2

- Plan includes the conversions of three coal-fired power stations, Altavista, Hopewell, and Southampton, to biomass fuel by the end of 2013, subject to regulatory approval.
- Also, the Plan includes additional efforts to reduce emissions from the Company's existing generation flect include plans to repower its coal-fired Bremo Units 3 and 4 with respective summer capacities of 71 MW and 156 MW in 2014, subject to regulatory approval.
- Based on the draft and final form of environmental regulations along with current market conditions, the Plan includes the following impacts to the existing generating resources in terms of retrofitting, repowering and retiring, which may be revised when the regulations are finalized:
 - Retrofit: Possum Point Unit 5 (779 MW) and Yorktown Unit 3 (804 MW) are in the Plan to be retrofitted with a SNCR unit by 2015.
 - o Repower: Coal-fired Yorktown Unit 2 (156 MW) is in the Plan to be repowered by natural gas and oil by 2015.
 - Retire: Chesapeake Energy Center Units 1 (111 MW) and 2 (111 MW) and Yorktown Unit 1 (159 MW) are in the Plan to be retired by 2015. Chesapeake Energy Center Units 3 (156 MW) and 4 (217 MW) are in the Plan to be retired by 2016. Yorktown Units 2 (156 MW) and 3 (804 MW) are in the Plan to be retired by 2022. Appendix 3J lists the retirements included in the Plan.
- The Plan includes six Demand-Side Management Programs filed for approval in Virginia, including a Residential Bundle Program.
- The AMI meter deployment plans have changed.

Attached to this letter is an index identifying the provisions of the Commission's IRP requirements under Rules R8-67, R8-62(p) and the corresponding sections of the 2011 IRP.

Pursuant to the Commission's Order in Docket No. E-100, Sub 109, the Company will meet with the Public Staff within 30 days of the filing date to discuss detailed information concerning its transmission line inter-tie capabilities, transmission line loading constraints, and planned new construction and upgrades within their respective control areas for the planning period under consideration.

Please do not hesitate to contact me if you have any questions.

.

Very truly yours, Horace P. Payne, J

Senior Counsel

Enclosures

Rule	Section
E-100, Sub 109, 3	4.2.2 - Long-Term Capacity Planning Process - Reserve Requirements
E-100, Sub 109, 4	Filed Separately Under Seal in this Docket
E-100, Sub 109, 5	Addressed in Cover Letter
E-100, Sub 109, 6	Appendix 3B - Other Generation Units
E-100, Sub 109, 7	5.1.3 - Assessment of Alternative Supply-Side Resources
E-100, Sub 109, 7	5.2 - Levelized Busbar Costs
E-100, Sub 109, 8	3.1.7 - Wholesale & Purchased Power
E-100, Sub 109, 9	3.2.7 - Proposed DSM Programs
E-100, Sub 109, 9	5.5.1 - Standard DSM Tests
E-100, Sub 109, 9	5.5.2 - Future DSM Programs
E-100, Sub 109, 9	5.5.3 - Future DSM Programs' Cost-Effectiveness Results
E-100, Sub 84, 5	2.4 - Economic Development Rates
Rule R8-60 (c)	3.2.2 - Current DSM Tariffs
Rule R8-60 (c)	4.3 - Renewable Energy Requirements
Rule R8-60 (c)	4.3.2 - North Carolina REPS Plan
Rule R8-60 (c)	5.1.3 - Assessment of Alternative Supply-Side Resources
Rule R8-60 (c)	5.4 - Alternative Energy Resources & Technologies
Rule R8-60 (c) (1)	2.3 - Summer & Winter Peak Demand & Annual Energy
Rule R8-60 (c) (1)	Appendix 2H - Projected Summer & Winter Peak Load & Energy Forecast
Rule R8-60 (c) (1)	Appendix 21 - Required Reserve Margin
Rule R8-60 (c) (2)	5.1 - Future Supply-Side Resources
Rule R8-60 (c) (2)	5.1.1 - Dispatchable Resources
Rule R8-60 (c) (2)	5.1.2 - Non-Dispatchable Resources
Rule R8-60 (c) (2)	5.1.3 - Assessment of Alternative Supply-Side Resources
Rule R8-60 (c) (2)	6.1 - IRP Process
Rule R8-60 (d)	3.1.7 - Wholesale & Purchased Power
Rule R8-60 (e)	5.1.2 - Non-Dispatchable Resources
Rule R8-60 (e)	5.1.3 - Assessment of Alternative Supply-Side Resources
Rule R8-60 (e)	5.4 - Alternative Energy Resources & Technologies
Rule R8-60 (f)	3.2 - Demand-Side Resources
Rule R8-60 (f)	3.2.1 - DSM Program Definitions
Rule R8-60 (f)	3.2.2 - Current DSM Tariffs
Rule R8-60 (f)	3.2.6 - Approved DSM Programs
Rule R8-60 (f)	3.2.7 - Proposed DSM Programs
Rule R8-60 (f)	5.5 - Future DSM Initiatives
Rule R8-60 (f)	5.5.1 - Standard DSM Tests
Rule R8-60 (f)	5.5.2 - Future DSM Programs
Rule R8-60 (f)	5.5.3 - Future DSM Programs' Cost-Effectiveness Results
Rule R8-60 (g)	Chapter 6 - Development of the Integrated Resource Plan
Rule R8-60 (h) (3)	7.2 - Future Actions (2012 - 2016)
Rule R8-60 (h) (3)	Chapter 7 - Short-Term Action Plan
	NC IRP Addendum 1 "NC REPS Compliance Plan"
Rule R8-60 (h) (4)	2.1 - Forecast Methods
Rule R8-60 (i) (1)	
Rule_R8-60 (i) (1) (i)	2.2 - History & Forecast by Customer Class & Assumptions

-

•

Dule D2 60 (i) (1) (i)	Assesseding 2.4 Tastal Calas hu Quatamas Olass
Rule R8-60 (i) (1) (i)	Appendix 2A - Total Sales by Customer Class
Rule R8-60 (i) (1) (i)	Appendix 2C - North Carolina Sales by Customer Class
Rule R8-60 (i) (1) (i)	Appendix 2D - Total Customer Count
Rule R8-60 (i) (1) (i)	Appendix 2F - North Carolina Customer Count
Rule R8-60 (i) (1) (ii)	2.3 - Summer & Winter Peak Demand & Annual Energy
Rule R8-60 (i) (1) (ii)	5.5.8 - Assessment of Overall Demand-Side Options
Rule R8-60 (i) (1) (ii)	Appendix 2H - Projected Summer & Winter Peak Load & Energy Forecast
Rule R8-60 (i) (1) (ii)	Appendix 21 - Required Reserve Margin
Rule R8-60 (i) (1) (iii)	3.1.5 - Planned Generation Under Construction
Rule R8-60 (i) (1) (iii)	5.3 - Planned Generation Under Development
Rule R8-60 (i) (1) (iii)	5.4 - Alternative Energy Resources & Technologies
Rule R8-60 (i) (1) (iii)	Appendix 3K - Planned Generation Under Construction
Rule R8-60 (i) (1) (iii)	Appendix 5C- Planned Generation Under Development
Rule R8-60 (i) (2) (i) (a)	3.1.1 - Existing Generation
Rule R8-60 (i) (2) (i) (b)	Appendix 3A - Existing Generating Units in Service
Rule R8-60 (i) (2) (i) (c)	3.1.1 - Existing Generation
Rule R8-60 (i) (2) (i) (c)	Appendix 3A - Existing Generating Units in Service
Rule R8-60 (i) (2) (i) (d)	3.1.4 - Potential Generation Retirements
Rule R8-60 (i) (2) (i) (d)	Appendix 3J - Potential Unit Retirements
Rule R8-60 (i) (2) (i) (e)	3.1.3 - Planned Changes to Existing Generation
Rule R8-60 (i) (2) (i) (e)	Appendix 3I - Planned Changes to Existing Generation Units
Rule R8-60 (i) (2) (i) (f)	3.1.3 - Planned Changes to Existing Generation
	3.1.5 - Planned Generation Under Construction
Rule R8-60 (i) (2) (ii) (a)	
Rule R8-60 (i) (2) (ii) (a)	5.3 - Planned Generation Under Development
Rule R8-60 (i) (2) (ii) (a)	Appendix 3K - Planned Generation Under Construction
Rule R8-60 (i) (2) (ii) (a)	Appendix 5C- Planned Generation Under Development
Rule R8-60 (i) (2) (ii) (b)	3.1.5 - Planned Generation Under Construction
Rule R8-60 (i) (2) (ii) (b)	5.3 - Planned Generation Under Development
Rule R8-60 (i) (2) (ii) (b)	Appendix 3K - Planned Generation Under Construction
Rule R8-60 (i) (2) (ii) (b)	Appendix 5C- Planned Generation Under Development
Rule R8-60 (i) (2) (ii) (c)	3.1.5 - Planned Generation Under Construction
Rule R8-60 (i) (2) (ii) (c)	5.3 - Planned Generation Under Development
Rule R8-60 (i) (2) (ii) (c)	Appendix 3K - Planned Generation Under Construction
Rule R8-60 (i) (2) (ii) (c)	Appendix 5C- Planned Generation Under Development
Rule R8-60 (i) (2) (ii) (d)	3.1.5 - Planned Generation Under Construction
Rule R8-60 (i) (2) (ii) (d)	5.3 - Planned Generation Under Development
Rule R8-60 (i) (2) (iii)	3.1.6 - Non-Utility Generation
Rule R8-60 (i) (2) (iii)	Appendix 3B - Other Generation Units
Rule R8-60 (i) (3)	4.2.2 - Long-Term Capacity Planning Process - Reserve Requirements
Rule R8-60 (i) (3)	Appendix 21 - Required Reserve Margin
Rule R8-60 (i) (4) (i)	3.1.7 - Wholesale & Purchased Power
Rule R8-60 (i) (4) (i)	Appendix 3L - Wholesale Power Sales Contracts
Rule R8-60 (i) (4) (ii)	3.1.8 - Request for Proposals
Rule R8-60 (i) (4) (iii)	3.1.7 - Wholesale & Purchased Power
Rule R8-60 (i) (4) (iii)	Appendix 3L - Wholesale Power Sales Contracts
	3.3.3 - Transmission Projects Under Construction
Rule R8-60 (i) (5)	
Rule R8-60 (i) (5)	4.5.1 - Regional Transmission Planning & System Adequacy

•

Rule R8-60 (i) (5)	5.6 - Future Transmission Projects
Rule R8-60 (i) (5)	Appendix 3V - List of Transmission Lines Under Construction
Rule R8-60 (i) (5)	Appendix 5V - List of Planned Transmission Lines
	5.5 - Future DSM Initiatives
Rule R8-60 (i) (6)	
Rule R8-60 (i) (6)	5.5.1 - Standard DSM Tests
Rule R8-60 (i) (6)	5.5.8 - Assessment of Overall Demand-Side Options
Rule R8-60 (i) (6)	Appendix 5D - Standard DSM Test Descriptions
Rule R8-60 (i) (6) (i)	3.2.2 - Current DSM Tariffs
Rule R8-60 (i) (6) (i)	3.2.6 - Approved DSM Programs
Rule R8-60 (i) (6) (i)	Appendix 3M - Approved Programs Non-Coincidental Peak Savings
Rule R8-60 (i) (6) (i)	Appendix 3N - Approved Programs Coincidental Peak Savings
Rule R8-60 (i) (6) (i)	Appendix 3O - Approved Programs Energy Savings
Rule R8-60 (i) (6) (i)	Appendix 3P - Approved Programs Penetrations
Rule R8-60 (i) (6) (ii)	3.2.7 - Proposed DSM Programs
Rule R8-60 (i) (6) (ii)	Appendix 3Q - Proposed Program Non-Coincidental Peak Savings
Rule R8-60 (i) (6) (ii)	Appendix 3R - Proposed Program Coincidental Peak Savings
Rule R8-60 (i) (6) (ii)	Appendix 3S - Proposed Program Energy Savings
Rule R8-60 (i) (6) (ii)	Appendix 3T - Proposed Program Penetrations
Rule R8-60 (i) (6) (ii)	5.5.2 - Future DSM Programs
Rule R8-60 (i) (6) (ii)	5.5.3 - Future DSM Programs' Cost-Effectiveness Results
Rule R8-60 (i) (6) (ii)	Appendix 5F - Future Programs Non-Coincidental Peak Savings
Rule R8-60 (i) (6) (ii)	Appendix 5G - Future Programs Coincidental Peak Savings
Rule R8-60 (i) (6) (ii)	Appendix 56 - Future Programs Energy Savings
Rule R8-60 (i) (6) (ii)	Appendix 51 - Future Programs Penetrations
	5.5.4 - Rejected DSM Programs
Rule R8-60 (i) (6) (iii)	
Rule R8-60 (i) (6) (iii)	5.5.5 - Rejected DSM Programs' Cost-Effectiveness Results
Rule R8-60 (i) (6) (iv)	3.2.4 - Current Consumer Education Programs
Rule R8-60 (i) (6) (iv)	5.5.7 - New Consumer Education Programs
Rule R8-60 (i) (7)	5.1.3 - Assessment of Alternative Supply-Side Resources
Rule R8-60 (i) (7) (i)	5.1.1 - Dispatchable Resources
Rule R8-60 (i) (7) (i)	5.1.2 - Non-Dispatchable Resources
Rule R8-60 (i) (7) (i)	5.1.3 - Assessment of Alternative Supply-Side Resources
Rule R8-60 (i) (7) (ii)	5.1.3 - Assessment of Alternative Supply-Side Resources
Rule R8-60 (i) (7) (ii)	5.1.2 - Non-Dispatchable Resources
Rule R8-60 (i) (7) (ii)	5.1.3 - Assessment of Alternative Supply-Side Resources
Rule R8-60 (i) (8)	6.3 - Modeling Processes & Techniques
Rule R8-60 (i) (8)	6.4 - Alternative Plans
Rule R8-60 (i) (8)	6.5 - Base Case, Scenarios, & Sensitivities
Rule R8-60 (i) (8)	6.6 - Integrated Resource Plan Ranking
Rule R8-60 (i) (9)	5.2 Levelized Busbar Costs
Rule R8-60 (i) (9)	Appendix 5A - Tabular Results of Busbar
Rule R8-60 (i) (9)	Appendix 5B - Busbar Assumptions
Rule R8-62 (p) (1)	Filed Separately in this Docket
Rule R8-62 (p) (2)	3.3.3 - Transmission Projects Under Construction
Rule R8-62 (p) (2)	3U - Generation Interconnection Projects Under Construction
Rule R8-62 (p) (2)	3V - List of Transmission Lines Under Construction
Rule R8-62 (p) (3)	5.6 - Future Transmission Projects

Rule R8-62 (p) (3)	Appendix 5J - Planned Generation Interconnection Projects
Rule R8-62 (p) (3)	Appendix 5K - List of Planned Transmission Lines

e

FILED SEP 6 1 2011

Clerk's Office N.C Utilities Commission

Dominion Virginia Power's and Dominion North Carolina Power's Report of Its Integrated Resource Plan

Before the Virginia State Corporation Commission and North Carolina Utilities Commission

Public Version

Case No. PUE-2011-00092 Docket No. E-100, Sub 128

Filed: September 1, 2011

i ...

DOMINION VIRGINIA POWER'S AND DOMINION NORTH CAROLINA POWER'S 2011 REPORT OF ITS INTEGRATED RESOURCE PLAN

TABLE OF CONTENTS

LIST OF ACRONYMS		
CHAPTER 1 – EXECUTIVE SUMMARY	1	
1.1 – Integrated Resource Plan Overview	2	
1.2 – Company Description		
1.3 – 2011 Integrated Resource Planning Process		
Figure 1.3.1 – Current Company Capacity Position (2012 – 2026)		
Figure 1.3.2 – Current Company Energy Position (2012 – 2026)		
1.4 – 2011 Preferred Integrated Resource Plan		
Figure 1.4.1 – 2011 Preferred Integrated Resource Plan	6	
Figure 1.4.2 – 2011 Integrated Resource Plan – Capacity		
Figure 1.4.3 – 2011 Integrated Resource Plan – Energy		
CHAPTER 2 – LOAD FORECAST	10	
2.1 - Forecast Methods	11	
2.2 – History & Forecast By Customer Class & Assumptions		
Figure 2.2.1 – Summary Of Energy Sales & Peak Load Forecast	12	
Figure 2.2.2 – DOM Zone Peak Load	13	
Figure 2.2.3 - DOM Zone Annual Energy	13	
Figure 2.2.4 – Major Assumptions For the Energy Sales & Peak Demand Model	14	
2.3 – Summer & Winter Peak Demand & Annual Energy	14	
2.4 – Economic Development Rates	14	
CHAPTER 3 – EXISTING & PROPOSED RESOURCES	15	
3.1 – Supply-Side Resources		
3.1.1 – Existing Generation	16	
Figure 3.1.1.1 – Existing Generation Resources		
Figure 3.1.1.2 – Generation Fleet Demographics		
Figure 3.1.1.3 – 2011 Capacity Resource Mix By Unit Type		
Figure 3.1.1.4 – 2011 Capacity Mix	1 9	
Figure 3.1.1.5 – 2011 Energy Mix (Projected)	19	
3.1.2 - Existing Renewable Resources		
3.1.3 – Planned Changes To Existing Generation	20	
Figure 3.1.3.1 – EPA Regulations		
3.1.4 – Potential Generation Retirements		
3.1.5 – Planned Generation Under Construction		
Figure 3.1.5.1 – Planned Generation Under Construction	24	
3.1.6 - Non-Utility Generation	24	
3.1.7 - Wholesale & Purchased Power	25	

3.1.8 – Request for Proposal	.25
3.2 - Demand-Side Resources	.25
Figure 3.2.1 – DSM Tariffs & Programs	.27
3.2.1 - DSM Program Definitions	28
3.2.2 – Current DSM Tariffs	.29
Figure 3.2.2.1 – Estimated Load Response Data	.30
3.2.3 – Current & Completed DSM Pilots & Demonstrations	30
3.2.4 – Current Consumer Education Programs	34
3.2.5 – DSM Targets Case	36
3.2.6 – Approved DSM Programs	.37
3.2.7 – Proposed DSM Programs	.41
3.2.8 - Evaluation, Measurement & Verification	44
3.3 – Transmission Resources	44
3.3.1 – Existing Transmission Resources	44
3.3.2 – Existing Transmission & Distribution Lines	44
3.3.3 – Transmission Projects Under Construction	44
CHAPTER 4 – PLANNING ASSUMPTIONS	
4.1 - Planning Assumptions Introduction	
4.2 – PJM Capacity Planning Process & Reserve Requirements	46
4.2.1 – Short-Term Capacity Planning Process – Reliability Pricing Model	
4.2.2 – Long-Term Capacity Planning Process – Reserve Requirements	
Figure 4.2.2.1 – Peak Load Forecast & Reserve Requirements	
4.3 – Renewable Energy Requirements	
4.3.1 – Virginia RPS Plan	
Figure 4.3.1.1 – Virginia RPS Goals	
4.3.2 – North Carolina REPS Plan	
Figure 4.3.2.1 – North Carolina REPS Requirements	
Figure 4.3.2.2 – North Carolina Solar Requirements	
Figure 4.3.2.3 – North Carolina Swine Waste Requirements	
Figure 4.3.2.4 – North Carolina Poultry Waste Requirements	
Figure 4.3.2.5 – Renewable Energy Requirements	
4.4 - Commodity Price Assumptions	
Figure 4.4.1 – Fuel Price Forecasts	
Figure 4.4.2 – Effluent Price Forecasts	
Figure 4.4.3 – Power Price Forecasts Figure 4.4.4 – Capacity Price Forecasts	
4.5 – Transmission Planning	
4.5 – Transmission Planning	
4.5.1 – Regional Transmission Planning & System Adequacy Figure 4.5.1.1 – NERC Regions	
4.5.2 – Transfer Capabilities	
	JU.

.

-

.

.

-

.

.

4.5.3 – Transmission Interconnections	56
Figure 4.5.3.1 – PJM Interconnection Request Process	57
CHAPTER 5 – FUTURE RESOURCES	59
5.1 – Future Supply-Side Resources	60
5.1.1 – Dispatchable Resources	
5.1.2 - Non-Dispatchable Resources	63
Figure 5.1.2.1 – Onshore Wind Resources in Virginia and North Carolina	
Figure 5.1.2.2 – Virginia And North Carolina Offshore Wind Resources	
Figure 5.1.2.3 - Solar PV Resources in Virginia and North Carolina	65
5.1.3 – Assessment of Alternative Supply-Side Resources	65
Figure 5.1.3.1 – Alternative Supply-Side Resources	66
5.2 – Levelized Busbar Costs	67
Figure 5.2.1 – Dispatchable Levelized Busbar Costs	68
Figure 5.2.2 – Non-Dispatchable Levelized Busbar Costs	68
5.3 - Planned Generation Under Development	70
Figure 5.3.1 – Planned Generation Under Development	71
5.4 - Alternative Energy Resources & Technologies	
5.5 – Future DSM Initiatives	74
5.5.1 - Standard DSM Tests	75
5.5.2 - Future DSM Programs	75
5.5.3 – Future DSM Programs' Cost-Effectiveness Results	
Figure 5.5.3.1 – Future DSM Individual Cost-Effectiveness Results	
Figure 5.5.3.2 – Future DSM Portfolio Cost-Effectiveness Results	
5.5.4 - Rejected DSM Programs	
Figure 5.5.4.1 – Rejected DSM Programs	
5.5.5 – Rejected DSM Programs' Cost-Effectiveness Results	
Figure 5.5.5.1 – Rejected Programs' Cost-Effectiveness Results	
5.5.6 – DSM TRC Test Analysis	
Figure 5.5.6.1 – Portfolio Net Benefits Percent Change	81
Figure 5.5.6.2 – DSM TRC Test Analysis Individual Cost-Effectiveness Result	
5.5.7 – New Consumer Education Programs	81
5.5.8 - Assessment of Overall Demand-Side Options	
Figure 5.5.8.1 – DSM Energy Reductions	
Figure 5.5.8.2 – DSM Demand Reductions	
Figure 5.5.8.3 – Load Duration Curve 2012	
Figure 5.5.8.4 – Load Duration Curve 2016	83
Figure 5.5.8.5 – Load Duration Curve 2026	84
5.6 - Future Transmission Projects	84

• .

CHAPTER 6 - DEVELOPMENT OF THE INTEGRATED RESOURCE PLAN	85
6.1 - IRP Process	86
6.2 - Capacity & Energy Needs	87
Figure 6.2.1 – Current Capacity Position	87
Figure 6.2.2 – Annual Capacity Position	88
Figure 6.2.3 – Projection of Baseload Needs	
Figure 6.2.4 – Current Company Energy Position	90
6.3 – Modeling Processes & Techniques	
6.4 - Alternative Plans	91
Figure 6.4.1 – Alternative Plans	94
6.5 – Basecase, Scenarios, & Sensitivities	
6.6 - Integrated Resource Plan Ranking	
Figure 6.6.1 – Plan Comparison Under Scenarios & Sensitivities	
Figure 6.6.2 – Plan Comparison Under Scenarios & Sensitivities (Bar Chart).	
6.7 – Preferred Plan	
Figure 6.7.1 – Preferred Integrated Resource Plan	
Figure 6.7.2 – 2012 - 2026 Integrated Resource Plan	
Figure 6.7.3 – 2012 & 2026 Load Duration Curve vs. Resource Base	
Figure 6.7.4 – Company's Projected Energy Position	
Figure 6.7.5 – Energy by Source	105
6.8 - Conclusions	105
CHAPTER 7 – SHORT-TERM ACTION PLAN	
7.1 – Current Actions (2011)	109
7.2 - Future Actions (2012 - 2016)	111
Figure 7.2.1 – DSM Projected Savings In 2016	112
Figure 7.2.2 – Generation Plants Under Construction	
Figure 7.2.3 – Generation Plants Under Development	
Figure 7.2.4 – Planned Changes To Existing Generation	
Figure 7.2.5 – Potential Generation Retirements	
Figure 7.2.6 – Planned Transmission Additions	
Figure 7.2.7 – Future Renewable Resources	1 15
	AP-1
<u>Chapter 2:</u>	
Appendix 2A – Total Sales by Customer Class (DOM LSE)	AP-2
Appendix 2B – Virginia Sales by Customer Class (DOM LSE)	AP-3
Appendix 2C – North Carolina Sales by Customer Class (DOM LSE)	AP-4
Appendix 2D – Total Customer Count (DOM LSE)	
	AP-6
Appendix 2E – Virginia Customer Count (DOM LSE)	
Appendix 2E – Virginia Customer Count (DOM LSE) Appendix 2F – North Carolina Customer Count (DOM LSE) Appendix 2G – Summer & Winter Peaks	

· · ·

•

•

-

Appendix 2H – Projected Summer & Winter Peak Load & Energy Forecast	AP-9
Appendix 2I – Required Reserve Margin	AP-10
<u>Chapter 3:</u>	
Appendix 3A – Existing Generation Units in Service	AP-11
Appendix 3B – Other Generation Units	AP-13
Appendix 3C – Equivalent Availability Factor	AP-18
Appendix 3D – Net Capacity Factor	AP-20
Appendix 3E – Heat Rates	AP-22
Appendix 3F – Existing Capacity	AP-26
Appendix 3G – Actual Energy Generation by Type (GWh)	AP-27
Appendix 3H – Actual Energy Generation by Type (%)	AP-28
Appendix 3I – Planned Changes to Existing Generation Units	AP-29
Appendix 3J – Potential Unit Retirements	
Appendix 3K – Planned Generation Under Construction	AP-33
Appendix 3L – Wholesale Power Sales Contracts	AP-34
Appendix 3M – Approved Programs Non-Coincidental Peak Savings	AP-35
Appendix 3N – Approved Programs Coincidental Peak Savings	AP-36
Appendix 30 – Approved Programs Energy Savings	AP-37
Appendix 3P – Approved Programs Penetrations	AP-38
Appendix 3Q – Proposed Program Non-Coincidental Peak Savings	AP-39
Appendix 3R – Proposed Program Coincidental Peak Savings	AP-40
Appendix 3S – Proposed Program Energy Savings	AP-41
Appendix 3T – Proposed Program Penetrations	AP-42
Appendix 3U – Generation Interconnection Projects Under Construction	AP-43
Appendix 3V – List of Transmission Lines Under Construction	AP-43
Chapter 4:	
Appendix 4A – Delivered Fuel Data	AP-44
Chapter 5:	
Appendix 5A – Tabular Results of Busbar	AP-45
Appendix 5B – Busbar Assumptions	AP-46
Appendix 5C – Planned Generation Under Development	AP-47
Appendix 5D – Standard DSM Test Descriptions	AP-48
Appendix 5E – DSM Programs Energy Savings	
Appendix 5F – Future Programs Non-Coincidental Peak Savings	AP-51
Appendix 5G – Future Programs Coincidental Peak Savings	
Appendix 5H – Future Programs Energy Savings	
Appendix 51 – Future Programs Penetrations	
Appendix 5J – Planned Generation Interconnection Projects	AP-55
Appendix 5K – List of Planned Transmission Lines	AP-56
<u>Chapter 6:</u>	
Appendix 6A – Renewable Resources	
Appendix 6B – Potential Supply-Side Resources	AP-58

-,

Appendix 6C – Summer Capacity Position	AP-59
Appendix 6D – Construction Forecast	AP-60
Appendix 6E – Capacity Position	AP-61

.

.

.

.

.

-

.

•

Acronym	Acronym Meaning
AMI	Advanced Metering Infrastructure
APWR	Advanced Pressurized-Water Reactor
ATC	Available Transfer Capability
BOEMRE	Bureau of Ocean Energy Management, Regulation and Enforcement
BTMG	Behind-the-Meter Generation
CC	Combined Cycle
CCS	Carbon Capture and Sequestration
	Commercial Distributed Generation Program
CFB	Circulating Fluidized Bed
CFL	Compact Florescent Light
COz	Carbon Dioxide
COL	Combined Construction Permit and Operating License
CPCN	Certificate of Public Convenience and Necessity
CPP	Critical Peak Pricing
CS	Curtailable Service
CSP	Concentrating Solar Power
СТ	Combustion Turbine
DG	Distributed Generation
DOMLSE	Dominion Load Serving Entity
DOM Zone	Dominion Zone within the PJM Interconnection, L.L.C. Regional Transmission Organization
DSI	Dry Sorbent Injection
DSM	Demand-Side Management
EM&V_	Evaluation, Measurement, and Verification
EPA	Environmental Protection Agency
EPRI	Electric Power Research Institute
ESP	Early Site Permit
EV	Electric Vehicle
FERC	Federal Energy Regulatory Commission
GSP	Gross State Product
GWh	Gigawatt Hour(s)
Hg	Mercury
HVAC	Heating, Ventilating, and Air Conditioning
ICF	ICF International, Inc.
IDR	Interval Data Recorder
IGCC	Integrated-Gasification Combined Cycle
IRP	Integrated Resource Planning
kV	Kilovolt(s)
KW	Kilowatt(s)
LOLE	Loss of Load Expectation
LSE	Load Serving Entity

LIST OF ACRONYMS

.

Acronym	Acronym Meaning
MW	Megawatt(s)
MWh	Megawatt Hour(s)
North Anna 3	North Anna Unit 3
NCGS	North Carolina General Statute
NCUC	North Carolina Utilities Commission
NERC	North American Electric Reliability Corporation
NOx	Nitrogen Oxide
NPV	Net Present Value
NRC	Nuclear Regulatory Commission
NUG	Non-Utility Generation or Non-Utility Generator
ODEC	Old Dominion Electric Cooperative
PC	Pulverized Coal
PHEV	Plug-in Hybrid Electric Vehicle
PJM	PJM Interconnection, L.L.C.
PV	Photovoltaic
REC	Renewable Energy Certificate
REPS	Renewable Energy and Energy Efficiency Portfolio Standard (NC)
RFC	Reliability First Corporation
RFP	Request for Proposals
RÍM	Ratepayer impact Measure
RPM	Reliability Pricing Model
RPS	Renewable Energy Portfolio Standard (VA)
RTEP	Regional Transmission Expansion Plan
RTO	Regional Transmission Organization
SCC	State Corporation Commission of Virginia
SERC	Southeastern Reliability Corporation
SG	Standby Generator
SNCR	Selective Non-Catalytic Reduction
SCR	Selective Catalytic Reduction
SO ₂	Sulfur Dioxide
SRP	Stakeholder Review Process
STAP	Short-Term Action Plan
T&D	Transmission and Distribution
TEAC	Transmission Expansion Advisory Committee
ТОР	Transmission Operator
TRC	Total Resource Cost
VACAR	Virginia-Carolinas Reliability Agreement
VCHEC	Virginia City Hybrid Energy Center
VDEQ	Virginia Department of Environmental Quality
VOWDA	Virginia Offshore Wind Development Authority

•

.

•

-

.

Chapter 1

.

Executive Summary

CHAPTER 1 – EXECUTIVE SUMMARY

1.1 INTEGRATED RESOURCE PLAN OVERVIEW

Virginia Electric & Power Company d/b/a Dominion Virginia Power and Dominion North Carolina Power (collectively, the "Company") files its 2011 Integrated Resource Plan ("2011 Plan" or "Plan") in accordance with § 56-599 of the Code of Virginia ("Va. Code") and the Virginia State Corporation Commission's ("SCC") guidelines issued on December 31, 2008, as well as § 62-2 of the North Carolina General Statutes ("NCGS") and Rule R8-60 of the North Carolina Utilities Commission's ("NCUC") Rules of Practice and Procedure.

On September 1, 2010, the Company filed its 2010 Integrated Resource Plan ("2010 Plan") with the SCC (Case No. PUE-2010-00107) and NCUC (Docket No. E-100, Sub 128). On November 10, 2010, the SCC issued its Final Order stating that the 2010 Plan, filed pursuant to Va. Code § 56-599 C and the guidelines established by the SCC in Case No. PUE-2008-00099 ("Guidelines") was compliant with the applicable law and Guidelines. The Company's 2010 Plan remains pending before the NCUC.

The 2011 Plan was prepared for the Dominion Load Serving Entity ("DOM LSE"), and represents the Company's service territories in the Commonwealth of Virginia and North Carolina as part of the PJM Interconnection, LLC ("PJM") Regional Transmission Organization ("RTO"). More specifically, the 2011 Plan was developed to meet rising customer demand for electricity at the lowest reasonable cost. The Appendices associated with this 2011 Plan only provide information and data associated with and applicable to the DOM LSE and do not include other data associated with other entities that are part of the Dominion Zone ("DOM Zone").

On September 15, 2010, October 6, 2010 and February 24, 2011, the Company initiated its Stakeholder Review Process ("SRP") wherein the Company convened meetings of interested stakeholders. The Company designed the SRP to be a forum to inform stakeholders about the Integrated Resource Planning ("IRP") process and to provide more specific information about the Company's planning process, including its IRP and demand-side management ("DSM") initiatives. In addition, the SCC directed the Company to coordinate with interested parties in sharing DSM program evaluation, measurement and verification ("EM&V") results and in developing future DSM program proposals. The Company developed its 2011 Plan with careful consideration of the suggestions, feedback, and comments received during the SRP. It is anticipated that, in the future, stakeholder meetings will be convened at least twice yearly with the next meeting planned to be held in October 2011.

The 2011 Plan is a long-term planning document and should be viewed in that context. The Company used the Strategist model ("Strategist"), a computer modeling and resource optimization tool, to develop its Plan over a 25-year period, which includes the effects of service lives, from 2012 to 2036 ("Study Period") using 2011 as the base year. For purposes of this Plan, the Company displays text, numbers, and appendices for a 15-year period from 2012 to

2026 ("Planning Period") using 2011 as the base year. The 2011 Plan is based on the Company's current assumptions regarding load growth, commodity price projections, DSM programs, and many other regulatory and market developments expected to occur during the Study Period based on this snapshot in time.

The 2011 Plan includes sections on load forecasting (Chapter 2), existing and proposed resources (Chapter 3), planning requirements, constraints (Chapter 4), and future resources (Chapter 5). Additionally, the 2011 Plan includes Chapter 6 titled "Development of the Integrated Resource Plan" outlining several alternative plans that were compared by weighing the costs and benefits of these plans using a variety of sensitivities and scenarios. This analysis allowed the Company to examine alternate plans related to uncertainties including environmental issues, capacity availability, and commodity prices. The 2011 Plan also contains a Short-Term Action Plan ("STAP") (Chapter 7) which discusses the Company's specific actions currently being taken to implement activities that support the 2011 Plan over the next five years (2012-2016).

1.2 COMPANY DESCRIPTION

The Company, headquartered in Richmond, Virginia, currently serves approximately 2.4 million electric customers covering approximately 30,000 square miles in Virginia and North Carolina. The Company's regulated electric portfolio consists of 18,735 megawatts ("MW") of generation capacity, including approximately 1,747 MW of non-utility generation ("NUG") resources, over 6,100 miles of transmission lines at voltages ranging from 69 kilovolts ("kV") to 500 kV, and more than 56,600 miles of distribution lines at voltages ranging from 4 kV to 34.5 kV in Virginia, North Carolina, and West Virginia. In May 2005, the Company became a member of PJM, the operator of the wholesale electric grid in the Mid-Atlantic region of the United States. As a result, the Company transferred operational control of its transmission assets to PJM.

The Company has a diverse mix of generating resources consisting of Company-owned nuclear, fossil, hydro, pumped storage, and biomass facilities. Additionally, the Company purchases capacity and energy from NUGs and the PJM market.

1.3 2011 INTEGRATED RESOURCE PLANNING PROCESS

The Company's objective in developing the 2011 Plan was to identify the mix of resources necessary to meet future energy and capacity needs in an efficient and reliable manner at the lowest reasonable cost while considering uncertainties related to current and future regulations. The Company's options for meeting these future needs were: i) supply-side resources, ii) demand-side resources, and iii) market purchases. The Company also remains committed to meeting its renewable energy and energy efficiency goals in a cost-effective manner.

In order to meet future customer needs at the lowest reasonable cost while maintaining reliability, the Company must take into consideration the uncertainties and risks related to the energy industry. One of the main uncertainties of the 2011 Plan is assumptions related to the United States Environmental Protection Agency ("EPA") draft and final regulations concerning

air, water and solid waste constituents (as shown in Figure 3.1.3.1). In addition, assumptions related to cost and performance of advanced energy technologies, as well as continued load growth in the Company's service territory over the Study Period were considered. The Company's IRP process has identified the supply-side resources, demand-side resources, and transmission options that mitigate these risks at the lowest reasonable cost.

The Company developed a comprehensive IRP process that gave preference to options that offered reasonable costs at an acceptable level of risk, maintained or increased the level of customer service, and provided reliable generation and infrastructure to meet customers' needs over the long-term. Various planning groups throughout the Company provided input and insight into evaluating all viable options including existing generation, DSM programs, and new traditional and alternative resources to meet the growing demand in the Company's service territory. The IRP process began with the development of the Company's long-term load forecast which indicates that over the Planning Period the region is expected to have future annual increases in energy requirements of 1.89% and peak demand of 1.93%. Collectively, these elements assisted in determining new capacity and energy requirements as illustrated in Figure 1.3.1 and Figure 1.3.2.

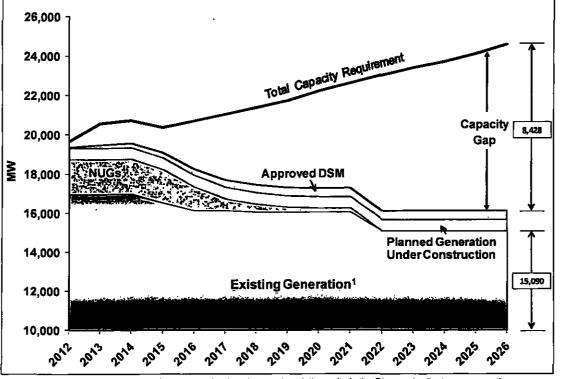


Figure 1.3.1 CURRENT COMPANY CAPACITY POSITION (2012 – 2026)

Note: 1) Accounts for unit retirements and rating changes to existing units in the Plan, and reflects summer ratings.

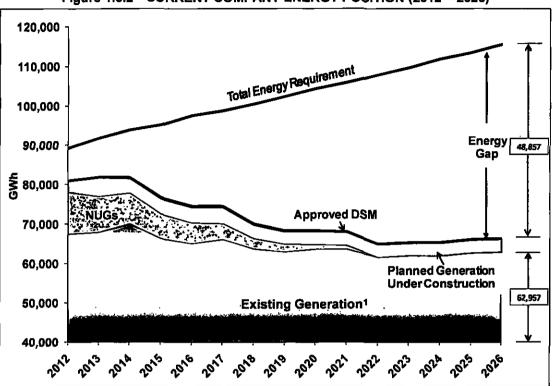


Figure 1.3.2 CURRENT COMPANY ENERGY POSITION (2012 - 2026)

Note: 1) Accounts for unit retirements and rating changes to existing units in the Plan.

1.4 2011 PREFERRED INTEGRATED RESOURCE PLAN

To assess the uncertainty and risks associated with external market and environmental factors, the Company developed four alternative plans representing plausible future paths. The Company evaluated the four alternative plans using 15 scenarios and sensitivities as well as one basecase as discussed in Chapter 6. The Company selected the plan that contained the mix of supply- and demand-side options to meet expected future resource needs at the lowest reasonable cost as its Preferred Plan. The Preferred Plan displayed in Figure 1.4.1 represents the single plan that most effectively balanced the many competing drivers and risks identified in this 2011 Plan.

Year		Supply-side	Demand aida Desauras		
	New	Retrofit	Repower	Retire	Demand-side Resources
2012	VCHEC				Approved DSM
2013			AV, HW, SH- Biomass		Proposed & Future DSM
2014	Halifax		BR3 - Gas BR4 - Gas		
2015	Warren	PP5 - SNCR YT3 - SNCR	YT2 Gas/Oil	CEC 1-2 YT1	
2016	CC			CEC 3-4	
2017	·		· · · · · · · · · · · · · · · · · · ·		
2018]
2019	CC]]
2020	Ст				
2021	СТ]
2022	North Anna 3			YT 2-3]
2023	СТ]
2024	СТ] [
2025	СТ]
2026	СТ				▶

Figure 1.4.1 2011 PREFERRED INTEGRATED RESOURCE PLAN

Key: Retrofit: Additional environmental control reduction equipment; Repower: Convert fuel to biomass or repower by natural gas; Retire: Remove a unit from service; AV: Altavista; BR: Bremo; CEC: Chesapeake Energy Center; CC: Combined Cycle; CT: Combustion Turbine (2 units); Halifax: Halifax County Solar; HW: Hopewell; PP: Possum Point Unit; SH: Southampton; SNCR: Selective Non-Catalytic Reduction; VCHEC: Virginia City Hybrid Energy Center; Warren: Warren County Power Station; YT: Yorkdown Unit

Note: 1) DSM capacity savings continue to increase throughout the Planning Period.

The Preferred Plan includes approved DSM programs reaching approximately 500 MW by 2026 and one planned generation resource under construction, Virginia City Hybrid Energy Center ("VCHEC"), of approximately 585 MW, which includes approximately 29 MW initially, ramping up to 59 MW of renewable generation in the future.

In addition to existing generation and DSM resources, the 2011 Plan includes:

- Proposed and future DSM programs reaching approximately 440 MW by 2026;
- Halifax County Solar of 4 MW with battery storage;
- Planned generation resources under development of approximately 2,790 MW, which includes Warren County Power Station and North Anna Unit 3 ("North Anna 3");
- A mix of potential conventional generation resources including combined cycle ("CC") and combustion turbine ("CT")¹ plants totaling approximately 5,075 MW that will continue to be studied as the resource need is established;
- PJM market purchases and NUG capacity under contract.

¹ All references regarding new CT units throughout this document refer to installation of a bank of two CT units.

On June 27, 2011 the Company filed an application with the SCC for approval to convert Altavista, Hopewell, and Southampton power stations totaling 153 MW to biomass fuel by the end of 2013. In addition, the Company currently plans to repower Bremo Power Station Units 3 and 4 totaling 227 MW by natural gas in 2014.

To meet the projected electric customer demand and annual reserve requirements throughout the Planning Period, the Company has identified a need of additional resources that total over 8,400 MW to fill the capacity gap shown in Figure 1.3.1. To meet this need, the Company plans to use a balanced mix of resources including supply-side resources, demand-side resources, and market purchases as illustrated by Figures 1.4.2 and 1.4.3.

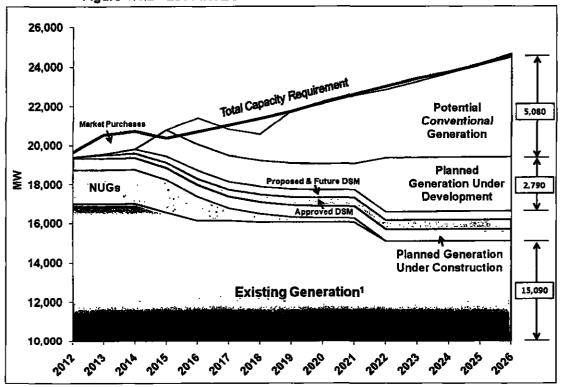


Figure 1.4.2 2011 INTEGRATED RESOURCE PLAN – CAPACITY

Note: 1) Accounts for unit retirements and rating changes to existing units in the Plan, and reflects summer ratings.

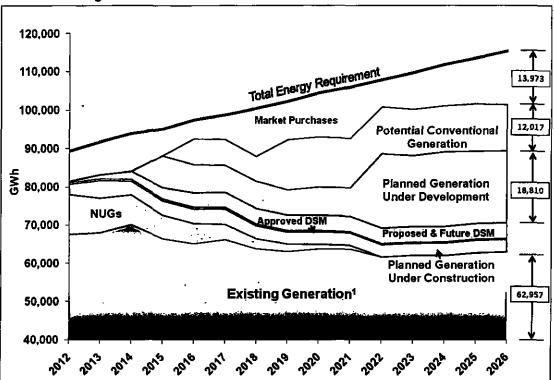


Figure 1.4.3 2011 INTEGRATED RESOURCE PLAN – ENERGY

Note: 1) Accounts for unit retirements and rating changes to existing units in the Plan.

The 2011 Plan balances the Company's commitment to operate in an environmentally responsible manner with its obligation to provide reliable and cost-effective service. Since several EPA regulations are still in draft form (as further shown in Figure 3.1.3.1), various alternatives were analyzed on the Company's environmentally "at risk" units to determine the most cost-effective plan. Small coal-fired units that have limited environmental controls are the "at risk" units. Large coal-fired units are controlled and continue to operate with relatively small additional expenses. Similarly nuclear and hydro units are minimally impacted. In order to comply with draft and final environmental regulations, and depending on the specific situation for each generating unit, the analysis determined one of three options for each "at risk" unit: 1) retrofitting with additional environmental control reduction equipment, 2) fuel repowering to biomass or natural gas, or 3) retiring the unit.

Based on the draft and final form of environmental regulations along with current market conditions, the 2011 Plan includes the following impacts to the existing generating resources in terms of retrofitting, repowering and retiring, which may be revised when the regulations are finalized:

- 1. Retrofit
 - 1,583 MW of heavy oil-fired generation installed with new Selective Non-Catalytic Reduction ("SNCR") controls by 2015

- 2. Repower
 - 153 MW of small coal-fired generation repowered from coal to biomass by the end of 2013
 - 383 MW of small coal-fired generation repowered from coal to natural gas and oil by 2015
- 3. Retire
 - 754 MW of small coal-fired generation retired by 2016
 - 960 MW of heavy oil-fired and natural gas-fired units retired by 2022

The 2011 Plan provides the Company with the ability to respond to uncertainties brought on by potential changes in market conditions, environmental regulations, and customer demand. The 2011 Plan represents the Company's commitment to meet environmental regulations while meeting future demand effectively through a balanced portfolio. This includes a combination of conventional and renewable generation facilities as well as DSM programs to provide a reliable supply of energy to customers. The Company remains committed to selecting the resources that best match the needs of its customers, while providing the fuel diversity needed to minimize risks associated with changing market conditions. This 2011 Plan represents an analysis of resources that is expected to provide service at the lowest reasonable cost to its customers under a wide range of potential market conditions.

Chapter 2

Load Forecast

CHAPTER 2 – LOAD FORECAST

2.1 FORECAST METHODS

The Company used econometric models with an end-use orientation to forecast energy sales at the customer class level and hourly loads at the system level. Separate monthly sales equations were developed for residential, commercial, industrial, public authority, street and traffic lighting, and wholesale customers, as well as other Load Serving Entities ("LSEs") within the DOM Zone. The monthly sales equations were specified in a manner that produced estimates of non-weather sensitive load, heating load, and cooling load. Hourly equations were used to model peak demands and energy output for the DOM Zone.

Variables included in the monthly sales equations were as follows:

- Residential Sales equation: Income, electric prices, unemployment rate, number of customers, appliance saturations, weather, billing days, and calendar month variables to capture seasonal impacts
- Commercial Sales equation: Virginia Gross State Product ("GSP"), electric prices, natural gas prices, number of customers, weather, billing days, and calendar month variables to capture seasonal impacts
- Industrial Sales equation: Employment in manufacturing, Virginia GSP, electric prices, weather, billing days, and calendar month variables to capture seasonal impacts
- Public Authorities Sales equation: Real output (the constant dollar value of all goods and services provided by state and local government), number of customers, weather, billing days, and calendar month variables to capture seasonal impacts
- Street and Traffic Lighting Sales equation: Number of customers and calendar month variables to capture seasonal impacts
- Wholesale Customers and Other LSEs Sales equations: A measure of non-weather sensitive load derived from the residential equation, heating and air-conditioning appliance stocks, number of days in the month, weather, and calendar month variables to capture seasonal and other effects

The hourly DOM Zone model was estimated in two stages. In the first stage, the DOM Zone load was modeled as a function of time trend variables and a detailed specification of weather involving interactions between both current and lagged values of temperature, humidity, wind speed, sky cover, and precipitation for five stations. The parameter estimates from the first stage were used to construct two composite weather variables, one to capture heating load and one to capture cooling load. In addition to the two weather concepts derived from the first stage, the second stage equation used estimates of non-weather sensitive load derived from the monthly sales model as well as residential heating and cooling appliance stocks as explanatory variables. In addition, the hourly model used calendar month variables to capture time of day, day of week, holiday, and other seasonal effects as well as unusual events such as hurricanes. Separate equations were estimated for each hour of the day.

Hourly models for wholesale customers and other LSEs within the DOM Zone were modeled as a function of the DOM Zone load since they face similar weather and economic activity. The DOM LSE load was derived by subtracting the other LSEs from the DOM Zone load. DOM LSE load and firm contractual obligations were used as the total load obligation for the purpose of this 2011 Plan.

Forecasts were produced by simulating the model over actual weather data from the past 20 years along with projected economic conditions. Sales estimates from the monthly equations and energy output projections from the hourly model were reconciled appropriately. Monthly sales by customer class, peak demand, and system energy were calculated as expected values across the simulations.

2.2 HISTORY & FORECAST BY CUSTOMER CLASS & ASSUMPTIONS

The economic and demographic assumptions that were used as inputs to the Company's Energy Sales and Peak Demand Model were supplied by Moody's Economy.com. Figure 2.2.1 summarizes the final forecast of energy sales and peak loads over the next 15 years. Growth in the DOM Zone peak load and annual energy output since 1997 and a 15-year forecast are shown in Figure 2.2.2 and Figure 2.2.3. Additionally, Figure 2.2.4 summarizes the main economic drivers behind sales and peak load forecasts. A 10-year history and 15-year forecast of sales and customer count at the system-level, as well as for Virginia and North Carolina individually, are provided in Appendices 2A to 2F. Appendix 2G provides a summary of the summer and winter peaks used for modeling purposes. Additionally, the three-year historical load and 15-year projected load for wholesale customers is provided in Appendix 3L. The Company's wholesale and retail customer load are estimated to grow at similar rates of nearly 2% over the Planning Period as shown in Figure 2.2.1. Historical and projected rates can diverge for a number of reasons which include actual versus normal (forecast) weather and the economic variables utilized in the load forecast versus what actually transpires in the economy.

	2012	2026	Compound Annual Growth Rate (%) 2012-2026
DOMINION LSE			
Total Energy Sales (GWh)	85,873	111,594	1.89%
Residential	31,048	39,988	1.82%
Commercial	33,041	48,239	2.74%
Industrial	8,463	9,333	0.70%
Resale	1,946	2,539	1.92%
Public Authorities	11,079	11,136	0.04%
Street and Traffic Lighting	295	359	1.41%
Seasonal Peak (MW)			
Summer	16,999	22,201	1.93%
Winter	15,291	19,569	1.78%
DOM ZONE			
Seasonal Peak (MW)			· •
Summer	19,385	25,092	1.86%
Winter	17,586	22,325	1.72%
ENERGY OUTPUT (GWh)	100,282	130,523	1.90%

Figure 2.2.1 SUMMARY OF ENERGY SALES & PEAK LOAD FORECAST

Note: All sales and peak have not been reduced for the impact of DSM.

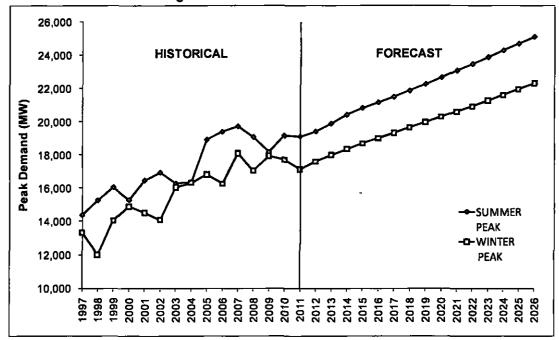


Figure 2.2.2 DOM ZONE PEAK LOAD

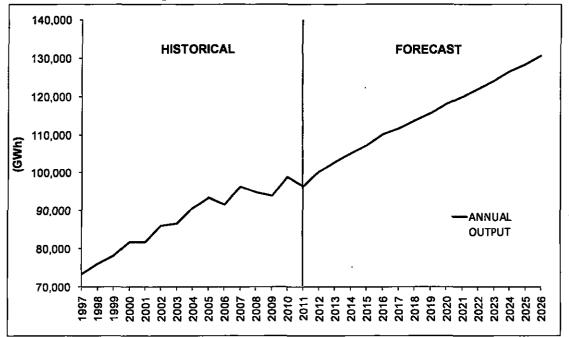


Figure 2.2.3 DOM ZONE ANNUAL ENERGY

	2012	2026	Compound Annual Growth Rate (%) (2012 - 2026)
DEMOGRAPHIC:			
Customers (000)			
Residential	2,194	2,638	1.33%
Commercial	236	277	1.13%
Population (000)	8,136	9,285	0.95%
ECONOMIC:			
Employment (000)			
Manufacturing	237	231	-0.19%
Government	701	747	0.45%
Income (\$)		T	
Per Capita Real Disposable	36,480	43,178	1.21%
Price Index			
Consumer Price (1982-1984) = 100	227	314	2.35%
VA Gross State Product (GSP)	410	573	2.43%

Figure 2.2.4 MAJOR ASSUMPTIONS FOR THE ENERGY SALES & PEAK DEMAND MODEL

The forecast of the Virginia economy drove the Company's energy sales and load forecasts. Although Virginia has been impacted by the recent recession, the Commonwealth fared well compared to the nation in terms of job losses. As of April 2011, the seasonally adjusted unemployment rate in Virginia approached 6.1%, nearly 3% below the national unemployment rate. Virginia's unemployment rate ranks among the lowest in the nation.

The slump in the housing sector that led the current economic downturn resulted in more than a 60% decline in housing starts in the state between 2005 and 2009. While recovery in housing remains slow, Virginia is expected to show a minor improvement in housing starts in 2011 that is expected to continue into 2012. Additionally, the unemployment rate is expected to continue its slow decline through the remainder of the year and onward.

On a long-term basis, the economic outlook for Virginia is positive. Over the next 15 years, real per-capita income in the state is expected to grow about 1.2% per year, on average. Virginia real GSP is projected to grow more than 2.4% per year, on average, over the next 15 years. During the same period, the Virginia population is expected to grow steadily at around 1% per year.

2.3 SUMMER & WINTER PEAK DEMAND & ANNUAL ENERGY

The three-year actual and 15-year forecast of summer and winter peak, annual energy, DSM peak and energy, and system capacity are shown in Appendix 2H. Additionally, Appendix 2I provides the required reserve margins for a three-year actual and 15-year forecast.

2.4 ECONOMIC DEVELOPMENT RATES

The Company has one customer in Virginia receiving service under economic development rates. The total load associated with these rates was approximately 2.5 MW in 2010. There are no customers under a self-generation deferral rate.

Chapter 3

Existing & Proposed Resources

CHAPTER 3 – EXISTING & PROPOSED RESOURCES

3.1 SUPPLY-SIDE RESOURCES

3.1.1 EXISTING GENERATION

The Company's existing generating resources are located at multiple sites distributed throughout its service territory as shown in Figure 3.1.1.1. This diverse fleet of 100 generation units includes 4 nuclear, 22 coal, 1 biomass, 2 natural gas, 2 heavy oil, 8 CC, 41 combustion turbines, 6 pumped storage, and 14 hydro units with a summer capacity of approximately 16,987 MW.² The Company's operational goal is to manage this fleet in a manner that provides reliable, cost-effective service under varying load conditions.

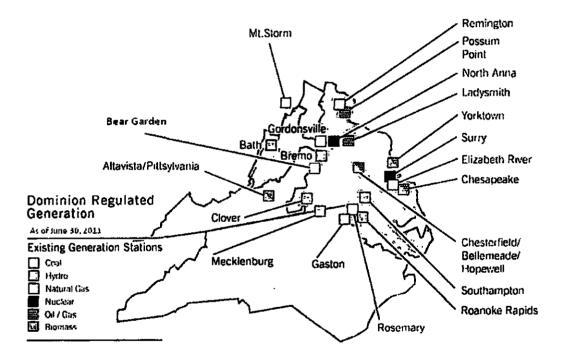


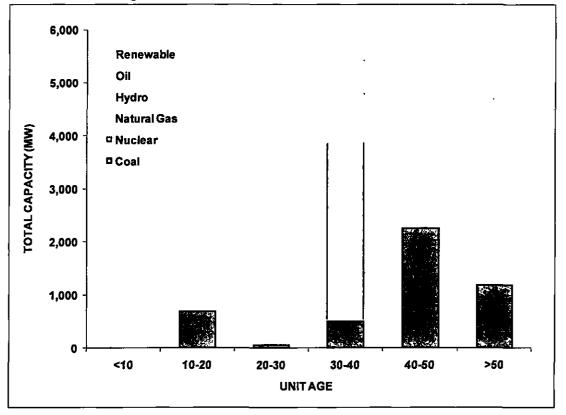
Figure 3.1.1.1 EXISTING GENERATION RESOURCES

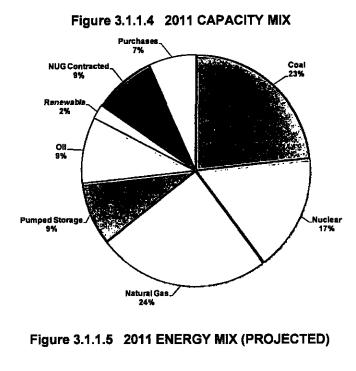
On May 23, 2011, Bear Garden CC Power Station, located in Buckingham County, Virginia, came into service. Construction first began on this 590 MW³ CC Unit in April 2009. Bear Garden will contribute significant incremental, intermediate capacity to the Company's service territory.

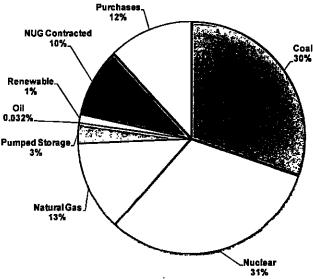
² All references to MW in Chapter 3 refer to summer capacity unless otherwise noted. Winter capacities for Company-owned generation units are listed in Appendix 3A.
³ Summer capacity of Bear Garden is 590 MW, which the Company used for modeling purposes in development of this 2011 Plan.

^{*} Summer capacity of Bear Garden is 590 MW, which the Company used for modeling purposes in development of this 2011 Plan. Nominal capacity of unit is 580 MW.

 The Company not only owns a variety of generation resources that operate using different fuel types, but it also has a wide age range of capacity. The largest proportion of the Company's generation resources has operated for 30 to 40 years, followed by a large number of units that have operated for 20 to 30 years. Figure 3.1.1.2 shows the demographics of the entire generation fleet.




Figure 3.1.1.2 GENERATION FLEET DEMOGRAPHICS


Figure 3.1.1.3 illustrates that the Company's existing generation fleet is comprised of a mix of approximately 16,987 MW of resources with varying operating characteristics and fueling requirements. The Company's mix of generation resources includes more than 400 MW of renewable generation and approximately 1,747 MW of NUGs, which provide firm capacity and associated energy to meet the Company's load requirements. An important aspect of the 2011 Plan is the Company's use of diverse capacity and energy resources to meet its customers' needs.

Generation Resource Type	Net Summer Capacity (MW)	Percentage (%)
Coal	4,675	23.3%
Nuclear	3,325	16.5%
Natural Gas - Boiler	316	1.6%
Natural Gas - Combined Cycle	2,196	10.9%
Natural Gas - Turbine	2,411	12.0%
Pumped Storage - Hydro	1,802	9.0%
Light Fuel Oil - Turbine	257	1.3%
Heavy Fuel Oil - Boiler	1,604	8.0%
Renewable - Hydro	318	1.6%
Renewable - Biomass	83	0.4%
NUG - Coal	743	3.7%
NUG - Natural Gas Turbine	942	4.7%
NUG - Renewable	63	0.3%
Purchases	1,356	6.7%
Total - NUG Contracted	1,747	8.7%
Total - Owned	16,987	84.6%
Total - Owned and NUG Contracted	18,735	93.3%
Total	20,091	100.0%

FIGURE 3.1.1.3 2011 CAPACITY RESOURCE MIX BY UNIT TYPE

Due to differences in the operating and fuel costs of various types of units and PJM system conditions, the Company's energy mix is not equivalent to its capacity mix. The Company's generation fleet is economically dispatched by PJM within its larger footprint, ensuring that customers in the Company's service area receive the benefit from all resources in the PJM power pool regardless of whether the source of electricity is Company-owned, contracted, or third-party units. PJM dispatches resources within the DOM Zone from the lowest bid units to the highest bid units, while maintaining its mandated reliability standards. Figures 3.1.1.4 and 3.1.1.5 provide the Company's 2011 capacity and energy mix (projected) with percentages.

Appendices 3A, 3C, 3D, and Extraordinarily Sensitive 3E provide basic unit specifications and operating characteristics of the Company's supply-side resources, both owned and contracted. Additionally, Appendix 3F provides a summary of the existing capacity, including NUGs, by fuel class. Appendices 3G and 3H provide energy generation by type as well as the system output mix. Appendix 3B provides a listing of other generation units including units in cold storage, NUGs, behind-the-meter generation ("BTMG"), and customer-owned generation units.

3.1.2 EXISTING RENEWABLE RESOURCES

The Company currently owns and operates several renewable resources including its woodburning Pittsylvania Power Station (83 MW), one of the largest biomass facilities in the United States. Additionally, the Company owns and operates four hydro facilities that includes Gaston Hydro Station (220 MW), Roanoke Rapids Hydro Station (95 MW), Cushaw Hydro Station (2 MW), and North Anna Hydro Station (1 MW). The Company has existing contracts for approximately 25 MW of BTMG renewable capacity, as well as one contracted renewable NUG facility at Ogden-Martin Fairfax that will provide approximately 63 MW in 2011.

3.1.3 PLANNED CHANGES TO EXISTING GENERATION

Efficiency, output, and environmental characteristics of plants are reviewed as part of the Company's normal course of business. Many of the uprates and derates discussed in this section occur during routine maintenance cycles or are associated with standard refurbishment. However, several plant ratings have been and will continue to be adjusted to conform with PJM market rules and environmental standards.

The Company continues to evaluate opportunities for existing unit uprates as a cost-effective means of increasing generating capacity and improving system reliability. Between 2009 and 2011 the Company's investment in its existing generation fleet has yielded net capacity uprates of 172 MW.

The EPA has proposed and finalized a significant number of new regulations that are expected to affect certain units in the Company's current fleet of generation resources. These regulations, as shown in Figure 3.1.3.1, are designed to regulate the air, water, and solid waste constituents.

C	onștituent ¹	Key Regulation ²	Expected Rule ³
	Hg/HAPS	Utility HAPS (MACT) (HG/Air Toxics Rule)	11 /20 11
	SO,	CSAPR	FINAL
	502	SO ₂ NAAQS	FINAL
		Ozone Standard Revision	8/2011
Ϋ́	NO _x	CSAPR	FINAL
		CSAPR II	12/2012
		GHG Tailoring Rule	FINAL
	CO2	EGU NSPS	5/2012
		Federal Cap & Trade	NA
Solid Waste	Ash	ССВ	12/2012
	316(b)	316(b) Impingement	7/2012
Water	e 310(D)	316(b) Entrainment	112012
<u> </u>	Effluent	Effluent Discharges	1/2014

Figure 3.1.3.1 EPA REGULATIONS

Notes: 1) Constituent: Hg=Mercury; HAPS=Hazardous Air Pollutants; SO₂=Sulfur Dioxide; NO₂=Nitrogen Oxide; CO₂=Carbon Dioxide; GHG=Greenhouse Gas; Water 316(b)=Clean Water Act § 316(b) Cooling Water Intake Structures 2) Key Regulation: MACT=Maximum Achievable Control Technology; CSAPR and CSAPR II=Cross-State Air Pollution Rule; SO₂ NAAQS=Sulfur Dioxide National Ambient Air Quality Standards; EGU NSPS=Electric Generating Units New Source Performance Standard; CCB=Coal Combustion Byproducts 3) Expected Rule: NA=Not Available

Compliance with existing and future environmental regulations is an important part of the Company's planning process and a key corporate focus. On May 7, 2008, the Company commissioned a new pollution control system which included a scrubber at Chesterfield Unit 6. An additional scrubber at Chesterfield Unit 5 was completed on June 30, 2011. It is anticipated by the end of 2011, Chesterfield Units 3 and 4 will also be connected to the Chesterfield Unit 5 scrubber. Both scrubbers are anticipated to provide a 95% reduction in sulfur dioxide ("SO₂") emissions and an 80% reduction in mercury ("Hg") emissions.

Based on the draft and final form of environmental regulations along with current market conditions, the 2011 Plan includes the following impacts to the existing generating resources in terms of retrofitting, repowering and retiring, which may be revised when the regulations are finalized:

Retrofit

Possum Point Unit 5 (779 MW) and Yorktown Unit 3 (804 MW) are in the Plan to be retrofitted with a SNCR unit by 2015.

Repower

Coal-fired Yorktown Unit 2 (156 MW) is in the Plan to be repowered by natural gas and oil by 2015.

On June 27, 2011, the Company filed an application with the SCC for approval to convert three of its Virginia coal-fired power stations, Altavista, Hopewell, and Southampton, to biomass fuel (Case No. PUE-2011-00073). The three power stations are all similar and went into operation in 1992. Conversion of these stations is expected to result in overall reductions of SO₂, nitrogen oxide ("NO_x"), Hg and particulate emissions. The proposed conversions are projected to increase the capacity factors of these units, provide economical baseload energy and provide environmental and energy benefits to the Commonwealth of Virginia over the next 25 years. If the proposed conversions are approved by the Virginia Department of Environmental Quality ("VDEQ") and the SCC, the power stations could begin burning biomass by the end of 2013.

Additional efforts to reduce emissions from the Company's existing generation fleet include plans to repower its coal-fired Bremo Power Station by natural gas subject to regulatory approval. The station is the Company's oldest coal-fired power station in Virginia. The two coal units currently in use at the station were put into service in 1950 and 1958. Bremo Units 3 and 4 with respective summer capacities of 71 MW and 156 MW are planned to repower in 2014. This conversion is expected to reduce the Company's emissions of SO₂, NO_x and carbon dioxide ("CO₂"), while maintaining the Bremo site and providing capacity.

Appendix 3I provides a listing of uprates and derates to the Company's existing generation.

3.1.4 POTENTIAL GENERATION RETIREMENTS

In order to comply with environmental regulations, a number of factors are driving the Company's decisions to either retrofit aging coal- and oil-fired generating units with newer technology or retire those particular units from service. Figure 3.1.3.1 summarizes these environmental regulations.

As part of the 2011 IRP process, the Company analyzed a number of options for several of the older coal- and oil-fired units that may not be compliant with impending environmental rules that begin to take effect in 2015, if they include requirements as detailed in their current draft forms. This analysis included a review of the costs to retrofit the units with new environmental control equipment, repower the units by natural gas or convert the units to burn biomass as a fuel source, or retire the units from service. The analysis incorporated assumptions regarding fuel prices, energy prices, costs associated with retrofits and repowering, pending environmental regulations, cost of existing equipment, fuel availability and operating costs. This analysis sought to balance these competing costs and environmental regulations with the goal of maintaining system reliability. It should be noted that this analysis is based on the Company's current assumptions for these drivers.

Based on requirements of draft and final form of environmental regulations along with current market conditions, the 2011 Plan includes the following potential retirement options for existing generating resources.

Chesapeake Energy Center Units 1 (111 MW) and 2 (111 MW) and Yorktown Unit 1 (159 MW) are in the Plan to be retired by 2015. Chesapeake Energy Center Units 3 (156 MW) and 4 (217 MW) are in the Plan to be retired by 2016. Yorktown Units 2 (156 MW) and 3 (804 MW) are in the Plan to be retired by 2022. Appendix 3J lists the retirements included in the Plan.

In addition to retirements in the Plan, the coal unit at North Branch Power Station, located in Bayard, West Virginia, is currently in cold reserve status. As a result of a mitigation agreement between the National Park Service and the Company, the terms of which are a condition to the Prevention of Significant Deterioration permit for the Warren County Power Station, the unit will be retired from service once the Warren County Power Station begins its commercial operation.

The Company is also evaluating future blackstart resources based on the generation retirements that are anticipated over the next several years. Potential retirements include some generation facilities that are currently designated as blackstart units. Blackstart generators are generating units that are able to start without an outside electrical supply or are able to remain operating at reduced levels when automatically disconnected from the grid. The North American Electric Reliability Corporation ("NERC") Reliability Standard EOP-005 requires the Transmission Operator ("TOP") to have a plan that allows for restoring its system following a complete shutdown (i.e., blackout). As the TOP, PJM assigns this analysis to the Company in its role as the Transmission Owner, but also performs an internal study to verify all requirements are met.

Currently, the Company's tentative plan is to request approximately 250 MW of additional blackstart generation in increments of at least 50 MW per year for five years between 2013 and the end of 2018. The Company will employ PJM's Black Start Replacement Process to solicit additional blackstart generation to ensure a resilient and robust ability to meet blackstart and restoration requirements. This replacement process is described in Section 10 of PJM Manual 14D – Generator Operational Requirements. In accordance with the PJM process, once the Company officially notifies PJM of the intent to retire blackstart capacity, PJM will work with the Company to determine future blackstart capacity needs and PJM will post a Request for Proposals ("RFP") for blackstart service. The initial RFP is expected to occur within the first quarter of 2012 and subsequent RFPs may be issued at a later date. PJM and the Company will work together to select the preferred replacement blackstart units.

3.1.5 PLANNED GENERATION UNDER CONSTRUCTION

The Company is committed to meeting its expected load growth in a cost-effective manner. To meet this load, the Company filed for a Certificate of Public Convenience and Necessity ("CPCN") with the SCC to construct and operate VCHEC, a 585 MW clean coal powered electric generation facility located in Wise County, Virginia. On March 31, 2008, the SCC granted the CPCN and shortly thereafter in June 2008 the Company began construction of the station. As of August 2011, the project was approximately 90% complete and proceeding on schedule. The station's targeted commercial operation date is summer 2012.

VCHEC is expected to be one of the cleanest coal-burning power stations in the United States. The plant will use circulating fluidized bed ("CFB") technology to burn a wide range of coals and waste coal from abandoned mines in the area. Additionally, the station's advanced design will allow the plant to consume up to 20% biomass fuel such as wood waste and wood byproducts, which are renewable fuel resources. The station's two CFB boilers will also consume limestone to aid in the reduction of SO₂ emissions. The technology available at VCHEC will foster the station's compliance with existing and proposed environmental regulations related to SO₂, NO_x, and Hg emissions.

This project is summarized in Figure 3.1.5.1. Appendix 3K provides VCHEC's in service date and summer and winter capacity.

Forecasted	Unit Name	Location	Unit Type	Primary Fuel	Capacity Summer	(Net MW) Winter
2012	Virginia City Hybrid Energy Center	Wise County, VA	Baseload	Coal/Biomass	585	635

Figure 3.1.5.1 PLANNED GENERATION UNDER CONSTRUCTION

Note: 1) Commercial Operation Date

3.1.6 NON-UTILITY GENERATION

A portion of the Company's load and energy requirements are supplemented with contracted NUG units and market purchases. The Company has existing contracts with NUGs for capacity of 1,747 MW consisting of seven baseload units and two intermediate units. NUGs noted as firm capacity resources are included in this 2011 Plan. NUGs located at customer sites or that the Company does not have a contract to purchase capacity from on a firm basis are not included in this Plan.

Each of the NUG facilities listed as a capacity resource in Appendix 3B is under contract to supply capacity and energy to the Company. NUG units are obligated to provide firm capacity and energy at the contracted terms during the life of the contract. The firm capacity from NUGs was included as a resource in meeting the reserve requirements. However, the Company has been notified by three of its NUGs that those resources (totaling 316 MW) will be unavailable as a direct resource to the Company after the expiration of the current contracts. The remaining NUG contracts expire at different times during the Planning Period, with the last contract expiring in 2021. For planning purposes, the Company assumed that NUG capacity will no longer be modeled as a firm capacity resource at the expiration of each facility's existing contract. However, the Company leaves open the possibility that some of the NUG contracts may be renewed or extended at the expiration of their current contract terms as the relevant economics warrant. Also, these resources may continue to operate in the PJM market and will be available to the Company as a resource on a contract or spot basis along with other non-Company-owned resources.

Section 6.4 discusses the NUG Extension Plan (Plan B) that considers the extension of NUG contracts until the end of the planning period, exclusive of the three NUGs discussed above.

The purpose of Plan B is to show the change in the system costs with extended NUG contracts compared to the costs of other plans.

3.1.7 WHOLESALE & PURCHASED POWER

Purchased Power

Except for the NUG contracts discussed in Section 3.1.6, the Company does not have any bilateral contractual obligations with wholesale power suppliers or power marketers. As a member of PJM, the Company has the option to self-schedule or buy capacity through the Reliability Pricing Model ("RPM") auction process. The Company has procured its capacity obligation from the RPM market through May 31, 2015.

Wholesale Power Sales

The Company currently provides full requirements wholesale power sales to three entities, which are included in the Company's load obligation/forecast. Additionally, the Company has partial requirements contracts to supply the supplemental power needs of one electric cooperative. Appendix 3L provides a listing of wholesale power sales contracts that the Company has committed to or parties to which the Company expects to sell power during the Planning Period.

<u>BTMG</u>

BTMG occurs on the customer's side of the meter. The Company purchases all output from the customer and services all of the customer's capacity and energy requirements. Since the Company does not own or control these resources, they were not used to develop the 2011 Plan, however they do contribute to the Company's contracted renewable capacity. The unit descriptions are provided in Appendix 3B.

3.1.8 REQUEST FOR PROPOSAL

At this time, the Company does not have any RFPs outstanding to procure supply-side resources.

3.2 DEMAND-SIDE RESOURCES

The Company generally defines DSM as all activities or programs undertaken to influence the amount and timing of electricity use. Demand-side resources encourage the more efficient use of existing resources and delay or eliminate the need for new supply-side infrastructure. The Company's DSM tariffs provide customers with price signals to curtail load at times when system load or marginal cost are high. Additionally, the Company's DSM programs are designed as a way to provide customers the opportunity to manage their electricity usage. In this 2011 Plan, four types of DSM programs are discussed: i) those approved by the SCC, as well as programs most recently approved by the NCUC; ii) those proposed to the SCC on September 1, 2011; iii) those considered future programs which are neither approved or currently filed with either commission for approval, but are potential DSM resources; and iv) those programs rejected from current consideration. All DSM programs were designed and

evaluated using a system-level analysis. For reference purposes, Figure 3.2.1 provides a graphical representation of the approved, proposed, future, and rejected programs described in Chapters 3 and 5.

.

.

Tariff	VA Status	NC Status	
Standby Generator Tariff	A	A	
Curtailable Service Tariff	Approved	Approved	
Program	VA Status	NC Status	
Air Conditioner Cycling Program			
Commercial HVAC Upgrade Program	1		
Commercial Lighting Program	Approved	Approved	
Low Income Program	1		
Residential Lighting Program			
Commercial Distributed Generation Program		Pending Review	
Commercial Energy Audit Program	1		
Commercial Duct Testing & Sealing Program	Bronocod]	
Commercial Refrigeration Program	Proposed		
Residential Lighting Program (Phase II)]		
Residential Bundle Program	1		
Voltage Conservation Program		Future	
Commercial Re-Commissioning Program			
Commercial Solar Window Film Program	Future		
Commercial Data Center/Computer Room Program			
Commercial Custom Incentive Program			
Residential Cool Roof Program			
Commercial HVAC Tune-Up Program			
Curtailment Service Program			
Energy Management System Program	ŀ		
ENERGY STAR® New Homes Program			
Geo-Thermal Heat Pump Program			
Home Energy Comparison Program			
Home Performance with ENERGY STAR® Program			
In-Home Energy Display Program	Rejected	Rejected	
Premium Efficiency Motors Program			
Programmable Thermostat Program			
Residential Refrigerator Turn-In Program			
Residential Solar Water Heating Program			
Residential Water Heater Cycling Program			
Residential Comprehensive Energy Audit Program			
Residential Radiant Barrier Program			

Figure 3.2.1 DSM TARIFFS & PROGRAMS

3.2.1 DSM PROGRAM DEFINITIONS

For purposes of its DSM programs in Virginia, the Company applies the Virginia definitions set forth in Va. Code § 56-576 as provided below.

- <u>Demand Response</u> Means measures aimed at shifting time of use of electricity from peak-use periods to times of lower demand by inducing retail customers to curtail electricity usage during periods of congestion and higher prices in the electrical grid.
- Energy Efficiency Program Means a program that reduces the total amount of electricity that is required for the same process or activity implemented after the expiration of capped rates. Energy efficiency programs include equipment, physical, or program change designed to produce measured and verified reductions in the amount of electricity required to perform the same function and produce the same or a similar outcome. Energy efficiency programs may include, but are not limited to, i) programs that result in improvements in lighting design, heating, ventilation, and air conditioning systems, appliances, building envelopes, and industrial and commercial processes; and ii) measures, such as but not limited to the installation of advanced meters, implemented or installed by utilities, that reduce fuel use or losses of electricity and otherwise improve internal operating efficiency in generation, transmission, and distribution systems. Energy efficiency programs include demand response, combined heat and power and waste heat recovery, curtailment, or other programs that are designed to reduce electricity consumption so long as they reduce the total amount of electricity that is required for the same process or activity. Utilities shall be authorized to install and operate such advanced metering technology and equipment on a customer's premises; however, nothing in this chapter establishes a requirement that an energy efficiency program be implemented on a customer's premises and be connected to a customer's wiring on the customer's side of the inter-connection without the customer's expressed consent.
- Peak Shaving Means measures aimed solely at shifting time of use of electricity from peak-use periods to times of lower demand by inducing retail customers to curtail electricity usage during periods of congestion and higher prices in the electrical grid.

For purposes of its DSM programs in North Carolina, the Company applies the definitions set forth in NCGS § 62-133.8 (a) (2) and (4) for DSM and energy efficiency measures as defined below.

- <u>Demand-Side Management</u> Means activities, programs, or initiatives undertaken by an electric power supplier or its customers to shift the timing of electricity use from peak to nonpeak demand periods. DSM includes, but is not limited to, load management, electric system equipment and operating controls, direct load control, and interruptible load.
- Energy Efficiency Measure Means an equipment, physical, or program change implemented after January 1, 2007, that results in less energy used to perform the same function. Energy efficiency measure includes, but is not limited to, energy produced from a combined heat and power system that uses nonrenewable energy resources. Energy efficiency measure does not include DSM.

3.2.2 CURRENT DSM TARIFFS

The Company modeled existing DSM pricing tariffs over its 25-year Study Period based on historical data from the Company's Customer Information System. These projections were modeled with diminishing returns assuming new DSM programs will offer more cost-effective choices in the future. No active DSM resources were discontinued since the Company's 2010 Plan.

Standby Generator & Curtailable Service Tariffs

Program Type:	Energy Efficiency - Demand Response
Target Class:	Commercial & Industrial
Participants:	14 customers on Standby Generator in Virginia
	1 customer on Curtailable Service in Virginia
Capacity Available:	See Figure 3.2.2.1

In Virginia, the Company currently offers two DSM pricing tariffs including Standby Generator ("SG") rate schedules and a Curtailable Service ("CS") rate schedule. These tariffs provide incentive payments for dispatchable load reductions that can be called on by the Company when capacity is needed.

The SG rate schedules provide a direct means of implementing load reduction during peak periods by transferring load normally served by the Company to a customer's standby generator. The customer receives a bill credit based on a contracted capacity level or average capacity generated during a billing month when SG is requested. The CS rate schedule requires the participating customer to reduce its electric demand to a contracted firm demand level when requested by the Company in return for a rate reduction credit. Failure to comply with the Company's request to reduce demand to the firm level results in a penalty, based on a demand charge that is approximately four times the per kilowatt ("kW") credit, on the customer's bill. To receive the rate credit, customers commit to participate in the curtailment upon at least two hours' notice. The tariff is primarily aimed at customers with the operational flexibility to store inventory or to curtail or reschedule production.

During a load reduction event, a customer receiving service under the SG rate schedule is required to transfer a contracted level of load to its dedicated on-site backup generator while the customer receiving service under the CS rate schedule is required to reduce load to a contracted firm demand level. At the Company's request, the customer may be asked to reduce load on the Company's system 19 times during the summer (May 16 – September 30) and 13 times during the winter (December 1 – March 31). Additional jurisdictional rate schedule information is available on the Company's website at <u>www.dom.com</u>.

• • - •	Summer 2010		Winter 2010		
.Țariff	Number of , Events	Estimated MW Reduction	Number of Events	Estimated MW Reduction	
Standby Generator	16	7	7	5	
Curtailable Service	4	2	3	2	

Figure 3.2.2.1 ESTIMATED LOAD RESPONSE DATA

3.2.3 CURRENT & COMPLETED DSM PILOTS & DEMONSTRATIONS Pilots

On September 18, 2007, the Company filed with the SCC for approval of nine conservation, energy efficiency, education, demand response, and load management Pilots. The SCC issued a Final Order on January 17, 2008, approving the Pilots finding that they were necessary to gather information to help the Commonwealth determine methods to achieve the legislative goal affirmed by the Virginia Energy Plan of reducing energy demand by 10% (using 2006 as the base year) by 2022. The Pilots were designed not only to reduce megawatt hour ("MWh") sales and peak demand, but to gain valuable operational information and data on customer usage and customer acceptance of DSM programs.

In March 2009, the Company filed its Final Quarterly Report on the status of the Pilots (Case No. PUE-2007-00089). The Company reported information on the implementation and closure status of each Pilot, an analysis of the seven completed Pilots including a description of the EM&V analyses, and an update on the two uncompleted Pilots. The Pilots have provided valuable information for future programs and numerous learning opportunities for the Company. The Company found that Pilots offering incentives were the most popular among customers. Additionally, the Company experienced greater success with Pilots that did not require in-home customer appointments for installation. The Final Report also noted that customers wanted information at the beginning of their enrollment as to how much savings to anticipate, what to expect on their first bill, and how to determine if they were reducing energy usage. For demand response programs, customers wanted more information on the frequency and duration of demand response events. All of this information is valuable to the Company in developing, marketing, and implementing future DSM programs. The seven completed Pilots discussed in the Final Report included:

- 1. Direct Load Control Outdoor Air-Conditioning Control Device Pilot
- 2. Programmable Thermostats Indoor Air-Conditioning Control Device Pilot
- 3. Standard Residential In-Home Energy Audits Pilot
- 4. ENERGY STAR[®] Qualified Homes Energy Audits Pilot
- 5. Energy Efficiency Welcome Kits Pilot
- 6. PowerCost[™] Monitor Pilot
- 7. Small Commercial On-Site Energy Audits Pilot

Since the final report filed in March of 2009, the Company has filed four follow-up or quarterly reports regarding the status of its Pilots. In its second follow-up report on October 1, 2009, the Company provided an update to two continuing pilots: the Programmable Thermostats with

Advanced Metering Infrastructure ("AMI") and Critical Peak Pricing ("CPP") Pilot and the Distributed Generation ("DG")/Load Curtailment Pilot for Large Non-Residential Customers ("DG Pilot"). The October 2009 Report also provided further information on the PowerCost™ Monitor Pilot and compact fluorescent light ("CFL") price reduction program. On March 1, 2010 the Company filed another follow-up report in which the Company discussed the conclusion of its AMI-CPP Pilot in November 2009 and end of the CFL price reduction program on December 27, 2009. The DG Pilot is the only Pilot from Case No. PUE-2007-00089 that has active participants.

On April 6, 2010, the SCC issued an Order granting the Company's Motion to continue reporting on its DG Pilot on October 31 of each year instead of quarterly reports. The First Annual Report on the DG Pilot was filed on October 29, 2010. Within 90 days of the conclusion of the DG Pilot, the Company must file a final detailed and comprehensive report regarding its future plans for the Pilot.

In addition to the on-going DG Pilot, the Company recently received SCC approval for implementation of other pilots. Descriptions of the Company's other pilots are provided below:

DG Pilot

State:	Virginia
Target Class:	Non-Residential
Pilot Type:	Demand Response
Pilot Duration:	Enroliment closed on December 31, 2009
	Incentive payments end on December 31, 2014

Pilot Description:

The Company has formed agreements with customers for backup generators to be installed at participants' facilities to be used as replacement power when requested by the Company during periods of high electric demand. A minimum of a 30-minute notice is provided to participants for start and end times of load curtailment events, which the Company may call for up to 200 hours per year. The Company hired an outside contractor, PowerSecure™, to provide backup generation services to participating customers at a discount and dispatch the enrolled generators when requested by the Company in exchange for an incentive payment. The payment is based upon the amount of load curtailment capacity enrolled and the number of hours dispatched.

Current Pilot Status:

At the close of the enrollment period, firm commitments were made by customers to supply approximately 24 MW of backup generator capacity for load curtailment. Of the 24 MW commitment, over 15 MW of capacity is currently operational while the remainder is expected to become available in late 2011. Over 50 load curtailment events have been called during 2009 and 2010. Generally, the events were called during unseasonably warm or cold weather. The

Company continues to use the load curtailment capacity derived from the Pilot to reduce load when called upon during peak load times.

Dynamic Pricing Tariffs Pilot

State:	Virginia
Target Class:	Residential and Non-Residential
Pilot Type:	Peak-Shaving
Pilot Duration:	Enroliment closes December 1, 2012
	Pilot concludes November 30, 2013

Pilot Description:

On September 30, 2010, the Company filed an application with the SCC (Case No. PUE-2010-00135) proposing to offer three experimental and voluntary dynamic pricing tariffs to prepare for a potential system-wide offering in the future. The filing was in response to the SCC's July 30, 2010 Order Establishing Pilot Programs issued in Case No. PUE-2009-00084, which, among other things, directed the Company to establish a pilot program under which eligible customers/renewable generators volunteering to participate would be provided the ability to purchase and sell electricity to the Company at dynamic rates.

A dynamic pricing schedule allows the Company to apply different prices as system production costs change. The basic premise is that if customers are willing to modify behavior and use less electricity during high price periods, they will have the opportunity to save money, and the Company in turn will be able to reduce the amount of energy it would otherwise have to generate or purchase during peak periods.

Specifically, the Company proposed a pilot program of 2,000 participants consisting of 1,000 residential customers taking service under experimental dynamic pricing tariff DP-R and 1,000 commercial/general customers taking service under dynamic pricing tariffs DP-1 and DP-2. Participation in the pilot requires either an Advanced Metering Infrastructure ("AMI") meter or an existing interval data recorder ("IDR") meter at the customer location.

Energy usage is recorded every 30 minutes, which enables the Company to offer pricing that varies based on the time of day. In addition, the pricing varies based on the season, the classification for the day, and the customer's demand. Therefore, the AMI or IDR meter coupled with the dynamic pricing schedules allows customers to manage their energy costs based on the time of day.

Additional information regarding the pilot is available at http://www.dom.com/smartprice.

Current Pilot Status:

The filing was approved by the SCC's Order Establishing Pilot Program issued on April 8, 2011. The Company launched this pilot program on July 1, 2011.

Electric Vehicle ("EV") Pilot

State:	Virginia
Target Class:	Residential
Pilot Type:	Peak-Shaving
Pilot Duration:	Enrollment begins October 3, 2011
	Pilot concludes November 30, 2014

Pilot Description:

On January 31, 2011, the Company filed an application with the SCC (Case No. PUE-2011-00014) proposing a pilot program to offer experimental and voluntary EV rate options to encourage residential customers who purchase or lease EVs to charge them during off-peak periods. The pilot program provides two rate options. One rate option, a "whole house" rate, will allow customers to apply the time-of-use rate to their entire service, including their premise and vehicle. The other rate option, an "EV only" rate, will allow customers to remain on their existing standard rate for their premise and subscribe to the time-of-use rate only for their vehicle. The program will be open to up to 1,500 residential customers, with up to 750 in each of the two experimental rates. Additional information regarding the Company's EV Pilot Program is available in the Company's application and in the SCC's Order Granting Approval.

Current Pilot Status:

The SCC approved the pilot on July 11, 2011. The Company plans to begin pilot enrollment October 3, 2011 and conclude the pilot November 30, 2014. If supported by the results of the pilot program, the Company plans to request approval of a Virginia service territory EV peak-shaving program in the future.

Demonstrations

The Company is also continuing its demonstration efforts for AMI, herein referred to as the "AMI Demonstration." The AMI Demonstration is an on-going project that will help the Company further evaluate the technology and verify the potential impacts to its system.

AMI Demonstration

State:	Virginia
Target Class:	All-classes
Туре:	Energy Efficiency
Duration:	On-going

Demonstration Description:

The Company indicated in its supplemental testimony on February 12, 2010 (Case No. PUE-2009-00081) that it wanted to obtain further information regarding AMI to ensure that the technology, costs and benefits of implementing the technology, and technology's potential for energy reduction were better understood. In 2010, the Company extended its AMI demonstration by installing approximately 32,000 AMI meters in parts of City of Alexandria,

Arlington County, Fairfax County, and City of Falls Church, Virginia. The Company's efforts to demonstrate meter technology continue with additional meter exchanges in 2011. The Company plans to install approximately 8,000 meters to evaluate additional technology in Blue Ridge, downtown Richmond, and Williamsburg by the end of 2011.

3.2.4 CURRENT CONSUMER EDUCATION PROGRAMS

The Company's consumer education initiatives include providing demand and energy usage information, educational opportunities, and online customer support options to assist customers in managing their energy consumption. The Company's website has a section dedicated to energy conservation. This section contains helpful information for both residential and non-residential customers, including information about the Company's DSM programs. Through consumer education, the Company is working to encourage the adoption of energy-efficient technologies in residences and businesses in Virginia and North Carolina. Examples of how the Company increases customer awareness include:

Customer Connection Newsletter

State: Virginia and North Carolina

The Customer Connection newsletter is sent to customers as an insert to their monthly power bill six times per year. It contains news on topics such as DSM programs, how to save money or manage electric bills, helping the environment, service issues, and safety recommendations, in addition to many other relevant subjects. For those who receive their electric bills by e-mail, the newsletter is available online. Articles from the most recent Virginia Customer Connection Newsletter are located on the Company's website at http://www.dom.com/dominion-virginia-power/customer-service/your-bill/customer-connection.jsp. Articles from the Company's website at http://www.dom.com/dominion-virginia-power/customer-service/your-bill/customer-connection.jsp. Articles from the Company's website at http://www.dom.com/dominion-virginia-power/customer-service/your-bill/customer-connection.jsp. Articles from the Company's website at: http://www.dom.com/dominion-north-carolina-power/customer-service/your-bill/customer-connection.jsp.

Energy Conservation Blog

State: Virginia and North Carolina

The Company has an "Energy Conservation Blog," which is an online forum for Company experts to answer customer questions on energy-related topics and provide specific examples of measures to take that will help reduce energy consumption. It is also a means to provide information about the Company's DSM programs. The blog is online at: <u>http://e-conserve.blogspot.com/</u>.

Twitter ®

State: Virginia and North Carolina

The Company uses the social media channel Twitter® to provide real-time updates on energyrelated topics, promote company messages and provide two-way communication with customers. The Twitter® account is available online at: <u>www.twitter.com/DomVAPower</u>.

"Every Day"

State: Virginia

The Company advertises the "Every Day" campaign, which is a series of commercial and print ads that address various energy issues. These advertisements, along with the Company's other advertisements, are available at:

http://www.dom.com/about/advertising/index.jsp.

News Releases

State: Virginia and North Carolina

The Company prepares news releases and reports on the latest developments regarding its DSM initiatives and provides updates on Company offerings and recommendations for saving energy as new information becomes available. Current and archived news releases can be viewed at: http://www.dom.com/news/index.jsp.

Online Energy Calculators

State: Virginia and North Carolina

Home and business energy calculators are provided on the Company's website to estimate electrical usage for homes and business facilities. The calculators can help customers understand specific energy use by location and discover new means to reduce usage and save money. An appliance energy usage calculator and holiday lighting calculator are also available to customers. The energy calculators are available at:

http://www.dom.com/about/conservation/energy-calculators-help-find-energy-savings.jsp.

Community Outreach - Trade Shows, Exhibits and Speaking Engagements

State: Virginia and North Carolina

The Company conducts outreach seminars and speaking engagements in order to share relevant energy conservation information to both internal and external audiences. The Company also participates in various trade shows and exhibits at energy-related events to inform customers and communities about the importance of implementing energy-saving measures in homes and businesses. Additionally, Company representatives positively impact the communities served through presentations to elementary, middle, and high school students about using energy wisely and environmental stewardship.

The Company also provides helpful materials for students to share with their families. "Project Plant It!" is an innovative program available to elementary school students in Virginia, North Carolina, Massachusetts, Connecticut, Rhode Island, Maryland, and Wisconsin that teaches students about the importance of trees and how to protect the environment. This program includes interactive classroom lessons and provides students with tree seedlings to plant at home or at school. The Company has provided this program free of charge to thousands of elementary school students throughout the Company's service territory and recently distributed the 100,000th seedling through the program.

As part of the Residential Lighting Program, this year the Company held energy efficient lighting outreach events at Lowe's throughout the Virginia service territory with educational activities for kids and information for adults. In April, the Company held a Lighting Program school contest with Culpeper, Virginia elementary schools. The school that accrued the most vouchers and receipts attributed to compact florescent light CFL bulb sales received a \$5,000 math and science scholarship to support its math and science initiatives. The Company is planning similar educational contests in October 2011 for communities in Virginia and North Carolina.

Home Energy Reports

State: Virginia

Beginning in May of 2010, the Company partnered with OPOWER® to provide Home Energy Reports to 25,000 customers in the Charlottesville, Virginia area on a bi-monthly basis for one year. The reports are designed to help customers understand their home's energy usage and find ways to make their home more efficient, including references to the Company's energy conservation programs. The Company recently completed this initiative.

Discontinued Consumer Education Programs

The Company has removed its carbon calculator formally available on <u>www.dom.com</u> due to fewer web visitors than anticipated; however, other energy calculators are available for customer use.

3.2.5 DSM TARGETS CASE

On April 30, 2009, the SCC initiated a proceeding to determine achievable, cost-effective energy conservation and demand response targets that could realistically be achieved by each electric utility in the Commonwealth of Virginia. The SCC received input from the three generating electric utilities in the Commonwealth: the Company, Appalachian Power, and Kentucky Utilities. In the filings, the utilities discussed a realistically achievable level of savings, with the Company's testimony stating that a 10% goal using the 2006 base year was an aggressive, but realistic target. Eight interveners filed testimony, with the SCC Staff filing its testimony prior to the evidentiary hearing. During the hearing, the parties generally agreed that this goal was achievable.

On November 15, 2009, the SCC submitted a report to the Virginia Governor and the General Assembly, as required by law, finding that a 10% reduction in electric energy consumption through DSM, demand response, and energy efficiency programs was a realistic and achievable goal. The SCC did find that due to current economic conditions, rate impact implications, and the limited amount of time in which to complete the proceeding and issue the report, it was not recommending mandates to the utilities regarding particular targets to be achieved, required programs, or specific technologies to be used. Instead, the SCC stated that it would evaluate proposals on a case-by-case basis.

3.2.6 APPROVED DSM PROGRAMS

In Virginia, the Company filed for SCC approval of 12 DSM programs ("DSM Programs") on July 28, 2009 (Case No. PUE-2009-00081). On February 12, 2010, the Company filed supplemental testimony in order to withdraw its proposed Voltage Conservation Program and further evaluate the potential impacts of AMI through the on-going AMI Demonstration discussed in Section 3.2.3. On March 24, 2010, the SCC issued its Final Order approving five of the 11 proposed Programs including the: i) Air Conditioner Cycling Program, ii) Commercial Heating, Ventilating, and Air Conditioning ("HVAC") Upgrade Program, iii) Commercial Lighting Program, iv) Low Income Program, and v) Residential Lighting Program.

On March 11, 2010, the NCUC issued an Order requiring the Company to file for approval of demand response programs on or before September 1, 2010 (Docket No. E-22, Sub 418). In response to this Order, the Company filed for approval of six DSM Programs in North Carolina on September 1, 2010, in Docket No. E-22, Subs 465 (Air Conditioner Cycling Program), 466 (Commercial Distributed Generation Program), 467 (Commercial HVAC Upgrade Program), 468 (Residential Lighting Program), 469 (Commercial Lighting Program), and 463 (Low Income Program). These six proposed Programs are similar to the Programs approved in Virginia, with the exception of the Commercial Distributed Generation ("CDG") Program, which was not approved in its initial form by the SCC in Case No. PUE-2009-00081. The CDG Program has since been redesigned to address concerns of both the Virginia and North Carolina Commissions, SCC Staff and North Carolina Public Staff.

On February 22, 2011, the NCUC issued Final Orders approving five Programs including the: i) Air Conditioner Cycling Program, ii) Commercial HVAC Upgrade Program, iii) Commercial Lighting Program, iv) Low Income Program, and v) Residential Lighting Program.

On March 3, 2011, the NCUC issued an Order Scheduling Oral Argument for the Company's CDG Program, which was heard on April 13, 2011. Currently, the NCUC's proceeding regarding the CDG Program review is pending.

Appendices 3M, 3N, 3O, and 3P provide the system-level non-coincidental peak savings, coincidental peak savings, energy savings, and penetrations for each approved Program. A brief description of each approved Program is available below. Included in the descriptions are the branded names used for customer communications and marketing plans that the Company is employing and plans to achieve each Program's penetration goals.

Air Conditioner Cycling Program

Branded Name:	Smart Cooling Rewards
State:	Virginia & North Carolina
Target Class:	Residential
VA Program Type:	Peak Shaving
VA Duration:	Ongoing
NC Duration:	2011 – 2036

Program Description:

This Program provides participants with an external radio frequency cycling switch that operates on central air conditioners and heat pump systems. Participants allow the Company to cycle their central air conditioning and heat pump systems during peak load periods. The cycling switch is installed by a contractor and located on or near the outdoor air conditioning unit(s). The Company remotely signals the unit when peak load periods are expected, and the air conditioning or heat pump system is cycled off and on for short intervals.

Program Marketing:

Direct mail is currently the most frequently used marketing approach for this type of Program. The Company uses various enrollment methods including business reply cards, online enrollment, and call centers.

Commercial HVAC Upgrade Program

Branded Name:	HVAC Rewards
State:	Virginia & North Carolina
Target Class:	Commercial and Industrial
VA Program Type:	Energy Efficiency
VA Duration:	Ongoing
NC Duration:	2011 – 2036

Program Description:

The Program provides incentives for HVAC system efficiency upgrades for the commercial sector including chillers, roof-top units, and packaged terminal air conditioners. Participants who enroll in the Program receive a one-time incentive payment for replacing or upgrading inefficient heating and cooling systems. This upgrade helps assure commercial customers that their HVAC systems are running at maximum efficiency while minimizing energy consumption.

Program Marketing:

The Company markets this Program using a Contractor Network. The Program implementation vendor works with and provides content to a contractor base, which performs the actual upgrades and administers the company rebates for customers. As part of this effort, a website was developed, <u>www.DomEnergyConservationPortal.com</u>, where contractors can enroll in the network and submit rebate applications.

Commercial Lighting Program

Branded Name:	Lighting Rewards
State:	Virginia & North Carolina
Target Class:	Commercial and Industrial
VA Program Type:	Energy Efficiency
VA Duration:	Ongoing
NC Duration:	2011 2036

Program Description:

This Program provides commercial and industrial customers with an incentive to upgrade inefficient lighting systems to more cost-effective, energy-efficient lighting systems. Participants will receive a one-time average incentive based on the lighting upgrades selected.

Program Marketing:

The Company markets this Program using a Contractor Network. The Program implementation vendor works with and provides content to a contractor base, which performs the actual upgrades and administers the company rebates for customers. As part of this effort, a website was developed, <u>www.DomEnergyConservationPortal.com</u>, where contractors can enroll in the network and submit rebate applications.

Low Income Program

Branded Name:	Home Energy Improvement	
State:	Virginia & North Carolina	
Target Class:	Residential	
VA Program Type:	Energy Efficiency	
VA Duration:	Ongoing `	
NC Duration:	2011 – 2036	

Program Description:

The Low Income Program provides an energy audit for residential customers who meet the low income criteria defined by state social service agencies. A certified technician performs an audit of participating residences to determine potential energy efficiency improvements. Specific energy efficiency measures applied may include, but are not limited to: envelope sealing, water heater temperature set point reduction, installation of insulation wrap around the water heater and pipes, installation of low flow shower head(s), replacement of incandescent lighting with efficient lighting, duct sealing, attic pressure testing, attic insulation, and air filter replacement.

Program Marketing:

The Company markets this Program using a neighborhood canvassing approach in prescreened areas targeting income qualifying customers. To ensure neighborhood security and program legitimacy, community posters, truck decals, yard signs, and authorization forms have been produced and are displayed in areas where the Program has current activity.

Residential Lighting Program

Branded Name:	Lighting Program
State:	Virginia & North Carolina
Target Class:	Residential
VA Program Type:	Energy Efficiency
VA Duration:	Ongoing
NC Duration:	2011 – 2036

Program Description:

This Program is an extension of the Company's previous CFL price reduction program, which ran from October 2007 to December 2009. As part of this Program, the Company partners with manufacturers and retailers to provide participants with an instant rebate for high-efficiency lighting purchases. CFLs, when compared to incandescent bulbs, give the same amount of visible light, use approximately 75% less energy, and have an approximately 10 times longer rated life. This Program ceases to allow new participants on December 31, 2011.

Program Marketing:

The Program's automatic price discount ensures easy customer participation. The Company uses point-of-purchase marketing material in select retail locations next to the discounted bulbs to inform customers that the Company is providing a price discount.

CDG Program

Branded Name:	Distributed Generation	
State:	North Carolina	
Target Class:	Commercial and Industrial	
NC Program Type:	Demand-Side Management	
NC Duration:	2011 – 2036	

Program Description:

As part of this Program, a third party contractor will dispatch, monitor, maintain and operate customer-owned generation when called upon by the Company during peak demand periods for up to 120 hours per year, throughout all months. The Company will supervise and implement the CDG Program through the third party implementation contractor. Participating customers will essentially receive reduced cost backup generation service in exchange for their agreement to reduce electrical load on the Company's system. The reduction in cost of the backup generation service is facilitated through a fee paid by the Company to the third party contractor, based upon the amount of load curtailment delivered during control events. At least 80% of the program participation incentive is required to be passed through to the customer, with 100% of fuel and operations and maintenance compensation passed along to the customer. When not being dispatched by the Company, the generators may be used at the participants' discretion or to supply power during an outage, consistent with applicable environmental restrictions. Currently, the NCUC's proceeding regarding the CDG Program review is pending.

Program Marketing:

Marketing will be handled by the Company's implementation vendor.

3.2.7 PROPOSED DSM PROGRAMS

In Virginia, the Company filed for SCC approval of six DSM Programs on September 1, 2011 (Case No. PUE-2011-00093). The six proposed Programs include i) Commercial Energy Audit Program, ii) Commercial Duct Testing & Sealing Program, iii) Commercial Refrigeration Program, iv) CDG Program, v) Residential Lighting (Phase II) Program and vi) Residential Bundle Program.

The Company seeks approval of the Residential Bundle Program as one Program that will be offered to customers as a combined bundle of services. The Residential Bundle Program consists of: i) Residential Home Energy Check-Up Program, ii) Residential Duct Testing & Sealing Program, iii) Residential Heat Pump Tune-Up Program, and iv) Residential Heat Pump Upgrade Program. This Program has also been studied for cost-effectiveness as one Program.

These proposed DSM Programs provide a diversified mix of programs that the Company believes are cost-effective and should be approved as being in the public interest. Provided in this section are the high-level descriptions of these programs. Appendices 3Q, 3R, 3S, and 3T present data for their system-level non-coincidental peak savings, coincidental peak savings, energy savings, and penetrations.

Commercial Energy Audit Program

Target Class:	Non-residential		
VA Program Type:	Energy Efficiency		
NC Program Type:	Energy Efficiency		
VA Duration:	2012 - 2036		
NC Duration:	2014 – 2036		

Program Description:

As part of this Program, an energy auditor will perform an on-site energy audit of a nonresidential customer's facility. The customer will receive a report showing the projected energy and cost savings that could be anticipated from the implementation of options identified during the audit. Once a qualifying customer provides documentation that some of the recommended energy efficiency improvements have been made at the customer's expense, a portion of the audit price will be refunded, up to the full price of the audit.

Commercial Duct Testing & Sealing Program

Target Class:	Non-residential	
VA Program Type:	Energy Efficiency	
NC Program Type:	Energy Efficiency	
VA Duration:	2012 - 2036	
NC Duration:	2014 - 2036	

Program Description:

This Program will promote testing and general repair of poorly performing duct and air distribution systems in non-residential facilities. The Program provides incentives to qualifying customers to have a contractor seal ducts in existing buildings using program-approved methods, including: aerosol sealant, mastic, or foil tape with an acrylic adhesive. Such systems include air handlers, air intake, return and supply plenums, and any connecting duct work.

Commercial Refrigeration Program

Target Class:	Non-residential		
VA Program Type:	Energy Efficiency		
NC Program Type:	Energy Efficiency	·	
VA Duration:	2012 - 2036	•	
NC Duration:	2014 – 2036		

Program Description:

This Program provides calculated incentives to qualifying non-residential customers for the installation of program-approved refrigeration measures.

CDG Program

Target Class:	Non-residential
VA Program Type:	Demand Response / Energy Efficiency
NC Program Type:	Demand-Side Management
VA Duration:	2012 – 2036
NC Duration:	2011 – 2036

Program Description:

This Program provides qualifying customers with an incentive to curtail load by operating customer-owned backup generation when called upon to do so up to 120 hours per year. The Program is implemented by a contractor who is responsible for installing equipment to enable remote operation and monitoring of the customer's backup generation equipment and for dispatching load curtailment events under the direction of the Company. Additional Program details are provided in Section 3.2.6.

Residential Lighting Program (Phase II)

Target Class:	Residential		
VA Program Type:	Energy Efficiency		
NC Program Type:	Energy Efficiency		
VA Duration:	2012 - 2036		
NC Duration:	2014 – 2036		

Program Description:

This Program promotes the installation of CFL and light-emitting diode based bulbs in lieu of conventional incandescent bulbs.

Residential Bundle Program

Target Class:	Residential	
VA Program Type:	Energy Efficiency	
NC Program Type:	Energy Efficiency	
VA Duration:	2012 - 2036	
NC Duration:	2014 – 2036	

The Residential Bundle Program includes the four following DSM Programs described below.

Residential Home Energy Check-Up Program

Program Description:

The purpose of this Program is to provide owners and occupants of single family homes an easy and low cost home energy audit. It will include a walk through audit of customer homes, direct install measures, and recommendations for additional home energy improvements.

Residential Duct Testing & Sealing Program

Program Description:

This Program is designed to promote the testing and repair of poorly performing duct and air distribution systems. Qualifying customers will be provided an incentive to have a contractor test and seal ducts in their homes using methods approved for the Program, such as mastic material or foil tape with an acrylic adhesive to seal all joints and connections. The repairs are expected to reduce the average air leakage of a home's conditioned floor area to industry standards.

Residential Heat Pump Tune-Up Program

Program Description:

This Program provides qualifying customers with an incentive to have a contractor tune-up their existing heat pumps once every five years in order to achieve maximum operational performance. A properly tuned system should increase efficiency, reduce operating costs, and prevent premature equipment failures.

Residential Heat Pump Upgrade Program

Program Description:

This Program provides incentives for residential heat pump (e.g., air and geothermal) upgrades. Qualifying equipment must have better Seasonal Energy Efficiency Ratio and Heating Seasonal Performance Factor ratings than the current nationally mandated efficiency standards.

3.2.8 EVALUATION, MEASUREMENT & VERIFICATION

The Company has implemented EM&V plans to quantify the level of energy and demand savings for approved Programs in Virginia and North Carolina. As required by the SCC and NCUC, the Company will provide periodic EM&V reports that include: i) the actual EM&V data; ii) the cumulative results for each Program in comparison to forecasted annual projections; and iii) any recommendations or observations following the analysis of the EM&V data. The Company signed a contract with a third-party vendor, KEMA, Inc., to be responsible for developing, executing, and reporting the EM&V results for the Company's currently approved DSM Programs.

3.3 TRANSMISSION RESOURCES

3.3.1 EXISTING TRANSMISSION RESOURCES

The Company has over 6,100 miles of transmission lines in Virginia, North Carolina, and West Virginia at voltages ranging from 69 kV to 500 kV. These facilities are integrated into PJM.

In Virginia, the Company added two 230 kV lines: i) Chickahominy – Old Church line (March 2011) and ii) Suffolk – Thrasher line (June 2011) and two 500 kV lines: i) Meadowbrook – Loudoun line (April 2011) and ii) Carson – Suffolk line (May 2011). In addition, 230 kV Iron Bridge – Southwest line (May 2011) and 230 kV Pleasant View – Dickerson line (June 2011) were uprated, and 230 kV Brambleton to Pleasant View line was reconductored.

The Company has the following transmission ties with other systems to facilitate economic and emergency transfer of power with neighboring utilities:

- One 500 kV and one 230 kV interconnection with PJM / Potomac Electric Power Company to north of the DOM Zone.
- One 500 kV, four 230 kV, and two 115 kV interconnections with Progress Energy-Carolinas to south of the DOM Zone.
- Seven 500 kV, one 138 kV, and one 115-138 kV transformer interconnections with Allegheny Power to northwest of the DOM Zone.
- One 500 kV, four 138 kV, and two 115-69 kV transformers interconnections with American Electric Power to the west of the DOM Zone.

These ties also serve as a source of mutual support between the Company and other utilities to help ensure reliable service to customers.

3.3.2 EXISTING TRANSMISSION & DISTRIBUTION LINES

North Carolina Plan Addendum 2 contains the list of Company's existing transmission and distribution lines listed in pages 422, 423, 424, 425, 426 and 427, respectively, of the Company's most recently filed Federal Energy Regulatory Commission ("FERC") Form 1.

3.3.3 TRANSMISSION PROJECTS UNDER CONSTRUCTION

The Company currently does not have any transmission interconnection projects under construction (Appendix 3U). A list of the Company's transmission lines and associated facilities that are under construction may be found in Appendix 3V.

Chapter 4 Planning Assumptions

CHAPTER 4 – PLANNING ASSUMPTIONS

4.1 PLANNING ASSUMPTIONS INTRODUCTION

The Company's 2011 Plan relies upon a number of assumptions and constraints including requirements from PJM. Chapter 4 covers a diverse set of assumptions and requirements related to capacity needs and reserve requirements, renewable energy requirements, commodity price assumptions, and transmission assumptions. The Company updates its planning assumptions annually to maintain a consistent view of relevant markets, the economy, and regulatory drivers.

4.2 PJM CAPACITY PLANNING PROCESS & RESERVE REQUIREMENTS

The Company participates in the PJM capacity planning processes for short- and long-term capacity planning. A brief discussion of these processes and the Company's participation in them is provided in the following sub-sections.

4.2.1 SHORT-TERM CAPACITY PLANNING PROCESS ~ RELIABILITY PRICING MODEL

As a PJM member, the Company is a signatory to PJM's Reliability Assurance Agreement, which obligates the Company to own or procure sufficient capacity to maintain overall system reliability. PJM determines these obligations for each zone through its annual load forecast and reserve margin guidelines. PJM then conducts a capacity auction through its Short-Term Capacity Planning Process - RPM for meeting these requirements three years into the future. This auction process determines the actual reserve margin and the capacity price for each zone for the third planning year.

The Company, as a generation provider, bids its capacity resources, including owned and contracted generation and DSM programs, into this auction. The Company, as an LSE, is obligated to buy enough capacity to cover its capacity requirements from the RPM auction, or through any bilateral trades. Figure 4.2.2.1 provides the Company's estimated 2012 to 2014 capacity positions and associated reserve margins based on PJM's January 2011 Load Forecast and RPM auctions that have already been conducted.

4.2.2 LONG-TERM CAPACITY PLANNING PROCESS – RESERVE REQUIREMENTS

The Company uses PJM's reserve margin guidelines in conjunction with its own load forecast discussed in Chapter 2 to determine its long-term capacity requirement. PJM conducts an annual Reserve Requirement Study to determine an adequate level of capacity in its footprint to meet the target level of reliability measured with a Loss of Load Expectation ("LOLE") that is equivalent to 1 day of outage in 10 years. PJM's 2010 Reserve Requirement Study⁴ recommends using a reserve margin of 15.3% to satisfy the reliability criteria required by NERC, RFC, and PJM's Planned Reserve Sharing Group. According to PJM's 2010 Reserve

⁴ PJM's current reserve margin study, *2010 Reserve Requirement Study," is available at www.pim.com.

Requirement Study, the minor changes to the generation and load models that offset each other have resulted in an identical reserve margin with last year's study.⁵

Three assumptions were made by the Company when applying the PJM reserve margin to the Company's modeling efforts. First, since PJM uses a shorter planning period than the Company, the Company took the most recent reserve requirements study and assumed the reserve margin value for the year indicated would continue throughout its Study Period. Second, PJM develops reserve margin estimates for planning years rather than calendar years. Specifically, PJM's planning year occurs from June of one year to May of the following year. Since the Company and PJM are both historically summer peaking entities, calendar and planning year reserve requirements have no impact on planning requirements. For example, the Company uses the 2014 to 2015 planning year assumptions for the 2014 calendar year in its 2011 Plan. The final assumption is in regard to the coincident factor between the DOM Zone coincidental and non-coincidental peak load. The Company is only obligated to maintain a reserve margin for its portion of the PJM coincidental peak load. Since the Company's peak load (non-coincidental) has not historically occurred during the same hour as PJM's peak load (coincidental), a smaller reserve margin is needed to meet reliability targets and is based on a coincidence factor. To create the coincidence factor used in the 2011 Plan, the Company used a four-year (2011-2014) average of the coincidence factor between the DOM Zone coincidental and non-coincidental peak load. The coincidence factor for the Company's load is approximately 96.3% as calculated using PJM's January 2011 Load Forecast. In 2014, applying the PJM Installed Reserve Margin requirement of 15.3% with the Company's coincidence factor of 96.3% resulted in an effective reserve margin of 11.0% as shown in Figure 4.2.2.1. This reserve margin was then used for each year for the remainder of the Planning Period.

Year	Net Summer Peak ¹	PJM Installed Reserve Margin Requirements ²	Effective Reserve Margin	Reserve Requirement	Total Resource Requirement ³
	MW	%	Υ.	MW	MW
2012	16,999		18,4%	3,119	20,119
2013	17,447		18,1%	3,163	20,610
2014	17,952	-	11.0%	1,975	19,927
2015	18,368	15.3%	11.0%	2,021	20,409
2016	18,686	15.3%	11.0%	2,053	20,739
2017	18,973	15.3%	11.0%	2,085	21,058
2018	19,295	15.3%	11.0%	2,120	21,415
2019	19,604	15.3%	11.0%	2,154	21,758
2020	20,035	15,3%	11.0%	2,202	22,237
2021	20,413	15.3%	11.0%	2,243	22,656
2022	20,771	15.3%	11.0%	2,282	23,053
2023	21,125	15.3%	11.0%	2,321	23,446
2024	21,409	15.3%	11.0%	2,352	23,762
2025	21,765	15.3%	11.0%	2,392	24,157
2026	22,201	15.3%	11.0%	2,439	24,640

FIGURE 4.2.2.1 PEAK LOAD FORECAST & RESERVE REQUIREMENTS

Notes: 1) Includes all Load Forecast Adjustments. 2) 2012 – 2014 values reflect the Company's position following RPM base residual auctions that have cleared. 3) Includes wholesale obligations.

⁵ 2010 PJM Reserve Requirement Study, Page 2.

In Figure 4.2.2.1, the total resource requirement column provides the total amount of peak capacity including the reserve margin used in the 2011 Plan. This represents the Company's total resource need that must be met through existing resources, construction of new resources, DSM programs, and market capacity purchases. Actual reserve margins in each year may vary based upon the outcome of the forward RPM auctions and annually updated load and reserve requirements. Appendix 2I provides a summary of projected PJM reserve margins for summer peak demand.

PJM's processes are an integral part of the Company's planning processes. For transmission planning, the Company utilizes PJM's regional perspective. For short-term capacity planning up to three years in the future, the Company participates in the RPM process and for long-term capacity planning the Company follows the PJM reserve margin guidelines.

4.3 RENEWABLE ENERGY REQUIREMENTS

4.3.1 VIRGINIA RPS PLAN

On May 18, 2010, the SCC issued its final order granting the Company's July 28, 2009 application to participate in Virginia's voluntary Renewable Energy Portfolio Standard ("RPS") program finding that "the Company has demonstrated that it has a reasonable expectation of achieving 12% of its base year electric energy sales from renewable energy sources during calendar year 2022, and 15% of its base year electric energy sales from renewable energy sources during calendar year 2025" (Case No. PUE-2009-00082). The RPS requirements prescribe that a certain percent of the Company's energy should be obtained from renewable resources. The Company can meet Virginia's RPS program guidelines through the generation of renewable energy, purchase of renewable energy, purchase of Renewable Energy Certificates ("RECs"), or a combination of the three options. The Company achieved its 2010 Virginia RPS Goal. Figure 4.3.1.1 displays Virginia's RPS goals.

Year .	Percent of RPS.	Annual GWh ¹
2010	4% of Base Year Sales	1,733
2011-2015	Average of 4% of Base Year Sales	1,733
2016	7% of Base Year Sales	3,032
2017-2021	Average of 7% of Base Year Sales	3,032
2022	12% of Base Year Sales	5,198
2023-2024	Average of 12% of Base Year Sales	5,198
2025	15% of Base Year Sales	6,497

Figure 4.3.1.1 VIRGINIA RPS GOALS

Note: 1) Base year sales are equal to 2007 VA jurisdictional retail sales, minus 2004 to 2006 average nuclear generation. Actual goals are based on MWh.

The Company has included renewable resources as an option in Strategist taking into consideration the economics and RPS requirements as applicable to its Plan. Specifically, the Company has filed for approval of amended CPCNs for the conversion of three coal burning units to use biomass for a total of 153 MW. Also under construction is approximately 59 MW of

biomass capacity at VCHEC. Additionally, the Company is developing the Halifax County Solar 4 MW facility. The 2011 Plan reiterates the Company's intent to meet Virginia's RPS guidelines at a reasonable cost and in a prudent manner by: i) applying renewable energy from existing generating facilities including NUGs; ii) purchasing cost-effective RECs (including optimizing RECs produced by Company-owned generation where more expensive RECs are sold in the market and less expensive RECs are purchased and applied to the Company's RPS goals); and iii) constructing new renewable resources when and where economically feasible.

4.3.2 NORTH CAROLINA REPS PLAN

NCGS § 62-133.8 requires the Company to comply with the state's Renewable Energy and Energy Efficiency Portfolio Standard Plan ("REPS") requirement. The REPS requirements can be met by generating renewable energy, energy efficiency measures (capped at 25% of the REPS requirements through 2020 and up to 40% thereafter), purchasing renewable energy, purchasing RECs, or a combination of options as permitted by NCGS § 62-133.8 (b) (2). The Company plans to meet a portion of the general REPS requirements using the approved energy efficiency programs discussed in Chapter 3 and 6 of this Plan. The Company achieved compliance with its 2010 North Carolina REPS requirements by purchasing RECs. More information regarding the Company's plans is available in its North Carolina REPS Compliance Plan filed in North Carolina with this 2011 Plan as North Carolina IRP Addendum 1. Figure 4.3.2.1 displays North Carolina's overall REPS requirements.

Year	Percent of REPS	Annual GWh ¹
2012	3% of 2011 NC Retail Sales	120
2013	3% of 2012 NC Retail Sales	124
2014	3% of 2013 NC Retail Sales	129
2015	6% of 2014 NC Retail Sales	260
2016	6% of 2015 NC Retail Sales	263
2017	6% of 2016 NC Retail Sales	271
2018	10% of 2017 NC Retail Sales	455
2019	10% of 2018 NC Retail Sales	461
2020	10% of 2019 NC Retail Sales	469
2021	12.5% of 2020 NC Retail Sales	597

Figure 4.3.2.1 NORTH CAROLINA REPS REQUIREMENTS

Note: 1) Annual gigawatt hour is an estimate only based on the latest forecast sales. The Company intends to comply with the North Carolina REPS requirements, including the set-asides for energy derived from solar, poultry litter, and swine waste through the purchase of RECs and/or purchased energy, as applicable. These set aside requirements represent approximately 0.03% of system load by 2024 and will not materially alter the 2011 Plan.

As part of the total REPS requirements, North Carolina requires certain renewable set aside provisions for solar energy, swine waste, and poultry waste resources as shown in Figure 4.3.2.2, Figure 4.3.2.3, and Figure 4.3.2.4.

Year	Requirement Target (%)	Annual GWh ¹
2010	0.02% of 2009 NC Retail Sales	0.81 ²
2011	0.02% of 2010 NC Retail Sales	0.87 ³
2012	0.07% of 2011 NC Retail Sales	2.80
2013	0.07% of 2012 NC Retail Sales	2.90
2014	0.07% of 2013 NC Retail Sales	3.00
2015	0.14% of 2014 NC Retail Sales	6.07
2016	0.14% of 2015 NC Retail Sales	6.14
2017	0.14% of 2016 NC Retail Sales	6.32
2018	0.20% of 2017 NC Retail Sales	9,11
2019	0.20% of 2018 NC Retail Sales	9.23
2020	0.20% of 2019 NC Retail Sales	9.38
2021	0.20% of 2020 NC Retail Sales	9.56

Figure 4.3.2.2 NORTH CAROLINA SOLAR REQUIREMENTS

Notes: 1) Annual gigawatt hour is an estimate based on latest forecast sales. 2) The Company achieved compliance with the 2010 NC Solar target by purchasing 806 solar RECs. 3) The Company has purchased solar RECs necessary to satisfy the North Carolina 2011 goal of 866 solar RECs, Please reference the Company's North Carolina 2011 REPS Compliance Plan, attached as North Carolina IRP Addendum 1, for additional details.

Year	Target ¹	Dominion Market Share (Est.)	Annual GWh ²
2012	0.07% of 2011 NC Retail Sales	3.02%	2.80
2013	0.07% of 2012 NC Retail Sales	3.07%	2.90
2014	0.07% of 2013 NC Retail Sales	3.13%	3.00
2015	0.14% of 2014 NC Retail Sales	3.11%	6.07
2016	0.14% of 2015 NC Retail Sales	3.09%	6.14
2017	0.14% of 2016 NC Retail Sales	3.12%	6.32
2018	0.20% of 2017 NC Retail Sales	3.10%	9.11
2019	0.20% of 2018 NC Retail Sales	3.08%	9.23
2020	0.20% of 2019 NC Retail Sales	3.08%	9.38
2021	0.20% of 2020 NC Retail Sales	3.08%	9.56

Figure 4.3.2.3 NORTH CAROLINA SWINE WASTE REQUIREMENTS

Notes: 1) The Swine Waste Resource requirement is calculated as an aggregate target for NC Electric Suppliers distributed based on market share. 2) Annual gigawatt hour is an estimate only based on the latest forecast sales.

Year	Target (GWh)	Dominion Market Share (Est.)	Annual GWh ¹
2012	170	3.02%	5.14
2013	700	3.07%	21.50
2014	900	3.13%	28.16
2015	900	3.11%	27.99
2016	900	3.09%	27.78
2017	900	3.12%	28.10
2018	900	3.10%	27.87
2019	900	3.08%	27.74
2020	900	3.08%	27.69
2021	900	3.08%	27.72

Figure 4.3.2.4 NORTH CAROLINA POULTRY WASTE REQUIREMENTS

The renewable energy requirements for Virginia and North Carolina and their totals have been provided in Figure 4.3.2.5.

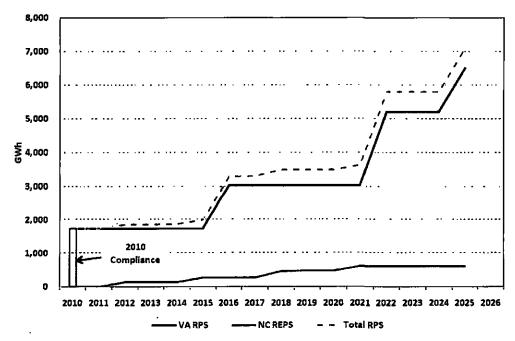


Figure 4.3.2.5 RENEWABLE ENERGY REQUIREMENTS

Note: 1) For purposes of this filing, the Poultry Waste Resource requirement is calculated as an aggregate target for NC electric suppliers distributed based on market share.

EXTRAORDINARILY SENSITIVE INFORMATION REDACTED

4.4 COMMODITY PRICE ASSUMPTIONS

The Company performed the analysis for the 2011 Plan using energy and commodity price forecasts provided by ICF International, Inc. ("ICF"), a global energy consulting firm, in all periods except the first 18 months of the Study Period. The Company used forward prices for the first 18 months and then blended forward prices with ICF estimates for the next 18 months. Beyond the first 36 months, the Company used the ICF commodity price forecast exclusively. The price curves used during this analysis include air emission costs, RECs, natural gas, coal, capacity, and energy costs.

The methodology used to develop the fuel and power market prices relied on an integrated viewpoint including the effects of various proposed legislation intended to reduce greenhouse gas emissions. Extraordinarily Sensitive Figure 4.4.1 displays the fuel price forecasts while Extraordinarily Sensitive Figure 4.4.2 displays the forward price curves for SO₂, NO_x, and CO₂ emissions allowance prices on a dollar per ton basis. Extraordinarily Sensitive Figure 4.4.3 presents the estimated market clearing power prices for the PJM DOM Zone. The price forecast of PJM-DOM Zone capacity is presented in Extraordinarily Sensitive Figure 4.4.4. Extraordinarily Sensitive Appendix 4A provides delivered fuel price estimates.

and the second
이는 여러는 것 이가 화면 정말 감독 지신이 가지 않는 것 않는 것 같은 것 같
·····································
그는 그는 것 같은 것은 것을 가지 않는 것 같은 것 같은 것을 가지 않는 것 같은 것 같이 있다. 가지 않는 것 같은 것 같

Figure 4.4.1 FUEL PRICE FORECASTS

EXTRAORDINARILY SENSITIVE INFORMATION REDACTED

Figure 4.4.2 EFFLUENT PRICE FORECASTS

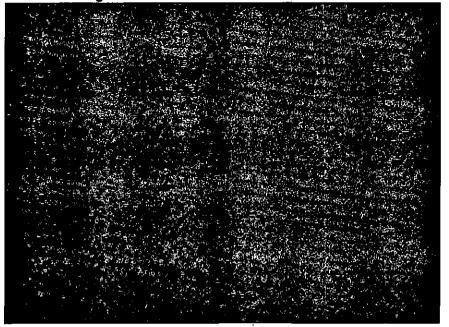
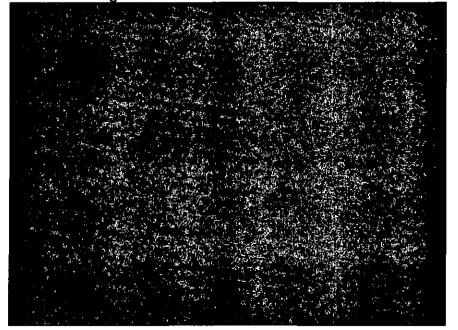
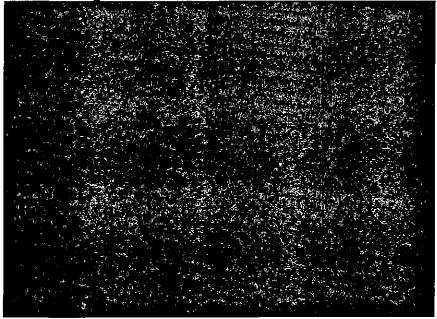




Figure 4.4.3 POWER PRICE FORECASTS

EXTRAORDINARILY SENSITIVE INFORMATION REDACTED

Figure 4.4.4 CAPACITY PRICE FORECASTS

4.5 TRANSMISSION PLANNING

The Company's transmission planning process, system adequacy, transfer capabilities, and transmission interconnection process are described in the following subsections. As used in this Plan, electric transmission facilities at the Company can be generally defined as those operating at 69 kV and above that connect sources of power with distribution facilities and provide for the interchange of power within and outside of the Company's transmission network.

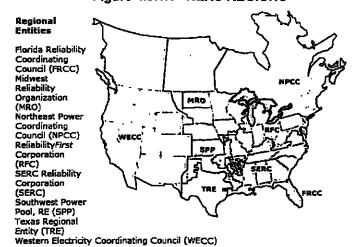
4.5.1 REGIONAL TRANSMISSION PLANNING & SYSTEM ADEQUACY

The Company's transmission system is designed and operated to ensure adequate and reliable service to its customers while meeting all regulatory requirements and standards. Specifically, the Company's transmission system is developed to comply with the NERC Reliability Standards as well as the Southeastern Reliability Corporation ("SERC") supplements to the NERC standards.

The Company participates in numerous regional, interregional, and sub-regional studies to assess the reliability and adequacy of the interconnected transmission system. The Company is registered with PJM as the Company's Planning Coordinator and with NERC as a Transmission Planner. Accordingly, the Company participates in the PJM Regional Transmission Expansion Plan ("RTEP") to develop the RTO-wide transmission plan for PJM.

The PJM RTEP covers the entire PJM control area and includes projects proposed by PJM, as well as projects proposed by the Company and other PJM members through internal planning processes. The PJM RTEP process includes both a five-year and 15-year outlook. Specifically,

for short-term planning, the five-year outlook enables the Company to meet near-term load growth. For example, the PJM RTEP called for the completion of the Meadowbrook – Loudoun 500 kV line by May 2011 in order to provide considerable reliability improvements to the Company's transmission system. The Company met that target date when it energized the Meadowbrook-Loudoun line in April of 2011.


The Company evaluates its ability to support expected customer growth through its internal planning process. The results of this evaluation indicate if transmission improvements are needed, for which the Company seeks an analysis through the PJM RTEP process and, if needed, approval from the appropriate regulatory commission. Additionally, the Company performs seasonal operating studies to identify facilities in the Company's transmission system that could be critical during the upcoming season.

In 2011, the Company began conducting Market Efficiency analysis as part of its overall planning analysis. Market Efficiency planning is a process for evaluating transmission resources in order to achieve economic efficiencies, such as relieving projected transmission congestion.

The parameters and assumptions used in the Company's Market Efficiency analysis, as well as PJM's final results, are reviewed with the PJM Transmission Expansion Advisory Committee ("TEAC"). If the modification to an existing transmission resource identified in the annual RTEP is approved by the TEAC and meets a cost/benefit threshold, then it may be accelerated in that RTEP. If a new Market Efficiency project is identified, meets the cost/benefit threshold, and is approved by the TEAC, then it may also be included in the annual RTEP. Details regarding Market Efficiency Project evaluation are provided by PJM and may found at the website: http://www.pjm.com/~/media/documents/ manuals/m14b.ashx.

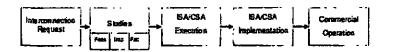
These aforementioned evaluations inform the Company's expansion of its transmission infrastructure due to load growth in the DOM Zone. Due to the regional nature of many transmission projects, the Company shares in the cost and benefit of many transmission projects within and outside of the DOM Zone.

The Company is also a member of the Virginia-Carolinas Reliability Agreement ("VACAR"), the Virginia-Carolinas sub-region of SERC (one of the NERC regions). As a member, the Company participates in the VACAR sub-regional, SERC regional, and SERC East-Reliability First Corporation ("RFC") interregional study groups. The groups undertake SERC regional and VACAR sub-regional reliability assessment studies, as well as in SERC East-RFC Interregional reliability assessment studies assess the transmission systems as planned by the Transmission Planners and Planning Coordinators. The studies identify facilities that could be limiting; however, SERC and VACAR do not attempt to find solutions to any problems identified and do not develop regional or sub-regional transmission plans. Rather, information from these studies is considered by the Transmission Planners and Planning processes (Figure 4.5.1.1).

Figure 4.5.1.1 NERC REGIONS

Note: Retrieved from the NERC website on April 13, 2011; http://www.nerc.com/page.php?cid=1)9(119.

4.5.2 TRANSFER CAPABILITIES


It is important to maintain an adequate level of transfer capability to facilitate economic and emergency power flows between neighboring utilities. Transfer capabilities are determined using first contingency (N-1) criteria as defined by NERC. Under N-1 criteria, system improvements are made based on facility loadings and voltages with a critical facility outage in effect. Transfer capabilities are calculated between two or more control areas using N-1 criteria. Maximum transfer capability between control areas may be limited due to overloading of any facility including the interconnections between the control areas. The limiting facility for a particular transfer can vary depending on the source and sink of the transfer. Available Transfer Capabilities ("ATCs") are calculated and posted by PJM for the PJM market. Since the Company is a member of PJM, it no longer explicitly calculates and posts ATCs. ATCs are updated regularly and posted on PJM's website at http://www.pjm.com/markets-and-operations/etools/oasis/atc-information.aspx.

4.5.3 TRANSMISSION INTERCONNECTIONS

For any new generation proposed within the Company's transmission system, either by the Company or by other parties, the generation owner files an interconnection request with PJM. PJM, in conjunction with the Company, conducts Feasibility Studies, System Impact Studies, and Facilities Studies to determine the facilities required to interconnect the generation to the transmission system (Figure 4.5.3.1). These studies ensure deliverability of the generation into the PJM market. The scope of these studies is provided in the applicable sections of the PJM manual 14A posted at http://www.pim.com/~/media/documents/manuals/m14a.ashx and the Company's Facility Connection Requirements document is posted on the Company's public website at:

http://www.dom.com/business/electric-transmission/pdf/Facility Connection Requirements.pdf

The results of these studies provide the requesting interconnection customer with an assessment of the feasibility and costs (both interconnection facilities and network upgrades) to interconnect the proposed facilities to the PJM system, which includes the Company's transmission system.

Notes Projects May Drop Out of the Queue at any Time

Fees — Feexibility studies Imp — System Impact Studies Fac — Facility studies ISA/CSA — Interconnection Service Agreement / Construction Service Agreement

Note: Source: Received via e-mail from PJM on March 20, 2008

The Company's planning objectives include increasing the ability to analyze planning options for transmission as part of the IRP process and the ability to provide the outcomes as input to the PJM planning processes. In order to accomplish this goal, the Company must comply and coordinate with a variety of regulatory groups that address reliability, grid expansion, and costs which fall under the authority of NERC, PJM, FERC, the SCC, and the NCUC. In evaluating and developing this process, balance among regulations, reliability, and costs are critical to providing service to the Company's customers in all aspects, which includes generation and transmission services.

With these considerations, the Company is evaluating and analyzing transmission options that would support siting of potential generation resources in a manner that would offer flexibility in locating these resources such that additional grid benefits could be achieved. Development of this aspect of the Company's long-term planning process is currently being initiated and will need to be developed, in coordination with the PJM process, in order to fully obtain the potential benefit. The Company also conducts power flow studies and financial analysis to determine the interconnection requirement for new supply-side resources.

The Company uses Promod IV®, which performs a security constrained unit commitment and dispatch, to consider the proposed and planned supply-side resources and transmission facilities. Promod IV®, which incorporates extensive details in generating unit operating characteristics, transmission grid topology and constraints, unit commitment/operating conditions, and market system operations, is the industry-leading Fundamental Electric Market Simulation software.

Promod IV® model enables the Company to integrate the transmission and generation system planning and specifically to: i) analyze the zonal and nodal level Locational Marginal Pricing

impact of new resources and transmission facilities, ii) calculate the value of new facilities due to the alleviation of system constraints and iii) perform transmission congestion analysis.

The model is utilized to determine the most beneficial location for new supply-side resources in order to optimize the future need for both generation and transmission facilities while providing reliable service to all customers in 16 transmission zones of the Company's service area. Promod IV® model evaluates the impact of planned resources under development which are selected by the Strategist model. Promod IV® and Power System Simulator for Engineering were utilized to evaluate the impact of future generation retirements on the reliability of the DOM Zone transmission grid. The generation facilities planned to retire were removed from the model and assessed according to PJM's reliability standards.

Chapter 5

Future Resources

CHAPTER 5 – FUTURE RESOURCES

5.1 FUTURE SUPPLY-SIDE RESOURCES

The Company continues to monitor viable commercial and utility-scale emerging generation technologies. The Company gathers information about potential and emerging generation technologies from a mix of internal and external sources. The Company's internal knowledge base spans various departments including planning, financial analysis, construction, operation, alternative energy solutions, and business development. The dispatchable and non-dispatchable resources examined in this 2011 Plan are defined and discussed in the following subsections.

5.1.1 DISPATCHABLE RESOURCES

Battery Storage

Batteries serve a variety of purposes that make them useful and attractive options to meet energy needs. Batteries can be used to provide energy for power station blackstarts, shave peak load, or shift peak load to off-peak periods. They vary in size, differ in performance characteristics, and are usable in different locations. Recently, batteries have gained considerable attention due to their ability to integrate intermittent generation sources such as wind and solar onto the grid. Battery storage technology increases the dispatchability of Solar Photovoltaic ("PV") systems. The Company plans to deploy this developing technology as a component of the Halifax County Solar project. The primary challenge facing battery systems is the cost; however, other factors such as recharge times, variance in the temperature, energy efficiency, and capacity degradation raise issues for utility-scale battery systems.

Biomass

Biomass generation facilities rely partially or completely on renewable fuel in their thermal generation process. In the Company's service territory, the renewable fuel generally used is waste wood. The Company considers biomass to be carbon neutral from an emissions standpoint. The Company is constructing the 585 MW VCHEC facility, which will be able to utilize up to 20% of its fuel from biomass resources (wood waste and wood byproducts). The Company also filed for SCC approval of its proposal to perform major unit modifications to convert Altavista, Hopewell, and Southampton stations to biomass generation facilities rated at 51 MW each. The existing infrastructure at these facilities can be completed at a lower cost when compared to building new greenfield biomass units, thereby making the major unit modifications a better economic choice. Subject to receiving all necessary regulatory approvals and permits, commercial operation of the converted facilities is expected to begin by the end of 2013.

When considering biomass resources, the Company plans to adhere to certain limitations in Va. Code § 56-585.2 F, which restricts the amount of these biomass resources that can be applied to meet the Company's renewable requirements and goals. As defined in Va. Code § 56-585.2 F and the SCC Final Order issued May 18, 2010, regarding the

Company's Virginia RPS plan (Case No. PUE-2009-00082) the Company is currently limited to 1,108,940 tons of certain types of tree-based materials. As part of the 2011 Plan, the Company considered coal-to-biomass conversions, greenfield biomass plants, and co-firing coal with biomass at existing coal-fired plants.

<u>CFB</u>

This clean coal technology has been operational for the past few decades and is very flexible in terms of fuel quality. It can consume a wide array of coal types including low British Thermal Unit waste coal and wood products. The technology uses upward blowing jets of air to suspend the fuel and results in a more complete chemical reaction allowing for efficient removal of many pollutants such as NO_x and SO₂. The preferred location for this technology is within the vicinity of large quantities of waste coal fields. The Company will continue to follow this technology and its associated economics based on the site and fuel resource availability.

Fuel Cell

Fuel cells are electrochemical cells that convert chemical energy from fuel into electricity and heat. They are similar to batteries in their operation, but where batteries store energy in the components (a closed system), fuel cells consume their reactants. Fuel cell technology has been heavily researched for many years by a variety of institutions. However, this technology has not been used in utility-scale demonstration projects nor been proven reliable or economical. While the Company will continue to evaluate and monitor developments surrounding fuel cell technology, it has determined the resource will not be considered for further analysis at this time.

Gas-Fired CC ("CC" or "CC 2x1" or "CC 3x1")

A natural gas CC plant combines a CT and a steam turbine plant into a single highly efficient power plant. The option the Company considered for its analysis included the CC 2x1 generators and CC 3x1 generators, with heat recovery steam generators and supplemental firing capability.

Gas-Fired CT

Gas-fired CT technology has the lowest capital requirements of any resource considered; however, it has significant variable costs because of its low efficiency. This is a proven technology with cost information readily available. Additionally, the Company has significant operating experience with this technology.

Geothermal

Geothermal technology uses the heat from the earth to create steam which is subsequently run through a steam turbine. As of 2011, the National Renewable Energy Laboratory still has not indicated that there are any viable sites for geothermal technology identified in the eastern

portion of the United States.⁶ The Company does not view this resource as a feasible option in its service territory at this time; however, it will continue to monitor developments surrounding geothermal technology.

<u>Hydro</u>

Facilities powered by falling water have been operated for over a century. Construction of largescale hydroelectric dams is currently unlikely; however, smaller-scale plants, or run-of-river facilities, are feasible in the Company's service territory. Due to the site-specific nature of these plants, the Company does not believe it is appropriate to further investigate this type of plant until a viable site is selected.

Integrated-Gasification Combined Cycle ("IGCC") with Carbon Capture and Sequestration ("CCS")⁷

IGCC plants use a gasification system to produce synthetic natural gas from coal in order to fuel a CC. In addition, IGCC systems remove a greater proportion of other air effluents. The gasification system process produces a pressurized stream of CO_2 before combustion, which research suggests provides some advantages in preparing the CO_2 for CCS systems. For planning purposes, the Company assumes carbon legislation would be enacted by 2018; therefore the Company only plans to consider IGCC plants that have CCS systems.

CCS is a technology that collects and traps CO₂ underground. This technology can be combined with many thermal generation technologies to reduce atmospheric carbon emissions; however, it is generally proposed to be used with coal burning facilities. At present, no commercial facility in the United States is using CCS. The Company will continue to follow this technology and its associated economics.

Nuclear

With an increasing need for clean, non-carbon emitting baseload power, many electric utilities are re-examining new nuclear power units. The newest third-generation nuclear power designs feature advanced, passive safety features. The process for constructing a new nuclear unit remains time-consuming with various permits for design, location, and operation required by various government agencies. For further discussion of the Company's efforts to develop a third unit at the North Anna Power Station, see Section 5.3.

Pulverized Coal ("PC") with CCS

PC is a very mature technology with hundreds of plants in operation across the United States and others under various stages of development. Although the PC with CCS technology is still under development, the Company will consider it in its analysis provided its environmental controls are consistent with draft and final EPA regulations. The Company will continue to follow

⁶ Retrieved from: <u>http://www.nrel.gov/geothermal/</u>

⁷ The Company currently assumes that the captured carbon cannot be sold.

this technology and its associated economics.

5.1.2 NON-DISPATCHABLE RESOURCES

Onshore Wind

Wind resources are one of the fastest growing resources in the United States. The Company has considered onshore wind resources as a means of meeting the RPS goals, REPS requirements, and as a cost-effective stand-alone resource. The suitability of this resource is highly dependent on locating an operating site that can achieve an acceptable capacity factor. Additionally, these facilities tend to operate at times that are non-coincidental with peak system conditions and therefore generally achieve a capacity contribution significantly lower than their nameplate ratings. The Company understands that there is limited land available in its service territory that has sufficient wind characteristics. Figure 5.1.2.1 displays the onshore wind potential of Virginia and North Carolina. It is important to note that the Eastern portion of the United State's wind resources are limited and available only in specialized locations, such as on mountain ridges. This resource was considered for further analysis in the Company's Busbar Curve analysis.

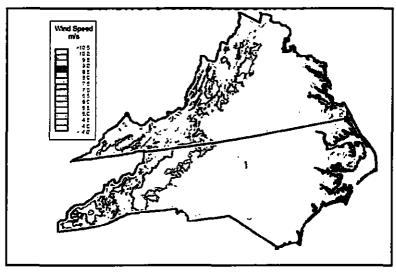


Figure 5.1.2.1 ONSHORE WIND RESOURCES IN VIRGINIA AND NORTH CAROLINA

Source: Retrieved from the National Renewable Energy Laboratory on June 21, 2011; http://www.windpoweringamerica.gov/pdfs/wind_maps/us_windmap_80meters.pdf

Offshore Wind

Offshore wind has the potential to provide the largest, scalable renewable resource for Virginia with near-term resource availability of approximately 2,000 MW and potentially up to 3,000 MW as seen in Figure 5.1.2.2. Virginia has a unique offshore wind opportunity due to its shallow continental shelf extending nearly 30 miles off the coast, proximity to load centers, availability of local supply chain infrastructure, and world class port facilities. Additionally, offshore wind resources have a higher production per unit installed than onshore wind resources because

winds are typically stronger and more consistent at sea. However, one challenge facing offshore wind development is that it is much more complex and costly to install and maintain than onshore wind. This resource was considered for further analysis in the Company's Busbar Curve analysis.

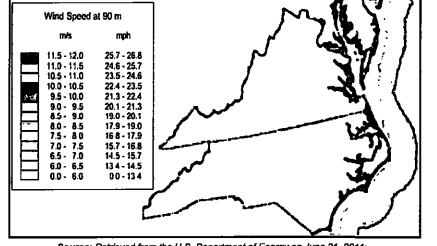


Figure 5.1.2.2 VIRGINIA AND NORTH CAROLINA OFFSHORE WIND RESOURCES

Source: Retrieved from the U.S. Department of Energy on June 21, 2011; http://www.windpoweringamerica.gov/windmaps/offshore.asp

Solar Photovoltaic & Concentrating Solar Power ("CSP")

Solar PV and CSP are the two main types of solar technology used in electric power generation. Solar PV systems consist of interconnected PV cells that utilize semiconductor devices to convert sunlight into electricity. Solar PV technology is found in both large-scale and distributed systems and can be implemented where unobstructed access to sunlight is available. CSP systems utilize mirrors to reflect and concentrate sunlight onto receivers to convert solar energy into thermal energy that in turn produces electricity. CSP systems are generally used in large scale solar plants and are mostly found in the southwestern area of the country where solar resource potential is the highest.

As of 2009 solar PV comprised only 0.1% percent of total electricity generating capacity in the U.S.⁸. However, solar PV technology has continued to evolve and is one of the most rapidly growing renewable energy sectors. Continuing enhancements in inverter technology are increasing the efficiency and output of solar PV systems. Due to the decreasing costs of solar modules and increasing standardization of installation techniques, solar resources are becoming less expensive and more attractive options. For instance, solar PV capacity in the U.S. increased 51% from 2008 to 2009.⁸ Additionally, federal tax credits for solar, available through January 1, 2017, have helped make this resource more cost competitive. However,

⁸ http://www1.eere.energy.gov/maps_data/pdfs/eere_databook.pdf

installed costs can vary widely depending on system size, technology types, and site specific factors. A solar cell's output depends on various factors, such as its design and materials, the intensity of the solar radiation hitting the cell, and the cell's temperature. Due to its variable nature as a generating resource, solar PV generation is not dispatchable and contributes less to peak load and reserve requirements than conventional generation resources. However, continuing advancements in storage technology may allow solar output to become a more reliable resource in the future. Figure 5.1.2.3 displays the solar PV potential of Virginia and North Carolina.

For further discussion of the Halifax County Solar project and the Community Solar Power Program, see Section 5.4. The Company also will continue to monitor developments surrounding solar PV technology and costs.

Figure 5.1.2.3 SOLAR PV RESOURCES IN VIRGINIA AND NORTH CAROLINA

Source: Retrieved from the National Renewable Energy Laboratory on July 19, 2010; http://www.nrel.gov/gis/images/map_pv_national_lo_res.jpg

Tidal & Wave Power

Tidal and wave power rely on ocean water fluctuations to collect and release energy. Significant research is being conducted by many individuals and firms into the development of tidal- and wave-powered electric facilities. However, neither type of facility has proven to be commercially available. The Company will continue to monitor developments surrounding these technologies.

5.1.3 ASSESSMENT OF ALTERNATIVE SUPPLY-SIDE RESOURCES

The process of selecting alternative resource types started with the identification and review of the characteristics of available and emerging technologies, as well as any applicable statutory requirements. Next, the Company analyzed the current commercial status and market acceptance of alternative resources. This analysis included determining whether particular

alternatives were feasible in the short- or long-term based on the availability of resources or fuel within the Company's service territory or power pool. Next, each type of generation technology considered was categorized as baseload, intermediate, or peaking based on its operational characteristics and ability to be dispatched. The technology's ability to be dispatched was based on whether the resource was able to alter its output up or down in an economical fashion to balance the Company's instantly changing demand requirements. Further, this portion of the analysis required consideration of the viability of the resource technologies available to the Company. This step identified the risks that technology investment could create for the Company and its customers, such as site identification, development, infrastructure, and fuel procurement risks.

The feasibility of both conventional and alternative generation resources is considered in utilitygrade projects based on capital and operating expenses including fuel and operation and maintenance. Figure 5.1.3.1 summarizes the resource types that the Company reviewed as part of the 2011 IRP process. Those resources considered for further analysis in the busbar screening model are identified in the final column.

Resource	Resource Type	Dispatchable	Primary Fuel	Busbar Resource
Battery Storage	Intermediate	Yes	Varies	No
Biomass	Baseload	Yes	Renewable	Yes
CC 2x1	Intermediate	Yes	Natural Gas	Yes
CC 3x1	Intermediate	Yes	Natural Gas	Yes
CFB	Baseload	Yes	Coal	No
CSP	Intermediate	No	Renewable	Yes
СТ	Peak	Yes	Natural Gas	Yes
Fuel Cell	Intermediate	Yes	Natural Gas	No
Geothermal	Baseload	Yes	Renewable	No
IGCC	Baseload	Yes	Coal	No
IGCC CCS	Baseload	Yes	Coal	Yes
Nuclear	Baseload	Yes	Uranium	Yes
PC	Baseload	Yes	Coal	No
PC CCS	Baseload	Yes	Coal	Yes
Hydro Power	Intermediate	No	Renewable	Yes
Solar PV	Intermediate	No	Renewable	Yes
Tidal & Wave Power	Intermediate	No	Renewable	No
Wind Offshore	Intermediate	No	Renewable	Yes
Wind Onshore	Intermediate	No	Renewable	Yes

Figure 5.1.3.1 ALTERNATIVE SUPPLY-SIDE RESOURCES

The resources not included as a busbar resource for further analysis contained barriers such as the feasibility of the resource in the Company's service territory, the stage of technology

development, and the availability of reasonable cost information.⁹ Although these resources were not considered in this 2011 Plan, the Company will continue researching all utility-scale technologies. The Company is committed to using technologies at reasonable and prudent costs that best meet the energy needs of customers.

5.2 LEVELIZED BUSBAR COSTS

The Company's busbar model was designed to estimate the levelized busbar costs of various technologies on an equivalent basis. The busbar results show the levelized cost of power generation at different capacity factors and represent the Company's initial quantitative comparison of various alternative resources. These comparisons include: fuel, heat rate, emissions, variable and fixed O&M costs, expected service life, and overnight construction costs. Options with poor economics were further screened out at this level. Project costs for the technologies considered included a mix of internally developed cost information and data provided publicly by the Energy Information Administration¹⁰ and the Electric Power Research Institute ("EPRI").¹¹

Extraordinarily Sensitive Figures 5.2.1 and 5.2.2 display summary results of the busbar model comparing the economics of the different technologies discussed in Sections 5.1.1 and 5.1.2. The results were separated into two figures because non-dispatchable resources are not equivalent to dispatchable resources. For example, onshore wind provides only 13%¹² of its nameplate capacity as firm capacity that is available to meet the Company's PJM resource requirements as described in Chapter 4.

⁸ Please see <u>www.epri.com</u> for more information on confidence ratings

¹⁰ The Energy Information Administration's 2011 Annual Energy Outlook is available at: <u>http://www.eia.doe.gov</u>.

¹¹ Source: EPRI's Program on Technology Innovation: Integrated Generation Technology Options is available at http://www.epri.com.

¹² Please see http://www.pim.com/~/media/documents/manuals/m21.ashx for more information on this topic.

EXTRAORDINARILY SENSITIVE INFORMATION REDACTED

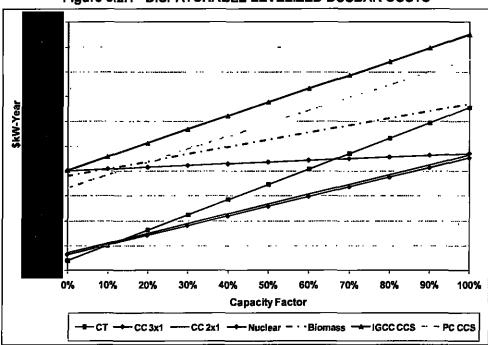
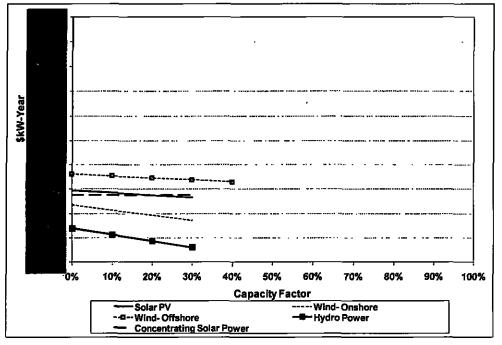



Figure 5.2.1 DISPATCHABLE LEVELIZED BUSBAR COSTS

Extraordinarily Sensitive Appendix 5A contains the tabular results of the screening level analysis. Confidential and Extraordinarily Sensitive Appendix 5B displays the heat rates, fixed and variable operations expenses, maintenance expenses, expected service lives, estimated overnight construction costs, and the first year economic carrying charge.

In Extraordinarily Sensitive Figure 5.2.1, the lower portion of the combined curves represents the lowest cost of all units at an associated operating capacity factor range between 0% and 100%. Resources that lie above the combined curves generally fail to move forward in the resource optimization.

Extraordinarily Sensitive Figure 5.2.1 shows that CT technology is currently the most costeffective option at capacity factors less than 15% for meeting Company's peaking requirements. The comparison of CC 3x1 and CC 2x1 indicates that the CC 3x1 technology is more economic. Currently, the CC 3x1 technology is the most economical option for capacity factors greater than 15% and, therefore, is an economical way for the Company to meet its intermediate and baseload energy requirements.

Nuclear units have similar total life-cycle costs to CC 3x1 at sufficiently high capacity factors and historically they had relatively more stable fuel costs as nuclear provides fuel diversity, reliability and rate stability. This analysis also indicates that new biomass resources, excluding repowering, are not currently cost-effective. The options for baseload capacity are PC.CCS, IGCC CCS, and nuclear. The Company decided not to move forward with coal-fired technologies at this time due to uncertainties surrounding future CO₂ legislation. In summary, the dispatchable technologies that were included for analysis in the 2011 Plan were CT, CC 3x1, and nuclear.

A comparison between dispatchable and non-dispatchable resources is not applicable, thus the resources should not be evaluated in the same graph. Due to the intermittent production and limited dispatchability of the electricity that wind, hydro, and solar plants produce, more capacity would be required to maintain the same level of reliability. Extraordinarily Sensitive Figure 5.2.2 displays the non-dispatchable resources that the Company considered in its busbar analysis. Based on this analysis, the economic order for these non-dispatchable resources is: hydro, onshore wind, solar PV, CSP, and offshore wind. The Company continues to examine appropriate sites for potential hydro facilities; however, it has not located any suitable sites at this time. Onshore wind becomes the next available resource in this category; however, due to the limitations on the amount of onshore wind available within or near the Company's service territory, the Company has approximately 250 MW of onshore wind resources available. Solar PV technology is being considered in limited amounts as the Company plans for the 4 MW Halifax County Solar project and is planning to seek approval for a 30 MW Community Solar Power Program as described in Section 5.4. The Company will continue to monitor other developments surrounding solar thermal technologies.

The Company has considered offshore wind resources for further analysis in the Renewable Plan. The potential for offshore wind in the Mid-Atlantic region is currently in the very early stages of study and data collection. While it is a potential renewable option in the future, additional studies are required to better estimate the energy production potential and relative cost data.

The assessment of alternative resource types and the busbar screening process provided a useful foundation in selecting resources for further analysis. However, the busbar curve is somewhat static in nature because it relies on an average of all of the cost data of a resource over its lifetime. Further analysis was conducted in Strategist to incorporate seasonal variations in cost and operating characteristics, while integrating new resources with existing system resources. This analysis more accurately matched the resources found to be cost-effective in this screening process. This match resulted in selecting the type and timing of additional resources that best fit the Company's current and future needs.

5.3 PLANNED GENERATION UNDER DEVELOPMENT

The Warren County Power Station and the North Anna 3 nuclear facility are in various stages of development, as detailed below.

Warren County Power Station

On May 2, 2011, the Company filed an application for SCC approval to construct and operate the Warren County Power Station, a 1,337 MW¹³ natural gas-fired CC electric generation facility in Warren County, Virginia. The new generating facility will be a 3x1 CC. Based on the Company's current schedule, this plant will be available to meet 2015 peak capacity and energy demand.

The Warren County Power Station is expected to have significant regional benefits. This highlyefficient generating facility is expected to reduce the Company's reliance on volatile market purchases, thereby enhancing rate stability for its customers. The Company has negotiated an associated firm transportation gas supply agreement and fixed-price contracts to construct the project that were favorably obtained under advantageous market conditions. Additionally, this site is in close proximity to the Northern Virginia load center and provides needed infrastructure that will enhance reliability.

North Anna 3.

Nuclear power is an important component of the Company's plan to achieve fuel diversity, stable long-term customer electric rates, system reliability and low greenhouse gas emissions. On November 27, 2007, the United States Nuclear Regulatory Commission ("NRC") issued an Early Site Permit ("ESP") to the Company's affiliate, Dominion Nuclear North Anna, LLC, for a

¹³ Summer capacity of Warren County Power Station is 1,337 MW, which the Company used for modeling purposes in development of this 2011 Plan. Nominal capacity of unit is 1,329 MW.

site located at the Company's existing North Anna Power Station for the third unit. Also on November 27, 2007, the Company and Old Dominion Electric Cooperative ("ODEC") filed an application with the NRC for a Combined Construction Permit and Operating License ("COL") to build and operate a new nuclear reactor. On October 31, 2008, the NRC approved the transfer of the ESP to the Company and ODEC. The merger of Dominion Nuclear North Anna, LLC into the Company became effective on December 1, 2008.

The North Anna 3 project could potentially provide the Company's customers with significant economic benefits. A portion of these benefits relates to the location of the project. The two existing nuclear units will allow the third future unit to share some of the costs to meet safety and operating requirements. In March 2009, the Company issued a RFP to license, engineer, procure, and construct a third nuclear unit at the North Anna Power Station. The Company selected Mitsubishi Heavy Industry's United States Advanced Pressurized-Water Reactor ("APWR") for the design of the planned nuclear unit, although no Engineering, Procurement, and Construction contract has been signed to date. The Company filed its amended COL on June 30, 2010 with the NRC referencing the Mitsubishi technology for North Anna 3.

In February 2011, ODEC informed the Company of its intent to no longer participate in the development of North Anna 3. The withdrawal of ODEC from the Project does not change the Company's plans for North Anna 3 and it continues to move forward with the federal COL process. The Company is expecting the results of the NRC review by November 2013.

North Anna 3 would provide much needed baseload capacity to the region by 2022 with little to no greenhouse gas emissions. Although the Company has not committed to build the new unit, it intends to maintain the option to meet projected demand and energy requirements for electricity.

Forecasted	Unit	Location	Primary		Capacity (Net MW)	
COD	Uffic	Location	Fuel	Unit Type	Summer	Winter
2015 ²	Warren County Power Station	Warren County, VA	Natural Gas	Intermediate	1,337	1,437
2022 ²	North Anna 3	Mineral, VA	Nuclear	Base	1,453	1,500

Figure 5.3.1 PLANNED GENERATION UNDER DEVELOPMENT¹

Key: Warren County: Warren County Power Station

Notes: 1) All Planned Generation Under Development projects and planned capital expenditures are preliminary in nature and subject to regulatory and/or Board of Directors approvals. 2) Date as determined by this 2011 Plan.

Appendix 5C provides the in service dates and capacities for planned generation resources under development.

5.4 ALTERNATIVE ENERGY RESOURCES & TECHNOLOGIES

The Alternative Energy Solutions group conducts technology research in the renewable and alternative energy technologies sector, participates in Federal and state policy development on alternative energy initiatives, and identifies potential alternative energy resource and technology

opportunities within the existing regulatory framework for the Company's service territory. The Company is actively pursuing the following technologies and opportunities.

Halifax County Solar with Battery Storage

The Company is in the early stages of developing a 4 MW solar project with advanced battery storage. The facility would be constructed on approximately 50 acres of land in Halifax County, Virginia. The Company estimates that the project will create approximately 100 construction jobs. The Company plans to demonstrate a utility-scale solar with a battery storage project that can effectively manage, store, and optimize solar energy to regulate intermittency, enable peak shaving and increase grid reliability. The Company and the Industrial Development Authority of Halifax County received approval for a \$5 million grant from the Virginia Tobacco Indemnification and Community Revitalization Commission in October 2010 to help fund the project. Other participants in the project are the University of Virginia and a battery storage manufacturer. The battery manufacturer is proposing to locate a manufacturing facility and associated jobs in Halifax County. The exact scope and schedule of this project is subject to change in the future.

Offshore Wind

In House Joint Resolution 605, the 2011 Virginia General Assembly expressed support for establishment of a National Offshore Wind Technology Center in Hampton Roads and a goal of development of 3,000 MW of offshore wind by 2025. The Company is actively evaluating offshore wind technology as described in Section 5.1.2. The Department of Interior's Bureau of Ocean Energy Management, Regulation and Enforcement ("BOEMRE") is the lead federal agency in charge of leasing areas for offshore wind development on the outer continental shelf. The BOEMRE is expected to release a Call for Information and Nominations for lease blocks off of Virginia's coast before the end of 2011.

The Company is actively participating in offshore wind policy development at the state level in Virginia. The Virginia Offshore Wind Development Authority ("VOWDA") was created through legislation in 2010 to help facilitate offshore wind energy development. The Company is represented at the VOWDA by an appointee of the Governor. As required by this legislation, the Company completed an offshore wind transmission study to determine possible offshore wind interconnection points to the transmission grid. The Company released the results of the study in December 2010, which found that it would be possible to interconnect large scale wind generation facilities with the existing grid in Virginia Beach, Virginia.

The Company is currently performing an additional study to evaluate the requirements necessary to build a high voltage underground transmission line from Virginia Beach into the Atlantic Ocean to support potential multiple offshore wind projects. The Company plans to complete the study in 2011.

Currently, offshore wind is one of the most expensive renewable generation resources. In order for the Company to develop offshore wind resources, costs must be competitive with other forms of conventional or renewable generation. The Company continues to pursue cost reduction efforts and to evaluate the development of offshore wind as a potential source for future generation.

Community Solar Power Program

In response to House Bill 1686, legislation passed by the General Assembly in 2011 that promoted solar distributed generation, the Company is planning to seek approval for a Community Solar Power Program in which solar PV DG would be strategically located in areas of the Company's service territory to study the impact and assess benefits to the distribution system. The program would be structured to include Company-owned solar PV DG systems; both on leased roof space or ground-mounted installations, as well as the purchase of output from customer-owned solar PV DG systems.

The Renewable Plan (Plan D), as described in Section 6.4, incorporates the development of 30 MW of utility-owned solar PV DG which will be tied to specific study objectives and located within the Company's service territory. The installation of these facilities will begin in 2013 and conclude in 2015. In addition, as part of the study and as an alternative to net metering, the Community Solar Power Program tariff would provide the opportunity for customers to sell solar generation output and renewable energy certificates to the Company. The Program would allow participation of customer-owned systems up to a maximum amount of 3 MW.

The size of the Company's combined solar distributed PV initiative (Company-owned installations and purchases under the new Community Solar Power Program Tariff) would not exceed 33 MW.

EV Initiatives

Customers in the Company's Virginia service territory have already begun to take delivery of the Chevrolet Volt, General Motor's first plug-in hybrid electric vehicle ("PHEV"). Additionally, General Motors has announced that the Volt will be available in North Carolina before the end of 2011. Nissan is currently taking orders for the Leaf, all-electric vehicle, available for delivery in the Company's service territory later this year. Ford has chosen Richmond, Virginia as an initial launch city for its all-electric Ford Focus to be released in late 2011.

Sales of EVs and PHEVs are expected to follow the historical adoption rate of hybrid vehicles. In this 2011 Plan, the Company used data from the EPRI and Polk Automotive to develop a projection of system level EV and PHEV penetrations across its service territory. The Company developed load shape impacts to evaluate potential capacity and energy impacts of EVs and PHEVs on its system. The Company projects approximately 94,395 EVs and PHEVs will be on the road by 2020, which would equate to an additional 116 MW of potential load and an additional annual energy usage of 276 gigawatt hour ("GWh") from EV charging. In 2036,

assuming 681,744 vehicles on the road in the Company's service territory, the Company projects an additional potential load of 841 MW and additional energy usage of 1,991 GWh from vehicle charging. Given these projections, it is important to encourage customers to charge these vehicles during off-peak hours.

On January 31, 2011, in SCC Case No.PUE-2011-00014, the Company filed an application to establish an EV Pilot Program offering experimental and voluntary EV rate options to encourage customers to charge their EVs during off-peak periods. These rate options are further discussed in Section 3.2.3. The SCC approved the pilot on July 11, 2011. Additional information regarding the Company's EV Pilot Program is available in the Company's application and in the SCC's Order Granting Approval.

5.5 FUTURE DSM INITIATIVES

The Company is committed to offering cost-effective DSM programs in its Virginia and North Carolina service territories in order to meet customers' needs and improve the environment. The Company has developed relationships with third-party vendors to assist in evaluating and implementing programs approved by the commission(s).

Beginning in 2010, the Company initiated its SRP and suggestions received during this process were included in developing the 2011 future DSM initiatives. Specifically, at the stakeholders' suggestion, the Company conducted an additional analysis which included evaluating DSM programs based upon the Total Resource Cost ("TRC") test and examining additional programs that may be offered to commercial and industrial customers.

The Company's analysis of future DSM programs begins with a screening process that determines whether a DSM program warrants further evaluation. If a DSM program passes the initial screening, ICF provides the Company with program and modeling assumptions for that program. Next, the programs are evaluated using the Strategist model to ensure each program passes the four cost/benefit tests discussed in Appendix 5D¹⁴. While these cost/benefit tests are a key component of the Company's analysis, it also considers stakeholder impacts, the potential for achieving a high level of acceptance by customers, and the potential for energy and demand reductions. The Company modeled all new demand-side resources over the Study Period, including input variables from many sources. These projections were based on the best available information, including industry data acquired from ICF, which validated the DSM program design parameters and helped reduce uncertainty and risk. Further, the projected customer penetrations were based on market research for similar programs previously implemented in the United States. Appendix 5E provides the estimated annual energy savings for all DSM programs included in the 2011 Plan.

¹⁴ The Company does not utilize the Societal Test referenced in Appendix 5D in evaluating DSM programs.

5.5.1 STANDARD DSM TESTS

To evaluate DSM programs, the Company utilized four of the five standard tests from the California Standards Practice Manual. Based on the SCC findings and rulings in Case Nos. PUE-2009-00023 and PUE-2009-00081, the Company's future DSM programs are evaluated on both an individual and portfolio basis, with the individual program results given greater weight in determining whether the Company will include a particular program in its future Plans.

The SCC rulings indicated that the Ratepayer Impact Measure ("RIM") score would be given the greatest weight, closely followed by the TRC score and rounded out by consideration of the Participant and Utility Cost scores when approving programs. As a result, the Company has incorporated this guidance into its evaluation process of future DSM programs. Based on the SCC ruling in Case No. PUE-2009-00081, the Company has developed the following criteria as a guideline for Program acceptance.

The Company first reviews a program's individual RIM test score. If a program's RIM score is above 1.0 and the other individual test scores are also above 1.0, then the program is included in the portfolio of DSM programs and is submitted for approval. If a program's individual RIM score is below 1.0, and the Utility and Participant scores are above 1.0, then the Company looks for a significantly high TRC score before suggesting that the program be pursued. For the 2011 Plan, the Company used a target TRC score of 2.0 or greater as a guideline for program acceptance.

Although the Company uses these criteria to assess DSM programs there are circumstances that require the Company to deviate from the aforementioned guidelines and further consider certain programs. For instance, in Case No. PUE-2009-00081, the Residential Low Income Program did not meet the Company's cost/benefit criteria but was included in the portfolio of approved DSM Programs because it served important public policy goals of the Commonwealth.

5.5.2 FUTURE DSM PROGRAMS

As part of the IRP planning process, the Company evaluated possible future DSM programs in Virginia and North Carolina, referred to herein as "future programs." These programs have met the Company's evaluation criteria for inclusion in the 2011 Plan as described in Section 5.5.1. Appendices 5F, 5G, 5H, and 5I provide the non-coincidental peak savings, coincidental peak savings, energy savings, and penetrations, respectively, for each future program. A brief description of each potential future DSM program is listed below. For the 2011 Plan, the Company projects that programs will be implemented in North Carolina approximately two years after approval and implementation in Virginia.

Voltage Conservation

Target Class:	All Classes
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2009 - 2036
NC Duration:	2014 – 2036

Program Description:

In 2009, the Company began an AMI Demonstration throughout Virginia in order to fully understand the impacts of AMI. This program involves lowering the voltage on the distribution circuits by systematically decreasing the load tap changing transformers and the circuit voltage regulators by an average of 5% during off-peak load conditions, while maintaining the minimum voltage levels for customers at the end of the circuit. The objective of this program is to conserve energy by reducing voltage for residential, commercial and industrial customers served within the allowable band of 114 to 126 volts at the customer meter (for normal 120-volt service) during off-peak hours. The program is enabled through the deployment of AMI, which provides 15-minute voltage information from the meter for all customers.

Commercial Re-Commissioning Program

Target Class:	Non-residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2013 - 2036
NC Duration:	2015 – 2036

Program Description:

In this Program, qualifying customers are provided an incentive to optimize the energy performance of their existing building and systems by identifying and implementing operational and maintenance improvements. These improvements include, but are not limited to, monitoring, troubleshooting, and adjusting the building's current system to optimize energy performance.

Commercial Solar Window Film Program

Target Class:	Non-Residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2013 - 2036
NC Duration:	2015 - 2036

Program Description:

This Program provides an incentive to participants who have a contractor install low-emissivity window film to existing windows.

Commercial Data Center /Computer Room Program

Target Class:	Non-Residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2013 - 2036
NC Duration:	2015 – 2036

Program Description:

This Program will support owners and operators of stand-alone data centers and computer rooms within a facility in identifying and implementing site-specific cost-effective retrofit and new construction energy efficiency opportunities through measures not addressed by other offerings. All retrofit projects will first require a comprehensive audit conducted by a qualified data center professional. Calculated incentives will be paid based on measures implemented or equipment installed.

Commercial Custom Incentive Program

Target Class:	Non-Residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2013 - 2036
NC Duration:	2015 – 2036

Program Description:

This Program will support non-residential customers in identifying and implementing site-specific and unique cost-effective retrofit and new construction energy efficiency opportunities through measures not addressed by other offerings. Calculated incentives will be paid based on measures implemented or equipment installed.

Residential Cool Roof Program

Target Class:	Residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2013 - 2036
NC Duration:	2015 – 2036

Program Description:

This Program provides an incentive to customers who have a professional contractor install a cool, light-reflecting, roof on residential structures.

5.5.3 FUTURE DSM PROGRAMS' COST-EFFECTIVENESS RESULTS

The Company performs individual cost/benefit tests on each future DSM program. These results were used to determine if a program should be included as a future DSM program in this 2011 Plan. The Company believes this evaluation is consistent with the guidance provided by the SCC in Case No. PUE-2009-00081. Figure 5.5.3.1 provides the future DSM programs' individual cost/benefit results and projected cumulative demand and energy reductions by 2026.

Program	Participant	Utility	TRC	RIM	2026 MW Reduction	2026 GWh Savings
Voltage Conservation Program	N/A	5.02	5.02	5.02	0	2,569
Commercial Re-Commissioning Program	2.84	5.74	3.05	1.15	59	298
Commercial Solar Window Film Program	3.34	7.49	3.97	1.22	51	222
Commercial Data Center/Computer Room Program	2.13	5.57	2.14	0.92	2	31
Commercial Custom Incentive Program	2.52	3.18	2.83	1.08	31	108
Residential Cool Roof Program	N/A	1.98	1.98	1.14	6	5

Figure 5.5.3.1 FUTURE DSM INDIVIDUAL COST-EFFECTIVENESS RESULTS

The Company also performed a portfolio evaluation to ensure that each DSM program passed the cost/benefit tests as a portfolio of programs. When evaluating DSM programs as a portfolio, each program must compete for avoided cost benefits potentially resulting in lower test scores than when evaluated individually. It is important to consider the portfolio results since all resources available to meet or reduce load are considered together. It is also important to examine the portfolio run, which includes incremental common costs. Common costs are expenses that cannot be directly tied to any individual program, but are incurred based on program start-up and general implementation costs for the collective DSM Program offerings. The common costs are included in the portfolio run to ensure the addition of these expenses do not alter the overall cost-effectiveness of the portfolio.

Figure 5.5.3.2 provides the future DSM portfolios' cost/benefit results and projected demand and energy reductions.

Program	Participant	Utility	TRC	RIM	2026 MW Reduction	2026 GWh Savings
Voltage Conservation Program	N/A	5,02	5.02	5.02	0	2,569
Commercial Re-Commissioning Program	2.84	5.63	2.99	1.13	59	298
Commercial Solar Window Film Program	3.34	7.47	3.96	1.22	51	222
Commercial Data Center/Computer Room Program	2.13	5.39	2.07	0.89	2	31
Commercial Custom Incentive Program	2.52	3.01	2.68	1.03	31	108
Residential Cool Roof Program	N/A	1.81	1.81	1.04	6	5
Portfolio Results	2.88	5.02	4.27	2.55	149	3,233

Figure 5.5.3.2 FUTURE DSM PORTFOLIO COST-EFFECTIVENESS RESULTS

5.5.4 REJECTED DSM PROGRAMS

The Company has evaluated a wide variety of DSM programs for both the residential and nonresidential sectors. During the planning process, the Company internally rejects programs that do not meet the Company's planning criteria. Rejected programs may be reevaluated for inclusion in future DSM portfolios, if there are changes in program or resource planning assumptions that indicate those programs may meet then current DSM selection criteria.

A list of rejected programs from prior IRP cycles is shown in Figure 5.5.4.1. A short description of each of the rejected programs, including an explanation for each program's rejection, can be viewed in the Company's 2010 Plan, provided at <u>www.Dom.com</u>.

Figure 5.5.4.1	REJECTED	DSM PROGRAMS
----------------	----------	--------------

Commercial HVAC Tune-Up Program
Curtailment Service Program
Energy Management System Program
ENERGY STAR® New Homes Program
Geo-Thermal Heat Pump Program
Home Energy Comparison Program
Home Performance with ENERGY STAR® Program
In-Home Energy Display Program
Premium Efficiency Motors Program
Programmable Thermostat Program
Residential Refrigerator Turn-In Program
Residential Solar Water Heating Program
Residential Water Heater Cycling Program

In addition to the rejected programs listed in Figure 5.5.4.1, the Company evaluated the Residential Comprehensive Energy Audit Program and the Residential Radiant Barrier Program during this IRP planning cycle. A description of the programs and explanation for rejection of each is listed below.

Residential Comprehensive Energy Audit Program

Target Class:	Residential
VA Program Type:	Energy Efficiency
NC Program Type:	Energy Efficiency
VA Duration:	2012 - 2036
NC Duration:	2014 – 2036

Program Description:

In this Program, energy professionals provide comprehensive energy audits to qualified homeowners. This Program also provides incentives for qualifying energy efficiency projects.

Reason for Program Rejection:

The Comprehensive Energy Audit Program was rejected for two reasons. First, the Program's cost/benefit scores did not pass the Company's criteria as set forth in Section 5.5.1. The Program's test scores are provided in Figure 5.5.5.1. Second, the Company determined not to pursue simultaneously managing two residential audit programs. As part of its September 1, 2011 DSM application filed with the SCC, the Company proposed a residential audit Program (Residential Home Energy Check-Up).

Residential Radiant Barrier Program

Target Class:	Residential			
VA Program Type:	Energy Efficiency			
NC Program Type:	Energy Efficiency			
VA Duration:	2013 - 2036			
NC Duration:	2015 – 2036			

Program Description:

This program provides an incentive to residential customers who have a professional contractor install radiant energy reflecting barriers in their attic space.

Reason for Program Rejection:

The Residential Radiant Barrier Program was determined not to be market ready at this time, and therefore not rejected from a cost/benefit perspective. However, the Company will continue to monitor this program for possible inclusion in a future Plan.

5.5.5 REJECTED DSM PROGRAMS' COST-EFFECTIVENESS RESULTS

At this time, the Company has recently evaluated and rejected two DSM programs, the Comprehensive Energy Audit Program and the Residential Radiant Barrier Program for the reasons described in Section 5.5.4. The cost-effectiveness results for the Residential Comprehensive Energy Audit Program are provided in Figure 5.5.5.1.

Figure 5.5.5.1 REJECTED PROGRAMS' COST-EFFECTIVENESS RESULTS¹

Program	Participant	Utility	TRC	RIM	2026 MW Reduction	2026 GWh Savings
Residential Comprehensive Energy Audit Program	1.87	1.95	1.30	0.66	2	11

Note: 1) Residential Radiant Barrier Program not evaluated for cost/benefit.

5.5.6 DSM TRC TEST ANALYSIS

During the SRP meetings, stakeholders identified concerns regarding the screening process the Company used for DSM programs. Some stakeholders remarked that screening DSM programs based on RIM criteria could remove DSM programs that would have a beneficial impact on the Company's Plan. Specifically, their concern was that some of these programs may provide other benefits to the utility system primarily through reduced utility costs. Through the SRP, the Company agreed to examine the matter and developed a TRC screening criteria to evaluate the relative cost impact as compared to the Base Plan.

In the DSM TRC Test Analysis, the Company identified previously screened programs that were rejected based on their cost/benefit test scores. The Company included programs evaluated individually in Strategist against the current expansion plan with a TRC test score of 1.0 or greater. This led to the inclusion of the Commercial HVAC Tune-Up Program, the Curtailment Service Program, and the Home Energy Comparison Program. After completing the Strategist run, it was found that these three programs would add a combined 115 MW and 42 GWh of capacity and energy savings, respectively. The programs would cause a 0.26% increase in net

benefits to the Utility test, but a 2.68% decrease in net benefits to the RIM test. Figure 5.5.6.1 below shows the percent change in net benefits between the portfolio of DSM resources in this Plan and the addition of these three resources to that Plan. Figure 5.5.6.2 below shows the individual cost/benefit results for the programs considered for inclusion in this analysis.

	Participant	Utility	TRC	RIM
Net Benefits (% Change)	20.09%	0.26%	2.07%	-2.68%

Figure 5.5.6.1 PORTFOLIO NET BENEFITS PERCENT CHANGE

The DSM TRC Test Analysis illustrates that the addition of the three programs to the portfolio of DSM programs decreases total system utility costs (as shown by the 0.26% increase in net benefits to the Utility test), while increasing rate impacts to non-participants (as shown by the 2.68% decrease in net benefits to the RIM test as compared to the 2011 Plan). In Case No. PUE-2009-00081, the SCC indicated that it would give greatest weight to the RIM test as the primary indicator of whether a DSM program should be approved, followed closely by the TRC test and rounded out by consideration of the Participant and Utility Cost tests. Based on the Company's interpretation of the SCC's guidance, the results of this analysis indicate that the three additional programs should not be included in the proposed portfolio of DSM programs at this time due to their impact on rates in general.

Figure 5.5.6.2 DSM TRC TEST ANALYSIS INDIVIDUAL COST-EFFECTIVENESS RESULTS¹

Program	Participant	Utility	TRC ,	RIM	2026 MW Reduction	2026 GWI Savings
Commercial HVAC Tune-Up Program	1.34	1.12	1.01	0.75	20	35
Curtailment Service Program	3.56	1.18	1.93	1.14	94	5
Energy Management System Program	1.42	1.23	0.96	0.66	17	83
ENERGY STAR® New Homes Program	1.25	2.31	0.85	0.63	5	41
Geo-Thermal Heat Pump Program	0.91	0.70	0.67	0,44	0	0
Home Energy Comparison Program	N/A	1.44	1.44	0.54	0	2
Home Performance with ENERGY STAR® Program	1.42	0.97	0.74	0.53	6	22
In-Home Energy Display Program	1.87	0.40	0.40	0.28	0	0.
Premium Efficiency Motors Program	1.08	0.60	0.48	0.43	0	0
Programmable Thermostat Program	2.72	0.00	0.00	0.00	-17	12
Residential Refrigerator Turn-In Program	N/A	0.82	0.99	0.46	3	16
Residential Solar Water Heating Program	1.56	0.39	0.64	0.27	3	23
Residential Water Heater Cycling Program	N/A	0.18	0.44	0.18	33	0

Note: 1) Italicized, bolded Programs chosen for inclusion in analysis.

5.5.7 NEW CONSUMER EDUCATION PROGRAMS

Future promotion of DSM programs will be through methods that raise program awareness and attention such as mass marketing and targeted advertising in Virginia and North Carolina. The Company plans to educate customers on how to better manage their energy usage. The Company also plans to educate customers about the potential monetary savings, environmental benefits, and the technologies used as part of the Company's DSM programs.

5.5.8 ASSESSMENT OF OVERALL DEMAND-SIDE OPTIONS

Figure 5.5.8.1 represents approximately 4,420 GWh in energy savings from the DSM programs at a system-level by 2026.

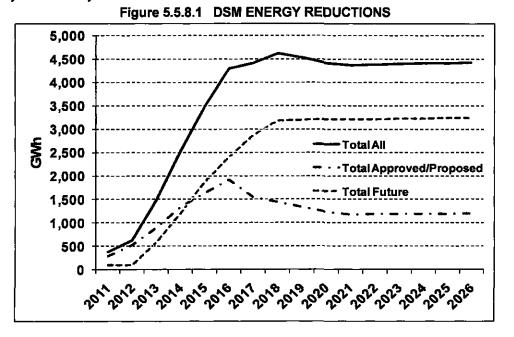
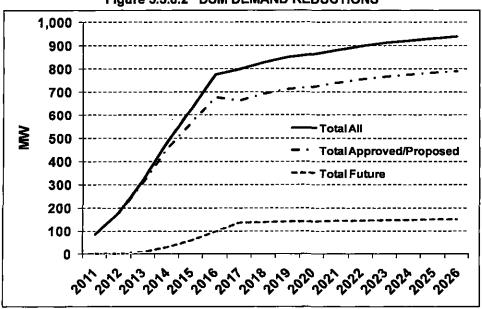



Figure 5.5.8.2 represents a system coincidental demand reduction of approximately 940 MW by 2026 from the DSM programs at a system-level.

Figure 5.5.8.2 DSM DEMAND REDUCTIONS

Additionally, the Company has provided load duration curves for the years 2012, 2016, and 2026 in Figures 5.5.8.3, 5.5.8.4, and 5.5.8.5.

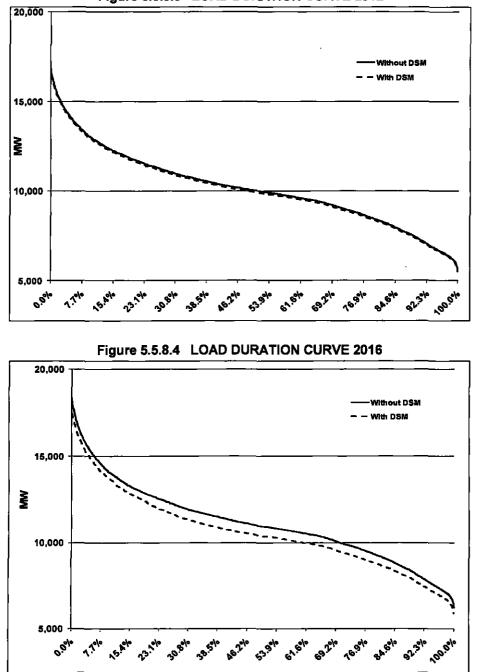
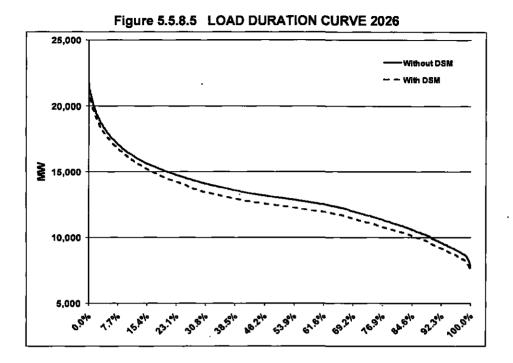



Figure 5.5.8.3 LOAD DURATION CURVE 2012

5.6 FUTURE TRANSMISSION PROJECTS

Appendix 5J provides a list of the Company's planned transmission interconnection projects for the Planning Period with associated enhancement costs. Extraordinarily Sensitive Appendix 5K provides a list of transmission lines that are planned to be constructed during the Planning Period.

Chapter 6

Development of the Integrated Resource Plan

CHAPTER 6 – DEVELOPMENT OF THE INTEGRATED RESOURCE PLAN

6.1 IRP PROCESS

The IRP process identifies, evaluates, and selects a variety of new resources to meet customers' growing capacity and energy needs to augment existing resources. The Company's approach to IRP relies on integrating cost-effective DSM programs, supply-side resources, market purchases, and transmission options over the Study Period. This integration is intended to produce a long-term plan that focuses on the Company's commitment to provide reliable electric service at a reasonable cost while meeting all regulatory and environmental requirements. This analysis develops a forward-looking representation of the Company's system within the larger electricity market that simulates the dispatch of its electric generation units, market transactions, and demand-side programs in an economic and reliable manner over the Planning Period.

The IRP process begins with the development of a long-term annual peak and energy requirements forecast. Next, existing and approved supply- and demand-side resources are compared with expected load and reserve requirements. This comparison yields the Company's expected future capacity needs to maintain reliable service for its customers over the Planning Period. After the capacity need is identified, the Company evaluates the economics associated with various supply- and demand-side alternatives that complement existing resources to meet capacity and energy requirements in conjunction with regulatory and legislative requirements.

An initial screening analysis is conducted, as described in Chapter 5, to determine supply- and demand- side resources that could potentially fit into the Company's resource mix. The potential resources and their associated economics are inputs to the Company's planning model, Strategist, which helps determine the quantity, type, and timing of new resources selected to meet future energy and capacity requirements. The next step is to develop a range of alternative plans which represent plausible future paths considering the major drivers of future uncertainty. These alternative plans are designed to test alternative resource strategies that are available to the Company. These alternative plans are meant in part to display the relative costs of these resources to the Company's stakeholders. Finally, alternative plans are assessed using various sensitivities and scenarios to gauge the strength of each alternative plan as compared to other plans under a variety of conditions. The performance of each alternative plan leads to the determination of the Preferred Plan. This Preferred Plan best meets the energy and capacity needs of the Company's customers at the lowest reasonable cost. The Company utilizes Promod IV^{Φ} to evaluate the impact of potential supply- and demand-side resources and transmission projects on both energy prices and the DOM Zone transmission system.

The Company developed its 2011 Plan in consultation with various internal planning and operational groups. The results of the analysis were verified and reviewed for accuracy and

reasonableness. The resulting 2011 Plan is presented to the SCC and NCUC in this filing.

6.2 CAPACITY & ENERGY NEEDS

As discussed in Chapter 2 of this 2011 Plan, over the Planning Period the Company forecasted an average annual growth rate of 1.93% in peak demand and 1.89% in energy requirements. Chapter 3 discussed the Company's existing supply- and demand-side resources, NUG contracts, and generation resources under construction. Figure 6.2.1 shows the Company's supply-side resources compared to the total capacity requirement including peak load and reserve margin. The area marked as "capacity gap" shows additional capacity resources that will be needed over the Planning Period in order to meet the total capacity requirement. The Company plans to meet this capacity gap using a balanced combination of additional generating capacity, DSM programs, renewable generation, and market purchases, as determined by the economics of each available option within the IRP process.

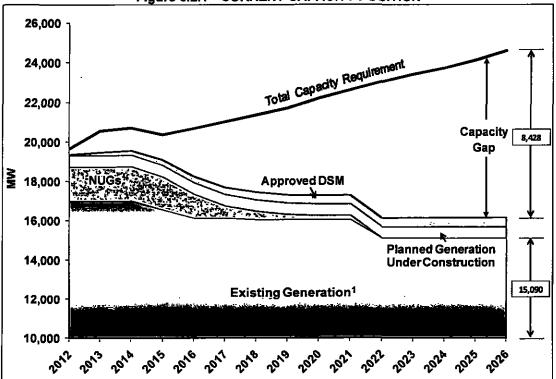


Figure 6.2.1 CURRENT CAPACITY POSITION

Note: 1) Accounts for unit retirements and rating changes to existing units in the Plan, and reflects summer ratings.

As indicated in Figure 6.2.1, the capacity gap is significant. The Planning Period capacity gap is expected to be approximately 8,400 MW. If this capacity deficit is not filled with additional resources, the reserve margin is expected to fall significantly over the Planning Period. In fact, without additional resources, the Company's reserve margin drops below 0% in 2016 resulting in insufficient capacity to meet projected load. Figure 6.2.2 shows the capacity gap and resulting

Company reserve margin over each year of the Planning Period, should no additional capacity be acquired. The Company expects that such a low reserve margin will negatively affect customer reliability and costs. The Company plans to follow a prudent strategy of filling this gap with a carefully chosen and diverse portfolio of resources to meet its customers' long-term needs at the lowest reasonable cost.

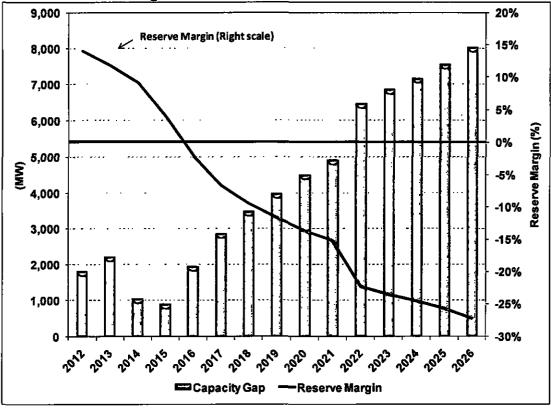


Figure 6.2.2 ANNUAL CAPACITY POSITION

Note: Figure includes rating changes to existing units in the Plan; however, purchased market capacity not included.

Figure 6.2.3 presents the projected baseload needs over the Planning Period. This exhibit displays the Company's baseload capacity need as defined by the 65th percentile of the Company's load duration curve for each year, net of any DSM that occurs in these baseload hours. This is compared to the current baseload capacity mix¹⁵ of the Company's generation fleet. The Company's current baseload resources include nuclear, scrubbed coal/biomass, and non-scrubbed coal. The increasing capacity gap over the course of the 15-year Planning Period is in part attributed to draft and final environmental regulations under consideration by the EPA. These laws and regulations are expected to lower the Company's use of baseload coal in its

¹⁵ While the Company fully expects intermittent renewable generation in baseload hours, the Company chose to include only firm, dispatchable resources in this assessment.

generating fleet. This capacity and energy gap will need to be replaced with additional supplyand demand-side resources and market purchases.

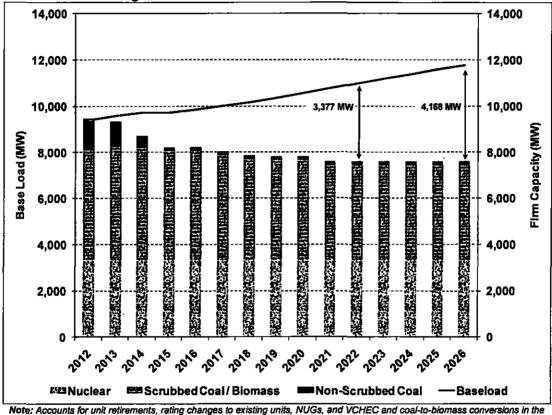


Figure 6.2.3 PROJECTION OF BASELOAD NEEDS

Plan.

The Company's PJM membership has given it access to a wide pool of generating resources for its energy and capacity needs. However, it is critical that adequate reserves are maintained not just in PJM as a whole, but specifically in the DOM Zone to ensure that the Company's load can be served reliably. Maintaining adequate reserves within the DOM Zone lowers congestion costs, ensures a higher level of reliability, and keeps capacity prices low within the region.

For modeling purposes, the Company assumed that NUG capacity will be available as a firm resource. These NUG units also provide energy to the Company according to their contractual arrangements. At the expiration of these NUG contracts, these units will no longer be modeled as a firm capacity resource. After the contract expiration, the NUG has the opportunity to continue operating its resources in the PJM market, providing energy and capacity at competitive prices. Although this is a reasonable planning assumption, parties are not prohibited from entering into another bilateral contract at an agreed upon price. Due to the fact that the

price of a potential bilateral contract is not known at this time, the market price is the best proxy to use for planning purposes.

Figure 6.2.4 illustrates the amount of annual energy required by the Company after the dispatch of its existing resources. The figure shows that the Company's energy requirements increase significantly over time.

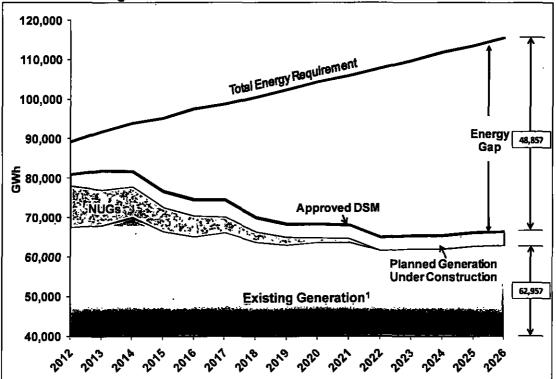


Figure 6.2.4 CURRENT COMPANY ENERGY POSITION

Note: 1) Accounts for unit retirements and rating changes to existing units in the Plan.

The Company's long-term energy and capacity requirements shown in this section are met through an optimal mix of new generation, DSM, and market resources using the IRP process.

6.3 MODELING PROCESSES & TECHNIQUES

The Company used a methodology that compares the costs of alternative plans to evaluate the types and timing of resources that were included in those plans. The first step in the process was to construct a representation of the Company's current resource base. Then, future assumptions including, but not limited to load, fuel prices, emissions costs, maintenance costs, and resource costs were used as inputs to the model. Simultaneously, supply-side resources underwent an initial screening analysis as discussed in Chapter 5. This analysis provided a set of future supply-side resources potentially available to the Company, along with their characteristics. Cost-effective and available resources that passed this screening analysis were input into the model to meet the Company's resource gap. The Company then determined a

portfolio of supply-side resources that met the Company's capacity and energy resource requirements at the lowest reasonable cost over the Study Period.

As described in Chapter 5, potential DSM resources were also screened. For the initial screening of demand-side resource options, an expansion plan of only supply-side resources and approved DSM programs was developed. The proposed and future DSM programs that passed the Company's cost/benefit evaluation discussed in Section 5.5.1 were compared to this initial plan with the opportunity to modify the expansion plan based on their economics. After cost-effective demand-side resources were identified, they were included as a portfolio of programs that were given the opportunity to eliminate, defer, or alter the need for future supply-side resources and market purchases. Next, supply-side options as well as approved and proposed demand-side resource options were re-optimized along with the future DSM portfolio to arrive at a base plan. This process ensured that supply- and demand-side resources were treated equally while meeting peak demand and energy requirements.

The Company optimized its combination of market purchases, supply-side resources, and demand-side resources in order to meet the reserve margin target discussed in Chapter 4. Strategist ranked the set of possible resource plans by the total net present value ("NPV") utility costs over the Study Period. The minimization of the NPV utility costs was the ranking mechanism used by the Company. The NPV utility costs included the variable costs of all resources (including emissions and fuel), the costs of market purchases, and the fixed costs of future resources.

To assess an optimum resource strategy and the validity of the Company's 2011 Plan, the Company identified four alternative plans representing plausible future paths, as described in Section 6.4. All four alternative plans were then analyzed and tested against a set of scenarios and sensitivities designed to measure the relative cost performance of each plan under varying market, commodity, and regulatory conditions. This process stressed each alternative plan to find the set of resources that best achieved the Company's goal of providing reliable electric service at the lowest reasonable cost to customers. The alternative plan that performed best was then selected as the Preferred Plan.

6.4 ALTERNATIVE PLANS

The Company's alternative plan analysis is intended to serve two specific purposes. First, each alternative plan represents a plausible path of the Company's future resource additions. Second, the alternative plans are intended to clearly show and allow examination of possible resource additions that could occur for reasons outside the control of the Company. The Company's alternative plans are identified and discussed in this section.

Plan A: Base Plan

Base Plan includes a cost-effective mix of DSM programs, as well as biomass, nuclear, CT, and CC generation resources. Specifically, this plan includes approximately 4,000 MW of CC, 2,400 MW of CT, and a 1,450 MW nuclear unit. The plan includes the 4 MW Halifax County Solar

facility with battery storage. The plan also contains DSM programs totaling approximately 940 MW. The Base Plan represents the plan with the lowest reasonable cost for the Company's customers as described in detail in Section 6.6.

The Base Plan includes the retrofits for Possum Point Unit 5 (779 MW) and Yorktown Unit 3 (804 MW) by 2015. In addition, the coal-fired Yorktown Unit 2 (156 MW) is in the Plan to be repowered by natural gas by the same year.

The Base Plan includes the retirement of Chesapeake Energy Center Units 1(111 MW) and 2 (111 MW) by 2015 and Units 3 (156 MW) and 4 (217 MW) by 2016. The Base Plan also includes the retirement of Yorktown Units 1 (159 MW) by 2015, 2 (156 MW) and 3 (804 MW) by 2022.

Plan B: NUG Extension Plan

The Company currently has eight NUG contracts which are expiring within the Planning Period. These contracts provide over 1,747 MW of capacity. This plan extends the current NUG contracts until the end of the Planning Period, except three NUGs totaling 316 MW that already notified the Company of their decision not to extend the current contracts. The NUG contracts are assumed to be renewed at market price for the following years. The purpose of this plan is to show the system cost with renewed NUG contracts at assumed energy and capacity prices.

Plan C: Retrofit Plan

Retrofit Plan is designed to explore the costs under the circumstance where generation unit retirements are not an option for the Company when attempting to comply with environmental regulatory requirements. Instead, the Company would need to retrofit those units affected by environmental regulation requirements in order to stay in compliance and continue operating.

The following list of generation retrofits, which are specific to this plan, are based on a current snapshot in time of the Company's cost projections and assumptions regarding environmental regulations. These retrofits are assumed necessary in order for the identified generation units to meet environmental regulation requirements and stay in service over the Planning Period. Chesapeake Energy Center Units 1 and 2 are assumed to require Selective Catalytic Reduction ("SCR") units, Dry Sorbent Injection Systems ("DSI"), and Cooling Towers. Chesapeake Energy Center Units 3 and 4 are assumed to require Dry Sorbent Injection Systems, and Cooling Towers. Yorktown Units 1 and 2 are assumed to require SCR units, DSI Systems, and Cooling Towers. Yorktown Unit 3 is assumed to require a SNCR unit and Cooling Towers. Possum Point Unit 5 is assumed to require a SNCR unit.

Plan D: Renewable Plan

Renewable Plan presents a way for the Company to test the feasibility and cost of meeting a hypothetical target of providing 20% of the Company's energy needs with renewable resources by 2020 ("20 by 20"). To meet this target with resources from its service territory, the Company

would be required to develop a significant amount of renewable resources compared to all other plans. This plan includes a 30 MW (nameplate) Community Solar Power Program, 248 MW (nameplate) of incremental onshore wind, and up to 3,000 MW (nameplate) offshore wind. There is, however, a great deal of uncertainty as to the availability and amount of onshore wind within the Company's service territory. Additionally, the amount of offshore wind resources is extremely optimistic considering the permit and building process has not been determined at this time. For purposes of this alternative, online dates of the Company's offshore wind farms have been accelerated with the first facility projected to come online by 2019 to meet the hypothetical 2020 target. Due to the constraints and uncertainties of building up to 3,000 MW of offshore wind in such a short timeframe, additional renewable resources could be necessary to meet the 20 by 20 hypothetical target, at additional costs. This plan includes one less CC than the Base Plan; however, an additional CT was needed to meet the installed reserve margin requirement as these new renewable resources do not provide full capacity at the time of the Company's peak demand.

The addition of new renewable resources allows the Company to support the policies of Virginia and North Carolina. The Virginia legislature enacted a law that established a voluntary RPS program with a goal that increases by year and has stated that it is in the public interest for utilities to achieve the targets set forth in Virginia's RPS program. Additionally, the Virginia legislature has indicated that small renewable energy projects are in the public interest (Va. Code § 56-580.D). The North Carolina legislature has established a REPS (NCGS § 62-133.8) with mandatory renewable requirements that increase by year and include specific requirements for solar, swine waste, and poultry waste.

Figure 6.4.1 displays the resources by type (traditional, renewable or DSM) that are included in each alternative plan by year.

	Pi	an A		an B		an C	F	Plan D		
Year	Raco Blan			IUG Extension Plan		Retrofit Plan		Renewable Plan		
	Traditionai	Renewable DSM	[/] Traditional	Renewable/ DSM	Traditional	Renewable/ DSM	Traditional	Renewable/ DSM		
2012	VCHEC	App. DSM	VCHEC	App. DSM	VCHEC	App. DSM	VCHEC	App. DSM		
2013		Pro./Fut. DSI	м	Pro./Fut. DSM		Pro./Fut. DSM		Pro./Fut. DSM/SLF		
2014		Halifax		Halifax		Halifax		Halifax/SLR		
2015	Warren		Warren]	Warren		Warren	SLR		
201 6	CC						cc	WND		
2017		1 1	1	1 1	1 1			WND		
2018					CC		СТ	WND / Bio		
2019	CC		-CC		СТ		СТ	Bio / OFF		
2020	СТ		СТ		СТ		СТ	OFF		
2021	СT		СТ				СТ			
2022	NA3		NA3		NA3		NA3			
2023	CT		1 ·		l		СТ			
2024	СТ		1		СТ		СТ			
2025	СТ		cc		СТ		ст			
2026	ст	♥	Ст	₩	ст	♥	Ст	♥		

Figure 6.4.1 ALTERNATIVE PLANS

Key: App. DSM: Approved DSM Programs; Bio: Biomass; CC: Combined Cycle; CT: Combustion Turbine (2 units); Halifax: Halifax County Solar; NA3: North Anna 3; OFF: Offshore Wind; Pro./Fut.DSM: Proposed and Future DSM Programs; SLR: Community Solar Program; VCHEC: Virginia City Hybrid Energy Center; Warren: Warren County Power Station; WND: Onshore Wind Note: DSM capacity continues to increase throughout the Planning Period.

6.5 BASECASE, SCENARIOS, & SENSITIVITIES

The Company used a number of scenarios and sensitivities based upon its planning assumptions to evaluate these four alternative plans. The Company's operational environment is highly dynamic and can be significantly impacted by variations in commodity prices, construction costs, and environmental and regulatory requirements. Testing multiple expansion plans under different assumptions provided assurance that the selected plan would perform well under a multitude of possible futures. The Company examined one basecase, three scenarios, and 12 sensitivities as explained below.

Basecase (1)

The basecase used the expected or forecast "base" values including the load forecast (Chapter 2), existing system resources (Chapter 3), planning assumptions (Chapter 4), and new resources (Chapter 5).

Scenarios:

Scenarios provided an all-encompassing view of the variable future evolution of the markets and regulatory conditions. Several important assumptions were changed in a scenario which accounted for systemic changes in the view of the future. These changes included multiple variables that were interrelated, such as emission and cost variables, ensuring all assumptions were consistent. The Company examined the no carbon cost, high fuel cost and low fuel cost scenarios.

No Carbon Cost Scenario (2)

One of the biggest uncertainties for the electric utility industry is whether carbon legislation will be enacted and, if it occurs, what its structure will be and what the potential impacts on the fuel markets will be. The Company's basecase assumed that carbon legislation will be enacted by 2018 similar to many of the proposals considered by the United States Congress. However, until a specific law is passed, there is a great deal of uncertainty about the exact limits on emissions and the number of allowances that may be given to the electric power industry.

Due to the uncertainty surrounding potential future carbon legislation, the Company chose to examine a scenario where carbon legislation would not come into effect during the Planning Period. In this scenario, fuel and commodity processes were correlated appropriately to the effects of the modeled CO₂ market. The major assumptions that were adjusted in this scenario included: i) fossil fuel prices (coal, gas, and oil); ii) environmental allowance prices (SO₂, NO_x, Hg, and CO₂); and iii) market capacity and energy prices.

High and Low Fuel Cost Scenarios (3-4)

These scenarios were designed to test fuel price variations for all generation units in each alternative plan. This test was important because fuel costs are a significant portion of final customer rates. Volatility in rates is generally viewed as undesirable. Therefore, plans that reduce volatility may be preferred to other alternative plans. These scenarios consider adjustments to the following assumptions (with the changes in the fuel prices being the main driver): i) fossil fuel prices (coal, gas, and oil); ii) environmental allowance prices (SO₂, NO_x, Hg, and CO₂); and iii) market capacity and energy prices.

Sensitivities:

A sensitivity represents a change in a single or small subset of variables from the basecase assumptions. The sensitivities performed by the Company were designed to test the alternative plans under varying assumptions to better understand the inherent risks embedded in the Company's 2011 Plan. The Company performed the following 12 sensitivities:

High and Low Load Growth Sensitivities (5-6)

Future load growth was one of the key inputs used to develop the 2011 Plan. Demand growth is significantly impacted by regional economic growth and technological changes. As discussed in Chapter 2, the basecase average annual growth rate over the Planning Period was 1.89% for energy requirements and 1.93% for peak demand. The high and low load growth sensitivities assumed a plus and minus 0.5% change in these average annual growth rates. The high load growth sensitivity could result from an above average economic growth rate or expanded penetration of new technological devices at home and in the workplace. The low load growth sensitivity may come from lower than expected economic growth, additional energy conservation, or a decline in real disposable income.

High and Low Construction Costs Sensitivities (7-8)

The escalation of power plant construction costs could represent a significant risk for the Company's stakeholders. Recent trends indicate that the volatility of costs surrounding the construction of new facilities has increased above historical averages. This increase in construction costs represents a significant challenge to utilities, regulators, and customers across the United States as utilities focus on replacing aging infrastructure and adding new capacity to meet current regulatory requirements and future demand growth. The construction cost sensitivities analyzed the risk associated with potential future increases or decreases in the construction costs of traditional and renewable plants. The high and low construction cost sensitivities assumed an increase and decrease of costs by 25% in order to determine the economic impact of potential changes in the construction cost of planned units.

High and Low Transmission and Distribution Costs ("T&D") Sensitivities (9-10)

The Company assumed that a portion of the benefits from the Company's portfolio of DSM programs was from avoided T&D investments to meet incremental demand growth. The costs estimated for incremental T&D projects have increased in recent years in a similar fashion to generation construction projects. As a result, the high and low T&D cost sensitivities of the approved, proposed, and future DSM programs were tested by increasing and decreasing the T&D benefit of the DSM programs by 25%.

Alternative Energy Sensitivity (11)

The alternative energy sensitivity is a combination of potential future programs that could affect future energy consumption patterns. The programs include net metering and dynamic pricing rate schedules, as described below:

Net Metering:

In Virginia, net metering is currently available to customers on a first-come, first-serve basis in each electric distribution Company's service area. This occurs until the rated generating capacity owned and operated by eligible customer generators reaches 1% of each electric distribution Company's adjusted Virginia peak load forecast for the previous year. This sensitivity will allow the Company to determine the impact on load in the event that the 1% cap is reached in Virginia by 2026. In North Carolina, there is no aggregate capacity limit for net metering.

Dynamic Pricing Rate Schedules:

Dynamic pricing rate schedules are rates designed to price the sale of electricity to follow the changing costs of production. As AMI is deployed through the Company's service territory, additional customers will be eligible for dynamic rate options. The Company is currently offering dynamic rates as a part of a pilot program, which was approved by the SCC in April 2011.

EVs & PHEVs Sensitivity (12):

The Company's basecase assumes a certain level of EV and PHEV penetrations in its service territory. This sensitivity relies on the EPRI's PHEV study¹⁶ for higher penetrations. The objective of the EV and PHEV sensitivity was to project the impact of higher plug-in EV penetration on the Company's grid and identify resources needed to meet this potential new technology's requirements.

No REC Sales Sensitivity (13)

The Company's basecase assumed that new renewable generation resources were able to sell RECs to others in order to reduce the cost to its customers. In this sensitivity, the Company assumed that it would not be able to sell RECs, therefore increasing the cost of renewable generation.

High REC Sales Sensitivity (14)

This sensitivity assumes that renewable generation resources will receive a REC that has twice the value of a basecase REC.

High and Low Cost Combination Sensitivities (15-16)

The high and low cost combination sensitivities included a grouping of two individual sensitivities meant to form a more extreme case. The high cost combination case included the high construction cost sensitivity and high fuel cost sensitivity while the low cost combination case included the low construction cost sensitivity and low fuel cost sensitivity.

6.6 INTEGRATED RESOURCE PLAN RANKING

The Company examined the four alternative plans using the basecase, three scenarios, and 12 sensitivities to rank the plans using the NPV utility costs over the Study Period. The Company determined its Preferred Plan because it produced the lowest average NPV utility cost, the number of least-cost rankings, across all scenarios and sensitivities evaluated and the evaluation of the basecase.

Figure 6.6.1 presents the results of the four alternative plans compared on an individual scenario or sensitivity basis. Each row of the figure constitutes a grouping of plans that were considered for that particular scenario or sensitivity. The lowest cost plan is shaded for each scenario or sensitivity in the respective row. The results are displayed as a percentage change in costs compared to the Base Plan with basecase assumptions (marked with a star). For example, Figure 6.6.1 illustrates that the NPV utility cost of Base Plan for the "No CO₂ scenario" is 12.69% less expensive than that of the basecase. However, the NPV utility cost of the Renewable Plan for the same scenario is 6.25% more expensive than that of the basecase in the Base Plan. The same results are also illustrated in a bar chart in Figure 6.6.2.

¹⁶ This study is available at http://www.epri.com.

Figure 6.6.1 indicates that the Base Plan (Plan A) is the Preferred Plan as it was the:

- Best ranked plan with the basecase assumptions,
- · Top performing plan in all of the sensitivities and scenarios examined, and
- Plan with lowest relative average NPV utility costs.

The Preferred Plan minimized changes to the Company's cost of providing service across the range of assumptions considered in its planning process.

-	NPV Relative to the Cost of Base Case in Preferred Plan						
· · · · · · · · · · · · · · · · · · ·	Plan A: Base Plan (Preferred Plan)	Plan B: NUG Extension Plan	Plan C: Retrofit Plan	Plan D: Renewable Plan			
Basecase	*	1.12%	1.68%	17.68%			
No CO2 Scenario	-12.69%	-12.51%	-11. 58%	6.25%			
High Fuel Cost Scenario	16.91%	18.94%	17.76%	33.13%			
Low Fuel Cost Scenario	-9.73%	-8.96%	-7.93%	9.27%			
High Load Growth	11.16%	12.78%	12.52%	28.63%			
Low Load Growth	-8.84%	-7.89%	-7.30%	9.10%			
High Construction Cost	0.57%	1.58%	2.18%	18.40%			
Low Construction Cost	-0.57% :	0.66%	1.18%	16.96%			
High T&D Costs	-0.09%	1.03%	1.59%	17.59%			
Low T&D Costs	0.09%	1.21%	1.77%	17.77%			
Alternative Energy	0.43%	1.55%	2.10%	18.11%			
Electric Vehicles	1.85%	2.97%	3.46%	19.47%			
No REC Sales	0.48%	1.61%	2.16%	20.10%			
High REC Sales	-0.52% ;	0.60%	1.16%	15.21%			
High Cost Combination	17.32%	19.18%	18.05%	33.69%			
Low Cost Combination	-10.30%	-9.42%	-8.43%	8.56%			
Plan Average	0.38%	1.53%	1.90%	18.12%			

Figure 6.6.1 PLAN COMPARISON UNDER SCENARIOS & SENSITIVITIES

Note: The results are displayed as a percentage of costs compared to the Base Plan with basecase assumptions (marked with a star).

.

35.007 D Plan A: Base Plan (Preferred Plan) G Plan B: NUG Extension Plan 30,00% 🛙 Plan C: Retrofit Plan 25.00% Plan D: Renewable Plan 20.003 13.007 10.00% 5.007 0.005 -5.002 -10.009 -13.00% Basecase Na CO2 Scenario -ow Fuel Cost Scenario High T&D Costs Low T&D Costs High Fuel Cost Scenario High Load Growth Low Load Growth Low Construction Cost Electric Vehicles No REC Sales High REC Sales CostCombination Low Cost Combination High Construction Cos Altomative Energy Plan High

Figure 6.6.2 PLAN COMPARISON UNDER SCENARIOS & SENSITIVITIES (Bar Chart)

۰.

The NUG Extension Plan was ranked as the second alternative plan when compared to the Preferred Plan, at an additional cost of 1.12%. It was the second ranked plan in 13 cases and the third ranked plan in three cases.

The Retrofit Plan was ranked as the third alternative plan when compared to the Preferred Plan, at an additional cost of 1.68%. It was ranked the second best plan in three cases, and the third best in 13 cases.

The Renewable Plan performed poorly under all cases and displayed a higher variance across the range of sensitivities and scenarios. The Renewable Plan was the worst performing alternative plan in all 16 cases. On average, this set of resources would cause the Company's average NPV utility costs to rise 17.68% over the Study Period compared to the Base Plan. The most salient risks of the Renewable Plan were clearly under conditions of low carbon costs, low fuel costs, lower load growth, and high construction costs. Although it provides some marginal benefits under the reverse conditions, no solar or offshore wind resources have entered mainstream service in conditions similar to the Company's service territory at this time. The Company plans to closely follow the development of these technologies for future consideration.

6.7 PREFERRED PLAN

The Preferred Plan displayed in Figure 6.7.1 contains a balanced mix of supply- and demandside options to meet expected future resource needs in an efficient and cost-effective manner. The Preferred Plan advocates a balanced mix of baseload, intermediate, and peaking units as well as a diverse fuel mixture giving the Preferred Plan the flexibility to maintain reasonable costs and offer reliable service to its customers.

Veen		Supply-side	Demand-side Resources		
Year	New	Retrofit	Repower	Retire	Demand-side Resources
2012	VCHEC				Approved DSM
2013			AV, HW, SH – Biomass		Proposed & Future DSM
2014	Halifax		BR3 – Gas BR4 – Gas		
2015	Warren	PP5 - SNCR YT3 - SNCR	YT2 – Gas/Oil	CEC 1-2 YT1	
2016	ĊC			CEC 3-4	
2017] [
2018					
2019	CC]
2020	СТ			•]
2021	СТ				
2022	North Anna 3			YT 2-3	
2023	СТ				
2024	СТ				
2025	СТ				
2026	СТ				₩

Figure 6.7.1 PREFERRED INTEGRATED RESOURCE PLAN

Key: Retrofit: Additional environmental control reduction equipment; Repower: Convert fuel to biomass or natural gas; Retire: Remove a unit from service; AV: Altavista; BR: Bremo; CEC: Chesapeake Energy Center; CC: Combined Cycle; CT: Combustion Turbine (2 units); Halifax: Halifax County Solar; HW: Hopewell; PP: Possum Point Unit; SH: Southampton; SNCR: Selective Non-Catalytic Reduction; VCHEC: Virginia City Hybrid Energy Center; Warren: Warren County Power Station; YT: Yorktown Unit Note: DSM capacity savings continue to increase throughout the Planning Period.

To meet growing demand, the Preferred Plan identifies a need for the following resources by the end of the Planning Period:

- Existing Generation Uprates, derates, and retirements allow the Company to utilize existing generation capacity.
- Planned Generation Under Construction -- One unit under construction, VCHEC, has a capacity of approximately 585 MW.
- Planned Generation Under Development Two units under development, Warren County Power Station and North Anna 3, with a combined capacity of approximately 2,790 MW.
- Planned Renewable Generation Under Development Halifax County Solar facility of 4 MW with battery storage;

- Demand-Side Resources Approved, proposed and future demand-side resources total approximately 940 MW.
- Potential Conventional Generation Resources Additional 5,075 MW of newly constructed CC and CT resources including:
 - o One CC in 2016 and 2019
 - o CT in 2020, 2021, 2023, 2024, 2025, and 2026
- Market Purchases Rely on the PJM energy and capacity resources whenever economical.
- NUG capacity under contract

On June 27, 2011 the Company filed an application with the SCC for approval to convert Altavista, Hopewell, and Southampton power stations to biomass fuel totaling 153 MW by the end of 2013. In addition, the Company currently plans to repower Bremo Power Station Units 3 and 4 totaling 227 MW by natural gas in 2014.

By the end of the Planning Period, the Company projects a need for more than 8,400 MW of new capacity. Additional details regarding the size and output of new generating units have been provided in Appendices 6A and 6B. Further, Extraordinarily Sensitive Appendix 6C provides details on existing, new, and DSM resources and the Company's capacity position relative to its reserve requirements. Confidential Appendix 6D provides the construction cost estimates associated with the Preferred Plan. Finally, Extraordinarily Sensitive Appendix 6E provides the Company's capacity position when the Preferred Plan is combined with existing resources.

The IRP process has indicated that the Preferred Plan contains an appropriate mix of supplyside resources, demand-side resources, and market purchases to provide its customers energy reliably at the lowest reasonable cost. Figure 6.7.2 illustrates the Company's resulting resource position at the end of the Planning Period.

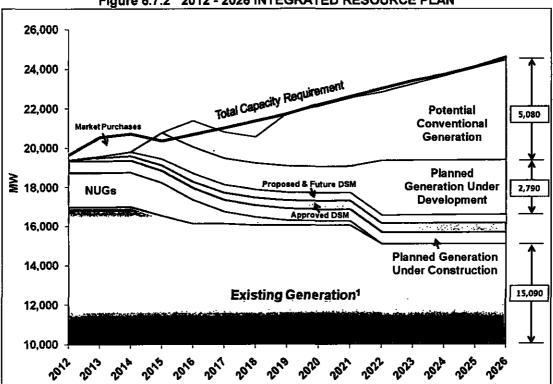


Figure 6.7.2 2012 - 2026 INTEGRATED RESOURCE PLAN

Figure 6.7.3 displays the Company's load duration curve, net of DSM, against a resource stack of the Company's generation units defined by baseload, intermediate, and peak resources.

Note: 1) Accounts for unit retirements and rating changes to existing units in the Plan, and reflects summer ratings.

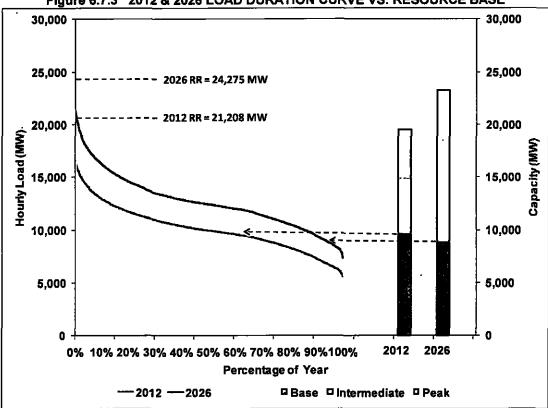


Figure 6.7.3 2012 & 2026 LOAD DURATION CURVE VS. RESOURCE BASE

Note: 1) RR = Reserve Requirements, which consists of peak demand and planned reserve.

During the Planning Period, the Preferred Plan results in the addition of approximately 3,300 MW of intermediate capacity, 1,750 MW of peaking capacity, and approximately 880 MW of new DSM resources. The Plan also results in a reduction of 440 MW of baseload capacity. The Company considers this balance between resource types necessary to provide an appropriate trade-off between costs and risks for its customers. Maintaining a balanced portfolio of resources maximizes the value that customers receive from the Company's generating assets and DSM programs while reducing the Company's dependence on market capacity purchases.

The Company's market energy purchases are expected to grow as its customers' demand for electricity increases as illustrated in Figure 6.7.4. However, planned generation under development, potential conventional generation, potential renewable generation, and energy provided by approved, proposed, and future DSM programs are expected to stabilize the Company's market energy purchases.

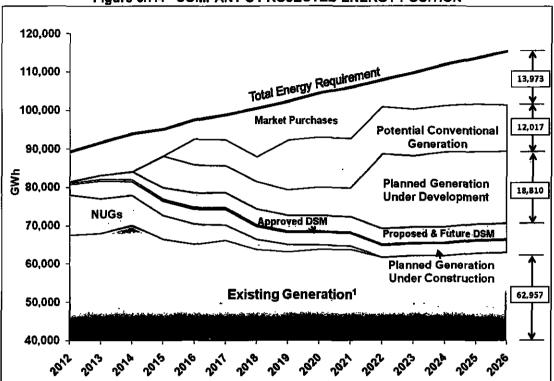


Figure 6.7.4 COMPANY'S PROJECTED ENERGY POSITION

Note: 1) Accounts for unit retirements and rating changes to existing units in the Plan.

In addition to maintaining the balance between baseload, intermediate, and peaking capacity, the Company has considered the fuel mix that would result from its 2011 Plan. As displayed in Figure 6.7.5, the Company's current fuel mix includes uranium, coal, oil, natural gas, renewables, purchased power, and NUGs. The Preferred Plan illustrates that the reliance on new natural gas units for energy is growing, while nuclear and coal are major sources of energy to meet the increasing energy requirements.

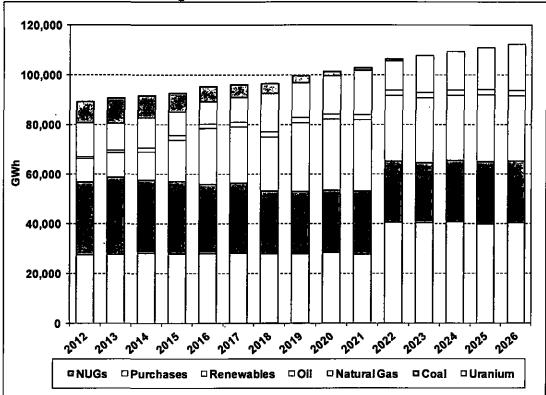


Figure 6.7.5 ENERGY BY SOURCE

Although the Company plans its capacity additions to meet peak demand and reserve requirements, new generation resources often require long development lead times and capacity additions larger than a single year's increase in load. Although the Company does not intend to build excess capacity, it may be difficult to meet the exact capacity requirements in any particular year which could create a shortage or overage of capacity compared to the target reserve margin in that year. Because of the uncertainties surrounding the impact of draft and final EPA regulations and the opportunities for developing new natural gas units in the upcoming years based on current market conditions, the Preferred Plan represents a certain amount of excess capacity for 2015 and 2016. The Company's participation in the RPM capacity market will assist in buying and selling capacity to align with the annual reserve target.

6.8 CONCLUSIONS

The Company's 2011 Plan provides a mix of supply- and demand-side resource options to meet expected customer demand growth while meeting reserve requirements at the lowest reasonable cost. The Preferred Plan provides a path for meeting the energy demands of the Company's customers while providing reliable electric service at the lowest reasonable cost. The 2011 Plan addresses a number of considerations including:

- Meeting capacity and energy needs at the lowest reasonable cost;
- Meeting draft and final environmental regulations during the Planning Period;

- Proposing DSM programs that reduce peak demand and energy requirements;
- Reducing reliance on imported capacity and decreasing market risk;
- Providing flexibility in regard to future resource selection and maintaining fuel diversity;
- Meeting commercial operation dates for resources; and
- Remaining cost-effective under a range of future market conditions.

In order to comply with the draft and final environmental regulations and depending on the specific situation for each generating unit, the analysis determined one of three options for each "at risk" unit: (1) retrofitting with additional environmental control reduction equipment, (2) fuel repowering to biomass or natural gas, or (3) retiring the unit.

Based on draft and final form of environmental regulations along with current market conditions, the 2011 Plan includes the following impacts to the existing generating resources in terms of retrofitting, repowering and retiring, which may be revised when the regulations are finalized:

- 1. Retrofit
 - 1,583 MW of heavy oil-fired generation with new SNCR controls by 2015
- 2. Repower
 - 153 MW of small coal-fired generation repowered from coal to biomass by the end of 2013
 - 383 MW of small coal-fired generation repowered from coal to natural gas and oil by 2015
- 3. Retire
 - 754 MW of small coal-fired generation retired by 2016
 - 960 MW of heavy oil-fired and natural gas-fired units retired by 2022

Over the next five years (2012-2016), the Company plans to add VCHEC and Warren County Power Station totaling approximately 1,920 MW. The Company also plans to reduce its nearterm reliance on market purchases for energy and capacity with approximately 770 MW of additional DSM resources. The Company also plans to add Halifax County Solar facility of 4 MW with battery storage by 2015. The Company is planning to convert three of its coal-fired units to biomass, totaling approximately 153 MW. Additionally, the coal-fired Bremo Units 3 and 4, totaling 227 MW, are planned to be repowered by natural gas in 2014.

In the long-term (2017-2026), additional resources will be required to meet the growing demand. The Company plans to add 1,454 MW of baseload capacity, 1,337 MW of intermediate capacity, and 2,400 MW of peaking capacity. Specifically, North Anna 3 will primarily meet anticipated baseload growth. Further, DSM resources will account for approximately 170 MW of capacity.

Uncertainty surrounding environmental regulations, renewable energy requirements, fuel costs, construction costs, and load growth are major drivers that could significantly affect customers in the future. To address these issues, the 2011 Plan provides fuel diversity, renewable resources,

DSM resources, and a balanced mix of baseload, intermediate, and peaking capacity. As these drivers evolve and regulatory uncertainty is reduced, the Company will address these changes in future integrated resource plans.

.

Chapter 7

Short-Term Action Plan

CHAPTER 7 - SHORT-TERM ACTION PLAN

The STAP provides the Company's strategic plan for the next five years (2012 - 2016) as well as a discussion of the specific short-term actions the Company is taking to meet the initiatives discussed in this 2011 Plan. A combination of developments on the market, technological, and regulatory fronts over the next five years will likely shape the future of the Company and the utility industry for many decades to come. The Company proactively is positioning itself in the short-term to address these evolving developments for the benefit of all stakeholders over the long-term. Major components of the Company's strategy for the next five years are expected to include:

- Continue working on projects to meet projected load growth such as:
 - Timely completion of infrastructure expansion projects including VCHEC and several new transmission lines in Virginia and North Carolina;
 - Seek approval for CPCNs for Warren County Power Station and amended CPCNs for Altavista, Hopewell and Southampton;
 - o Enhance and upgrade the Company's existing transmission grid;
 - o Construct additional generation while maintaining a balanced fuel mix;
 - o Economically reduce reliance on power imports;
 - Continue to develop and implement a renewable strategy that supports the Virginia RPS goal and North Carolina REPS requirements; and
 - Continue to implement cost-effective DSM programs in Virginia and North Carolina;
- Enhance reliability and customer service.

A more detailed discussion of the current and planned activities over the next five years is provided in the following sections.

7.1 CURRENT ACTIONS (2011)

Demand-Side Management:

<u>Virginia</u>

Currently, the Company has five approved programs in Virginia and is collecting data, through the EM&V process, to validate the associated energy and demand savings. On September 1, 2011, the Company filed for approval of six additional DSM programs, which includes one bundle of residential programs.

North Carolina

On September 1, 2010, the Company filed for NCUC approval of the five programs approved in Virginia as well as the CDG Program. On February 22, 2011 the NCUC issued final orders approving five of the six proposed programs. The Company began implementing the Residential Lighting Program in May 2011 and the other programs in June 2011. Currently, the NCUC's proceeding regarding the CDG Program review is pending.

Advanced Metering Infrastructure:

The Company is currently demonstrating the effectiveness and benefits of installing AMI, or smart meters, on homes and businesses throughout Virginia. The AMI demonstrations test the effectiveness of AMI in achieving voltage conservation, remotely turning off and on electric service, power outage and restoration detection and reporting, remote daily meter readings, and offering dynamic rates.

- 1. In January 2009, the Company began installing 6,700 AMI meters on homes and businesses served by the Trabue substation distribution circuits in portions of Midlothian, Virginia.
- 2. Installations continued in the City of Charlottesville and Albemarle County, with 46,500 AMI meters installed by the end of 2009.
- 3. By December 2010, 32,000 AMI meter installations were completed in parts of the Company's Northern Virginia service territory. The AMI meters are installed in parts of the City of Alexandria, Arlington County, Fairfax County, and the City of Falls Church.
- 4. The Company's efforts to demonstrate meter technology continue with additional meter exchanges in 2011. The Company plans to install approximately 8,000 meters to evaluate additional technology in Blue Ridge, downtown Richmond, and Williamsburg by the end of 2011.
- In April 2011, the SCC approved a dynamic rate pilot program, PUE-2009-00084. The pilot program offers residential and small commercial AMI customers an option to enroll in a dynamic rate where the price for electricity varies based on day classification, time of day and season.

Generation:

- 1. Altavista, Hopewell and Southampton (51 MW each) request for amended CPCNs filed in 2011.
- 2. Bear Garden (590 MW) came online in 2011.
- 3. Chesapeake CT Unit 2 was derated 64 MW in 2011.
- 4. Chesterfield Unit 5 uprated 1 MW effective 2011.
- 5. Chesterfield Unit 6 uprated 7 MW effective 2011.
- 6. Kitty Hawk Units 1 and 2 (31 MW) will be retired by the end of 2011.¹⁷
- 7. Mt.Storm Unit 2 uprated 31 MW effective 2011.
- 8. North Anna Unit 1 was derated 1 MW effective 2011.
- 9. North Anna Unit 2 was derated 26 MW effective 2011.
- 10. Surry Unit 2 uprated 40 MW effective 2011.
- 11. Warren County Power Station (1337 MW) CPCNs filed in 2011.

<u>Transmission:</u>

Virginia:

1. The Company filed a request (Case No. PUE-2011-00003) on January 18, 2011, that the SCC approve the rebuild of Mt.Storm – Doubs 500 kV Line and grant a CPCN.

¹⁷ Kitty Hawk units 1 and 2 were put into cold reserve status on March 15, 2011, due to the age of the units.

- 2. The Company filed a request (Case No. PUE-2011-00011) on February 7, 2011, that the SCC approve the construction of Cannon Branch Cloverhill 230 kV Line and grant a CPCN.
- 3. The Company filed a request (Case No. PUE-2011-00015) on February 18, 2011, that the SCC approve the Hollymead 230 kV Double Circuit project and grant a CPCN.
- 4. The Company filed a request (Case No. PUE-2011-00039) on April 29, 2011, that the SCC approve the construction of Dooms Bremo 230 kV Rebuild project and grant a CPCN.
- 5. The Company filed a request (Case No. PUE-2011-00082) on July 20, 2011, that the SCC approve the construction Northwest Lakeside 230 kV Line and grant a CPCN.

North Carolina:

- 1. The Company will be filing a request in 2012 with the NCUC to construct a Shawboro to Aydlett 230 kV line with a target service date of May 2015.
- 2. The Company will be rebuilding the Winfall Elizabeth City 230 kV line with a target service date of May 2015.

Renewable Energy Resources:

Approximately 401 MW of qualifying renewable generation is currently in operation. The Company has existing contracts for approximately 25 MW of BTMG renewable capacity, as well as one contracted renewable NUG facility at Ogden-Martin Fairfax that will provide approximately 63 MW in 2011.

Virginia:

- 1. <u>Virginia RPS Program</u> The Company plans to meet its 2011 target by applying renewable generation from existing qualified facilities, including NUGs, and purchasing cost-effective RECs (including optimization).
- 2. <u>Virginia Annual Report</u> On November 1, 2011, the Company intends to submit its Annual Report to the SCC, as required, detailing its efforts towards the RPS plan.

North Carolina:

- 1. <u>North Carolina REPS Compliance Report</u> The Company submitted its annual REPS Compliance Report on August 25, 2011.
- 2. <u>North Carolina REPS Compliance Plan</u> The Company submitted its annual REPS Compliance Plan, which is filed as North Carolina IRP Addendum 2 to this 2011 Plan.

7.2 FUTURE ACTIONS (2012 – 2016)

DSM PROGRAMS

Figure 7.2.1 lists the projected demand and energy savings by 2016 from the approved, proposed, and future DSM programs.

Program ¹	Projected MW Reduction	Projected GWh Savings	Status (VA/NC)
Air Conditioner Cycling Program	267	0	
Commercial HVAC Upgrade Program	17	43	7
Commercial Lighting Program	35	279	Approved
Low Income Program	3	14	
Residential Lighting Program	19	215	1
Commercial Distributed Generation Program ²	58	0	Proposed / Pending Review
Commercial Energy Audit Program	12	69	
Commercial Duct Testing & Sealing Program	15	67	1
Commercial Refrigeration Program	107	638	
Residential Lighting Program (Phase II)	75	353	7
Residential Bundle Program	70	222	Proposed / Future
Residential Home Energy Check-Up Program	2	9	7
Residential Duct Testing & Sealing Program	7	11	
Residential Heat Pump Tune-Up Program	41	139]
Residential Heat Pump Upgrade Program	21	63	
Voltage Conservation Program	0	1,958	
Commercial Re-Commissioning Program	38	192	
Commercial Solar Window Film Program	33	143	
Commercial Data Center/Computer Room Program	1	21	- Future / Future
Commercial Custom Incentive Program	20	69	
Residential Cool Roof Program	3	3	1
Totals	773	4,285	

Figure 7.2.1 DSM PROJECTED SAVINGS BY 2016

Notes: 1) All programs will be implemented in Virginia and North Carolina by 2015 assuming Commission approval. 2) Currently, the NCUC's proceeding regarding the CDG Program review is pending.

GENERATION ADDITIONS:

Figure 7.2.2 lists the generation plants that are currently under construction and are expected to be operational by 2016. Figure 7.2.3 lists the generation plants that are currently under development and are expected to be operational by 2016.

Forecasted	Unit	Location	Primary Fuel	'Unit Type	Capacity	(Net MW)
COD	Unit	Location :		oum i Abe	Summer	Winter
2012	Virginia City Hybrid Energy Center	Wise County, VA	Coal/Biomass	Baseload	585	635

Figure 7.2.2 GENERATION PLANTS UNDER CONSTRUCTION

Figure 7.2.3 GENERATION PLANTS UNDER DEVELOPMENT

Forecasted	Unit	Location	Primary Fuel	i linifivne		(Net MW)
COD					Summer	
2015	Warren County Power Station	Warren County, VA	Natural Gas	Intermediate	1,337	1,437

GENERATION UPRATES/DERATES:

Figure 7.2.4 lists the Company's planned changes to existing generating units.

Unit Name	Туре	мw	Year Effective
Chesterfield 3	Derate	-3	2011
Chesterfield 4	Derate	-4	2011
North Anna 1	Uprate	18	2012
Mt. Storm 1	Uprate	30	2013
Possum Point 6	Uprate	34	2013
Aitavista	Derate	-12	2013
Hopewell	Derate	-12	2013
Southampton	Derate	-12	2013

Figure 7.2.4 PLANNED CHANGES TO EXISTING GENERATION

The Company plans to convert Altavista, Hopewell and Southampton to biomass and to repower Bremo units 3 and 4 by natural gas.

POTENTIAL GENERATION RETIREMENTS:

The Company currently anticipates that the units listed in Figure 7.2.5 will be considered for retirement by the end of 2016.

· Unit Name	MW Summer	Year Effective
Chesapeake 1	-111	2015
Chesapeake 2	-111	2015
Chesapeake 3	-156	2016
Chesapeake 4	-217	2016
Lowmoor GT1	-12	2015
Lowmoor GT2	-12	2015
Lowmoor GT3	-12	2015
Lowmoor GT4	-12	2015
Mount Storm GT1	-11	2015
Northern Neck GT1	-12	2016
Northern Neck GT2	-11	2016
Northern Neck GT3	-12	2016
Northern Neck GT4	12	2016
Possum Point CT1	-12	2014
Possum Point CT2	-12	2014
Possum Point CT3	-12	2014
Possum Point CT4	-12	2014
Possum Point CT5	-12	2014
Possum Point CT6	-12	2014
Yorktown 1	-159	2015

Figure 7.2.5 POTENTIAL GENERATION RETIREMENTS

Transmission:

Figure 7.2.6 lists the major transmission additions including line voltage and capacity, expected operation target dates, and its regulatory status.

Line Terminal	Line Voltage (kV)	Line <u>Capacity</u> (MVA)	Target Date	ŞÇC/NÇÜC Status
Hayes – Yorktown	230	1,047	May-12	Approved (VA)
Glebe - Radnor Heights - Ballston UG Line	230	500	May-12	Approved (VA)
Hopewell – Prince George	230	1,047	May-12	Approved (VA)
Reconductor Chucktuck – Newport News	230	583	May-12	Approval Not Required
Uprate 500 kV Line # 555 Dooms – Lexington	500	2,913	May-12	Approval Not Required
Landstown - Virginia Beach	230	797	Dec-12	Approved (VA)
Line 270 Burke - Sideburn 2 nd Underground	230	600	May-13	Approval Not Required
Convert Line 49 Loudoun - New Road	230	1,047	May-13	Approved (VA)
Lakeside to Northwest 230kv Line*	230	1,047	May-13	Pending Approval (VA)
Cannon Branch to Liberty – New 230kV Line (Part 1 Cannon Branch-Cloverhill)*	230	1,047	Jun-13	Pending Approval (VA)
Dahlgren Substation 230kV Line (Loop Line #2076)*	230	608	May-14	Not Yet Filed (VA)
Convert Trowbridge - Winfall Line	230	900	May-14	Approval Not Required (NC)
Uprate Line #575 (Ladysmith – North Anna)	500	3,377	Jun-14	Approval Not Required (VA)
Brambleton - Waxpool - BECO*	230	1,047	May-14	Not Yet Filed (VA)
Chickahominy - Skiffs Creek 500 kV Line*	500	3,460	Nov-14	Not Yet Filed (VA)
Skiffes Creek – Whealton Line*	230	1,047	Nov-14	Not Yet Filed (VA)
2nd 230kV Line Harrisonburg to Endless Caverns*	230	1,047	May-15	Not Yet Filed (VA)
Line #222 Uprate from Northwest to Southwest	230	706	May-15	Approval Not Required (VA)
New 230kV Line North Anna to Oak Green*	230	1,047	May-15	Not Yet Filed (VA)
Uprate Line 2022 – Possum Point to Dumfries Substation	230	706	May-15	Approval Not Required (VA)
Cannon Branch to Liberty – New 230kV Line (Part 2 Cloverhill-Liberty)*	230	1,047	May-15	Not Yet Filed (VA)
Shawboro - Aydiett New Line*	230	1,047	May-15	Not Yet Filed (NC)
Rebuild Winfall - Elizabeth City Line	230	1,047	Jun-15	Approval Not Required (NC)
Rebuild Line #551 (Mt Storm – Doubs)	500	4,330	Jun-15	Pending Approval (VA) Approved (WV)
Rebuild Loudon – Brambleton	500	3,460	May-16	Not Yet Filed (VA)
Clark - Idylwood*	230	706	May-16	Not Yet Filed (VA)

Figure 7.2.6 PLA	NNED TRANSMISSION ADDI	TIONS
------------------	------------------------	-------

.

* Planned transmission addition subject to change based on inclusion in future PJM RTEP and/or receipt of applicable regulatory approval(s)

RENEWABLE RESOURCES:

Virginia:

Figure 7.2.7 lists the Company's future renewable resources within the first five years of the Plan.

- 1. An additional 216 MW of renewable resources are planned to be online by 2015 (Figure 7.2.7). The Company plans to meet its Virginia RPS goals at a reasonable cost and in a prudent manner by
 - a. Application of current renewable generating facilities including NUGs,
 - b. Purchase of cost-effective RECs (including optimization), and
 - c. Developing new renewable energy resources when and where feasible.

Uni <u>t</u> Name	' MW	Year Effective
	59	2012
Altavista	51	2013
Hopewell	51	2013
Southampton	51	2013
Halifax County Solar	4	2015
Total	216	

Figure 7.2.7 FUTURE RENEWABLE RESOURCES

North Carolina:

- 1. The Company's strategy to meet the North Carolina REPS requirements is outlined in the Company's 2011 REPS Compliance Plan, filed as North Carolina IRP Addendum 1 to this 2011 Plan.
- Solar requirements are intended to be met by purchasing unbundled solar RECs. The Company has procured the solar RECs necessary to comply with the North Carolina REPS solar requirements for 2011.
- 3. The Company continues to develop its plans to comply with swine and poultry waste requirements that begin in 2012. As part of this effort, the Company has entered into agreements with other electric suppliers to conduct and evaluate joint RFPs in compliance with the NCUC's guidelines and oversight. The Joint Buyer's Group received several proposals in response to a RFP. After careful analysis and evaluation the Buyer's Group developed a short list of the suppliers. Contract negotiations were then carried out with these RECs suppliers. The Company has signed five long-term contracts with the Swine Waste RECs suppliers to comply with Swine Waste Energy requirements. The Poultry Litter Buyers group is also negotiating with a Poultry Litter RECs supplier for a long-term contract. The Company is also looking for Poultry Litter RECs procurement opportunities from out of state Poultry Litter Facilities.
- 4. The Company intends to meet the general REPS requirements with a combination of:
 - a. Energy efficiency programs,
 - b. Purchase of cost-effective RECs, and
 - c. Development of new renewable resources when and where feasible.

OTHER INITIATIVES:

As discussed in Section 5.4, the Company is currently considering other technologies and resources within the next five years including:

- 1. <u>Community Solar Power Program and Tariff</u> In response to House Bill 1686, legislation passed by the General Assembly in 2011 that promoted solar distributed generation, the Company is planning to seek approval for a Community Solar Power Program in which solar PV DG would be strategically located in areas of the Company's service territory to study the impact and assess benefits to the distribution system. In addition, as part of the study and as an alternative to net metering, the Community Solar Power Program tariff would provide the opportunity for customers to sell solar generation output and renewable energy certificates to the Company. The size of the Company's combined solar distributed PV initiative (Company-owned installations and purchases under the new Community Solar Power Program Tariff) would not exceed 33 MW.
- <u>Dynamic Pricing Pilot Program</u> On September 30, 2010, the Company filed an application with the SCC (Case No. PUE-2010-00135) proposing to offer three experimental and voluntary dynamic pricing tariffs to prepare for a potential system-wide offering in the future. The filing was approved by the SCC's Order Establishing Pilot Program issued on April 8, 2011.
- 3. <u>EV Pilot Program</u> On January 31, 2011, in SCC Case No. PUE-2011-00014, the Company filed a petition for a pilot program to offer experimental and voluntary EV rate options provide incentives to residential customers who purchase or lease EVs to charge them during off-peak periods. The SCC approved the pilot on July 11, 2011. The program will be open to up to 1,500 residential customers, with up to 750 in each of the two experimental rates. The Company plans to begin pilot enrollment October 3, 2011 and conclude the pilot November 30, 2014. If warranted by the results of the pilot program, the Company plans to request approval of a Virginia service territory EV peak-shaving program in the future.

Appendix

Year	Residentiai	Commercial	Industrial	Public Authority	Street and Traffic Lighting	Sales for Resale	Total
2001	24,784	23,541	10,883	8,988	281	3,812	72,289
2002	27,064	24,296	10,832	9,296	286	3,519	75,294
2003	27,246	24,732	10,525	9,445	280	3,075	75,302
2004	28,249	25,878	10,843	9,798	284	2,167	77,220
2005	29,942	27,023	10,331	10,120	280	1,736	79,432
2006	28,544	27,078	10,168	10,040	282	1,801	77,912
2007	30,469	28,416	10,094	10,660	283	1,953	81,875
2008	29,646	28,484	9,779	10,529	282	1,926	80,646
2009	29,904	28,455	8,644	10,448	276	1,911	79,637
2010	32,547	29,233	8,512	10,670	281	1,926	83,169
2011	30,459	30,623	8,125	10,726	290	1,919	82,144
2012	31,048	33,041	8,463	11,079	295	1,946	85,873
2013	31,388	34,381	9,091	11,052	299	1,966	88,177
2014	31,857	35,882	8,981	11,262	304	1,992	90,277
2015	32,449	37,044	8,874	11,439	309	2,032	92,147
2016	33,117	38,132	9,114	11,411	314	2,131	94,217
2017	33,692	38,891	9,075	11,383	319	2,164	95,524
2018	34,413	39,758	9,073	11,355	324	2,207	97,130
2019	35,141	40,706	9,126	11,328	329	2,250	98,880
2020	35,927	41,867	9,229	11,300	333	2,297	100,953
2021	36,543	42,801	9,218	11,272	338	2,329	102,501
2022	37,243	43,862	9,248	11,245	342	2,369	104,309
2023	37,915	44,962	9,267	11,217	347	2,411	106,119
2024	38,766	46,156	9,297	11,190	351	2,460	108,220
2025	39,303	47,119	9,312	11,163	355	2,496	109,748
2026	39,988	48,239	9,333	11,136	359	2,539	111,594

APPENDIX 2A - TOTAL SALES BY CUSTOMER CLASS (DOM LSE) (GWh)

Note: Historic (2001 – 2010), Projected (2011 – 2026)

Year	Residential	Çommercial	Industrial	Public Authority	Street and Traffic Lighting	Sales for Resale	Total
2001	23,516	22,838	9,402	8,864	273	2,677	67,569
2002	25,673	23,559	9,239	9,165	278	2,337	70,251
2003	25,822	23,993	8,961	9,303	272	1,996	70,348
2004	26,771	25,109	9,051	9,652	275	2,126	72,984
2005	28,359	26,243	8,621	9,976	272	1,692	75,164
2006	27,067	26,303	8,404	9,903	274	1,754	73,705
2007	28,890	27,606	8,359	10,519	274	1,906	77,556
2008	28,100	27,679	8,064	10,391	273	1,877	76,384
2009	28,325	27,646	7,147	10,312	268	1,860	75,558
2010	30,831	28,408	6,872	10,529	273	1,877	78,791
2011	28,870	29,774	6,716	10,584	282	1,869	78.096
2012	29,427	32,145	7,000	10,932	286	1,895	81,687
2013	29,750	33,465	7,512	10,906	290	1,915	83,838
2014	30,193	34,926	7,422	11,113	295	1,939	85,888
2015	30,754	36,060	7,333	11,287	300	1,979	87,714
2016	31,359	37,134	7,521	11,258	305	2,076	89,652
2017	31,905	37,871	7,489	11,231	310	2,109	90,914
2018	32,590	38,713	7,487	11,203	314	2,151	92,459
2019	33,283	39,634	7,529	11,176	319	2,193	94,134
2020	34,031	40,762	7,613	11,149	324	2,238	96,117
2021	34,619	41,670	7,593	11,123	328	2,270	97,602
2022	35,284	42,701	7,606	11,096	332	2,309	99,328
2023	35,923	43,769	7,617	11,070	337	2,350	101,066
2024	36,732	44,929	7,633	11,044	341	2,398	103,076
2025	37,242	45,865	7,631	11,017	345	2,433	104,533
2026	37,891	46,953	7,639	10,991	349	2,475	106,298

APPENDIX 2B - VIRGINIA SALES BY CUSTOMER CLASS (DOM LSE) (GWh)

Note: Historic (2001 - 2010), Projected (2011 - 2026)

Year -	Residential	Commercial	Industrial	Public Authority	Street and Traffic Lighting	Sales for Resale	Total
2001	1,268	703	1,482	124	8	1,135	4,720
2002	1,391	738	1,592	131	8	1,182	5,043
2003	1,424	739	1,564	141	8	1,078	4,955
2004	1,479	769	1,792	146	8	41	4,235
2005	1,583	780	1,709	143	8	44	4,268
2006	1,477	775	1,763	137	8	47	4,207
2007	1,579	810	1,735	140	8	47	4,319
2008	1,546	806	1,715	138	8	49	4,263
2009	1,579	809	1,497	136	8	51	4,079
2010	1,716	825	1,640	141	8	49	4,378
2011	1,589	849	1,409	142	8	51	4,048
2012	1,621	896	1,463	147	8	51	4,186
2013	1,638	916	1,579	146	9	52	4,339
2014	1,664	956	1,559	149	9	52	4,389
2015	1,695	984	1,541	151	9	53	4,433
2016	1,758	998	1,593	153	9	55	4,565
2017	1,787	1,020	1,586	152	9	55	4,610
2018	1,823	1,045	1,586	152	9	56	4,672
2019	1,858	1,072	1,597	151	10	57	4,746
2020	1,896	1,105	1,616	151	10	59	4,836
2021	1,924	1,131	1,625	150	10	59	4,899
2022	1,959	1,161	1,642	149	10	60	4,981
2023	1,992	1,193	1,650	147	10	61	5,054
2024	2,034	1,227	1,664	146	10	62	5,144
2025	2,061	1,254	1,681	145	10	63	5,215
2026	2,097	1,286	1,694	144	10	64	5,296

APPENDIX 2C -- NORTH CAROLINA SALES BY CUSTOMER CLASS (DOM LSE) (GWh)

.

. .

.

Note: Historic (2001 - 2010), Projected (2011 - 2026)

.

Year	Residential	Commercial	industrial	Public Authority	Street and : Traffic , Lighting	Sales for Resale	Total
2001	1,890,918	206,571	775	26,479	1,945	5	2,126,693
2002	1,929,901	210,551	741	27,024	2,058	5	2,170,279
2003	1,964,320	213,461	709	27,673	2,136	- 5	2,208,304
2004	1,998,691	216,186	684	27,910	2,275	5	2,245,751
2005	2,036,041	219,837	655	28,233	2,426	5	2,287,197
2006	2,072,726	223,961	635	28,540	2,356	4	2,328,222
2007	2,102,751	227,829	620	28,770	2,347	3	2,362,319
2008	2,124,089	230,715	598	29,008	2,513	3	2,386,925
2009	2,139,604	232,148	581	29,073	2,687	3	2,404,097
2010	2,157,581	232,988	561	29,041	2,798	3	2,422,972
2011	2,172,320	233,931	540	29,119	2,953	3	2,438,866
2012	2,193,642	236,185	539	29,287	3,091	3	2,462,747
2013	2,226,963	239,149	539	29,477	3,232	3	2,499,363
2014	2,264,171	242,369	539	29,697	3,373	3	2,540,151
2015	2,300,671	245,542	539	29,963	3,513	3	2,580,231
2016	2,335,095	248,588	539	30,265	3,654	3	2,618,143
2017	2,368,380	251,565	539	30,581	3,794	3	2,654,862
2018	2,401,388	254,525	539	30,861	3,936	3	2,691,251
2019	2,433,997	257,460	539	31,071	4,076	3	2,727,146
2020	2,465,880	260,350	539	31,217	4,217	3	2,762,206
2021	2,496,752	263,178	539	31,333	4,358	3	2,796,163
2022	2,526,592	265,943	539	31,439	4,498	3	2,829,015
2023	2,555,470	268,647	539	31,541	4,639	3	2,860,839
2024	2,583,410	271,295	539	31,636	4,780	3	2,891,662
2025	2,610,864	273,913	539	31,723	4,921	3	2,921,962
2026	2,638,277	276,527	539	31,804	5,061	3	2,952,212

APPENDIX 2D - TOTAL CUSTOMER COUNT (DOM LSE)

.

-

Note: Historic (2001 – 2010), Projected (2011 – 2026)

.

.

Year	Residential	Commerciai	industrial	Public Authority	Street and Traffic Lighting	Sales for Resale	Total
2001	1,797,885	192,121	687	24,672	1,607	4	2,016,975
2002	1,835,280	195,687	657	25,217	1,717	4	2,058,562
2003	1,868,436	198,240	630	25,778	1,777	4	2,094,866
2004	1,901,785	200,958	606	26,017	1,913	4	2,131,282
2005	1,937,806	204,457	585	26,343	2,062	4	2,171,256
2006	1,973,430	208,556	566	26,654	1,994	3	2,211,203
2007	2,002,884	212,369	554	26,896	1,971	2	2,244,675
2008	2,023,592	215,212	538	27,141	2,116	2	2,268,601
2009	2,038,843	216,663	522	27,206	2,290	2	2,285,525
2010	2,056,576	217,531	505	27,184	2,403	2	2,304,201
2011	2,069,203	218,075	483	27,223	2,506	2	2,317,492
2012	2,089,513	220,176	483	27,381	2,623	2	2,340,177
2013	2,121,252	222,939	483	27,558	2,742	2	2,374,976
2014	2,156,694	225,940	483	27,764	2,862	2	2,413,744
2015	2,191,462	228,899	483	28,013	2,981	2	2,451,839
2016	2,224,251	231,738	483	28,295	3,101	2	2,487,869
2017	2,255,956	234,513	483	28,590	3,220	2	2,522,764
2018	2,287,397	237,273	483	28,852	3,340	2	2,557,346
2019	2,318,458	240,009	483	29,048	3,459	2	2,591,459
2020	2,348,828	242,703	483	29,184	3,578	2	2,624,779
2021	2,378,235	245,339	483	29,293	3,698	2	2,657,050
2022	2,406,658	247,917	483	29,393	3,817	2	2,688,270
2023	2,434,165	250,438	483	29,488	3,936	2	2,718,512
2024	2,460,779	252,906	483	29,576	4,056	2	2,747,801
2025	2,486,930	255,346	483	29,658	4,176	2	2,776,594
2026	2,513,042	257,783	483	29,734	4,295	2	2,805,338

APPENDIX 2E - VIRGINIA CUSTOMER COUNT (DOM LSE)

.

•

.

.

Note: Historic (2001 - 2010), Projected (2011 - 2026)

	AFFLINDIA		I OAROERI	<u> </u>			
Year	Residential	Commercial	Industrial	. Public Authority	Street and Traffic Lighting	Sales for Resale	Total
2001	93,033	14,449	88	1,808	338	1	109,718
2002	94,621	14,863	84	1,807	341	1	111,717
2003	95,884	15,221	79	1,895	359	1	113,438
2004	96,906	15,228	79	1,894	362	1	114,469
2005	98,235	15,380	70	1,890	364	1	115,941
2006	99,296	15,406	- 69	1,886	363	1	117,019
2007	99,867	15,460	66	1,874	376	1	117,644
2008	100,497	15,502	60	1,867	397	1	118,324
2009	100,761	15,485	59	1,867	398	1	118,572
2010	101,005	15,457	56	1,857	395	1	118,771
2011	103,117	15,857	56	1,896	447	1	121,374
2012	104,129	16,009	56	1,906	468	1	122,570
2013	105,711	16,210	56	1,919	490	1	124,387
2014	107,477	16,428	56	1,933	511	1	126,407
2015	109,210	16,644	· 56	1,951	532	1	128,393
2016	110,844	16,850	56	1,970	553	1	130,274
2017	112,424	17,052	56	1,991	575	1	132,098
2018	113,991	17,252	56	2,009	596	1	133,905
2019	115,539	17,451	56	2,023	617	1	135,687
2020	117,052	17,647	56	2,032	639	1	137,427
2021	118,518	17,839	56	2,040	660	1	139,113
2022	119,934	18,026	56	2,047	681	1	140,746
2023	121,305	18,209	56	2,053	703	1	142,328
2024	122,631	18,389	56	2,060	724	1	143,861
2025	123,934	18,567	56	2,065	745	1	145,368
2026	125,236	18,744	56	2,070	767	. 1	146,874

APPENDIX 2F - NORTH CAROLINA CUSTOMER COUNT (DOM LSE)

.

.

Note: Historic (2001 – 2010), Projected (2011 – 2026)

Company Name:	Mrginia El	acide and				_												e	hedu	
POWER SUPPLY DATA		ocun aik																30	menan	
	Ģ	ACTUAL)				(PROJECTED)														
	2005	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	20	
IL Load (MW)											· · · · ·				· · · · ·					
1, Summer																				
a. Adjusted Summer Peak ⁽¹⁾	16,908	16,067	16,933	17,302	17,920	18,390	15,610	18,036	16,238	18,548	18,878	19,197	19,640	20,020	20,374	20,728	21,007	21,360	2	
b. Other Commitments ⁽²⁾	150	150	150	597	921	943	658	-352	-448	-427	-417	-407	-395	-393	-397	-399	-402	-405		
c. Total System Summer Peak	16,758	15,917	16,783	16,705	16,999	17,447	17,952	18,388	18,666	18,973	19,295	19,604	20,035	20,413	20,771	21,125	21,409	21,765	2	
d, Percent Increase in Totat																				
Summer Peak	-5,5%	-5.0%	5.4%	-0,5%	1,6%	2,6%	2,9%	2,4%	1,6%	1,5%	1,7%	1,6%	2.2%	1,9%	1,8%	1.7%	1.3%	1,7%		
2. Writer																				
a. Adjusted Winter Peak ⁽¹⁾	14,787	15,577	15,334	15,002	15,421	15,675	15,914	16,142	16,380	16,664	16,954	17,148	17,409	17,826	18,105	18,405	18,666	18,864	1	
b. Other Commitments ⁽²⁾	128	132	143	138	123	75	-10	-230	-294	-292	-287	-281	-274	-272	-275	-277	-279	-281	_	
c. Total System Winter Peak	14,659	15,445	15,191	14,868	15,298	15,600	15,924	16,372	16,674	16,956	17,241	17,429	17,684	18,098	16,360	18,681	18,965	19,145	1	

2.9% 2.0% 2.1% 2.8% 1.8% 1.7% 1,7% 1,1% 1.5% 2.3%

.

1,6%

1.6%

1.5%

0,9% 2.2%

.

-8.3% 5.4%

-1.6%

-2.1%

.

Winter Peak

Peak after energy efficiency and demand-side programs, includes adjustments from Appendix 2H.
 Includes firm commitments for the receipt of specified blocks of power (i.e., unit power, limited term, diversity exchange, etc.).

.

Company Name:	Arginia Ek	actric and	Power Co	mpany														Sci	heduje 1
L PEAR LOAD AND ENERGY FURGEAS ((Al	CTUAL) ⁽¹⁾)							(PR	OJECTER))							
-	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
– 1. Uilliy Peak Load (MW) A. Summer																			
1s. Base Forecast	16,758	15,917	16,783	16,705	16,999	17,447	17,952	16,365	18,688	18,973	19,295	19,604	20,035	20,413	20,771	21,125	21,409	21,765	22,201
1b, Additional Forecast																			
NCEMC _	150	150	150	150	150	150	150	-	-	-	-	<u> </u>	-		-	-	-	-	-
2. Conservation, Efficiency ^(k)	· · · · ·	-	-17	-30	-21	-101	-242	-352	-448	-427	-417	-407	-395	-393	-397	-399	-402	-405	-407
3. Demand Rasponse ⁽²⁾⁽⁵⁾	_	-	-21	-55	-38	-144	-224	-274	-325	-371	-410	-442	-468	.488	-501	-511	-519	-525	-530
4. Demand Response-Existing ⁽²⁾⁽³⁾	-72	-18	-9	-7	-7	-7	-7	-7	-5	-5	· -5	-5	-5	-5	-5	-5	-5	-5	-5
5. Peak Adjustment	-	-		447	792	894	750	-		-	-	-	-	-	-	-	-	-	-
6. Adjusted Load	16,905	16,067	16,933	17,302	17,920	18,390	18,610	18,038	16,238	18,546	18,676	19, 197	19,640	20,020	20,374	20,726	21,007	21,360	21,784
7, % Increase in Adjusted Load	-5.5%	-6.0%	5,4%	2,2%	2.2%	2.6%	1.2%	-3.1%	1,1%	1.7%	1.8%	1.7%	2.3%	1.9%	1,8%	1,7%	1.4%	1.7%	2.0%
(from previous year)																			
B. Winter																			
1a, Base Forecast	14,637	15,427	15,184	14,859	15,291	15,593	15,917	16,365	16,669	16,951	17,236	17,424	17,679	18,093	18,375	18,678	18,960	19, 140	19,569
ib, Additional Forecast					· · · · · ·														
NCEMC	150	150	150	143	145	146	147	-	-	-	-	-	-	-	-	-	-	-	-
2. Conservation, Efficiency ¹⁹	-	-	-14	-23	-15	-64	-150	-223	-269	-287	-282	-276	-269	-267	-270	-272	-274	-276	-276
3. Demand Response ⁽²⁾⁽⁵⁾	-	-	-12	-20	-	-19	-47	-50	-58	-66	-73	-78	-81	-84	-87	-91	-94	-95	-96
4. Demand Response-Existing ⁽²⁾⁽³⁾	-22	-18	-7	-7	-7	-7	-7	-7	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
5. Adjusted Load	14,787	15,577	15,334	15,002	15,421	15,675	15,914	16,142	16,390	16,664	16,954	17,146	17,409	17,826	18,105	18,405	16,666	16,664	19,291
6. % increase in Adjusted Load	-6.2%	5.3%	-1.6%	-2.2%	2.6%	1.6%	1.5%	1.4%	1,6%	1,7%	1.7%	1.1%	1.5%	2.4%	1.6%	1,7%	1,5%	1,0%	2.3%
2, Energy (GMh)																			
A Base Forecast	83,547	82,501	56,663	64,766	86,583	90,994	93,165	95,097	97,449	98,605	100,468	102,280	104,422	106,027	107,902	109,779	111,955	113,537	115,447
B, Additional Forecest															-				
NCEMC				619	645	658	676	-	-	-	-	-	-	-	-	-	-	-	-
ODEC supp ⁽⁰⁾						-		-		-	-	-	-		-		-	-	
C. Conservation & Demand Response ¹⁹	-	-	-265	-379	-623	-1,476	-2,516	-3,484	-4,285	-4,404	-4,614	-4,621	-4,414	-4,368	-4,383	-4,394	-4,402	-4,413	-4,423
D. Demand Response-Existing ⁽²⁾⁽³⁾	-3	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1		-1	-1	-1	-1	-1	-1	-1
E, Adjusted Energy	83,547	82,501	86,663	85,005	88,605	90,176	91,324	91,613	93,164	94,401	95,854	97,759	100.008	101,658	103,519	105,385	107,553	109,124	111.024

APPENDIX 2H - PROJECTED SUMMER & WINTER PEAK LOAD & ENERGY FORECAST

(1) Actual metered data.

(2) Demand response programs are classified as capacity resources and are not included in adjusted load.

(3) Existing DSM programs are included in the load forecast.

(4) Values for 2010 and 2011 represent modeled energy; actual historical data based upon measured and verified EM&V results is not yet available

(5) Values in 2010 and 2011 represent modeled capacity; actual historical data based upon measured and verified EM&V results is not yet available. Projected values represent modeled DSM firm capacity.

.

(6) ODEC contract expired year end 2010.

				APPE		41 - r	LEWO	INED	RESE		MAR	GIN							
Company Name: POWER SUPPLY DATA (continued)	Virginia E	lectric and	i Power C	ompany														Sci	hedule 6
POWER SUPPLY DAIM (continued)	((ACTUAL)								(PR	OJECTE	D)							
	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	· 2019	2020	2021	2022	2023	2024	2025	2026
i. Reserve Margin ⁽¹⁾						_	•		·										
(including Cold Reserve Capability)																			
1, Summer Reserve Margin	•																		
a. MW ⁽¹⁾	1,312	1,964	3,397	3,218	3,425	3,407	2,121	1,984	2,006	2,040	2,077	2,112	2,161	2,202	2,241	2,280	2,311	2,350	2,398
b. Percent of Load	7.8%	12.2%	20.1%	18.6%	19.1%	18.5%	11.4%	11.0%	11.0%	11.0%	11.0%	11.0%	11.0%	11,0%	11.0%	11.0%	11,0%	11.0%	11.0%
c. Actual Reserve Margin ⁽⁴⁾	NA	NA	NA	9,07%	8.97%	6,80%	6,85%	15,28%	17,33%	12,25%	8,96%	13,37%	12,69%	12.84%	12.11%	12.21%	12,66%	12.71%	12.34%
2. Winter Reserve Margin					-														
a, MW ⁽¹⁾	NA	NA	NA	8,059	8,373	8,041	. 7,807	8,897	9,380	7,229	6,637	6,719	6,855	6,681	6,920	7,064	7,226	7,489	7,503
b. Percent of Load	N/A	NA	NA	53,7%	54,3%	51,3%	49.1%	55.1%	57.3%	43.4%	39.1%	39.2%	39.4%	38.6%	38.2%	38.4%	38.7%	39,7%	38.9%
c. Actual Reserve Margin ⁽⁴⁾	N/A	NA	NA	NA	NA	NA	N/A	N∜A	N/A	N/A	N⁄A	NA	NA	N/A	NA	N/A	N/A	N/A	N/A
i, Reserve Margin ⁽¹⁾⁽²⁾⁽³⁾																			
(Excluding Cold Roserve Capability)																			
1. Summer Reserve Margin																			
a, MW ⁽¹⁾	1,312	1,964	3,323	3,050	3,288	3,333	2,047	1,954	2,006	2,040	2,077	2,112	2,161	2,202	2,241	2,260	2,311	2,350	2,396
b. Percent of Load	7.8%	12.2%	19,6%	17,6%	18,3%	18,1%	11.0%	11.0%	11,0%	11.0%	11.0%	11.0%	11.0%	11.0%	11.0%	11.0%	11.0%	11.0%	11.0%
c. Actual Reserve Margin ⁽⁴⁾	NA	NA	NA	8.6%	8.2%	6,4%	6,5%	15,3%	17,3%	12.3%	9.0%	13.4%	12.7%	12.6%	12.1%	12.2%	12.7%	12.7%	12.3%
2. Winter Reserve Margin																			
a. MW ⁽¹⁾	NA	NA	N/A	7,919	8,233	7,964	7,730	8,897	9,380	7,229	6,637	6,719	6,855	5,551	6,920	7,064	7,226	7,469	7,503
b. Percent of Load	NA	NA	N/A	52.6%	53.4%	50.8%	48,8%	55,1%	57,3%	43,4%	39.1%	39,2%	39.4%	38.6%	38.2%	38,4%	38.7%	39.7%	38.9%
c, Actual Reserve Margin ⁽⁴⁾	NA	N/A	N/A	NA	NYA	NVA	NYA	NA	NA	NA	NA	N/A	NA	NA	NA	N/A	NA	N/A	NA
ill. Annual Loss-of-Load Hours ⁽⁵⁾	NA	N/A	N∦A	N/A	NA	NA	NA	N/A	NA	NVA	N/A	N/A	NA	N/A	N/A	N/A	NA	NA	NA

APPENDIX 21 - REQUIRED RESERVE MARGIN

(1) To be calculated based on Total Net Capability for summer and winter.

(2) The Company has two units in cold reserve.

(3) The Company and PJM forecasts a summer peak throughout the Planning Period.

(4) Does not include spot purchases of capacity.

(5) The Company follows PJM reserve requirements which are based on LOLE.

APPENDIX 3A - EXISTING GENERATION UNITS IN SERVICE

Company Name:

.

Virginia Electric and Power Company

Schedule 14a

UNIT PERFORMANCE DATA

Existing Supply-Side Resources (MW)

Unit Name	Location	Unit Class	Primary Fuel Type	C.O.D. ⁽¹⁾	MW Summer	MW Winter
Atavista	Altavista, VA	Base	Coal	Feb-1992	-	63
Bath County Units 1-6	Warm Springs, VA	Intermediate	Hydro-Pumped Storage	Dec-1985	1,802	1,788
Bear Garden Combined Cycle	Buckingham County, Va	Intermediate	Natural Gas-CC	May-2011	590	613
Bellemeade Combined Cycle	Richmond, VA	Intermediate	Natural Gas-CC	Mar-1991	267	281
Bremo 3	Bremo Bluff, VA	Base	Coal	Jun-1950	71	74
Bremo 4	Bremo Bluff, VA	Base	Coal	Aug-1958	156	161
Chesapeake 1	Chesapeake, VA	Base	Coal	Jun-1953	111	111
Chesapeake 2	Chesapeake, VA	Base	Coal	Dec-1954	111	111
Chesapeake 3	Chesapeake, VA	Base	Coal	Jun-1959	156	162
Chesapeake 4	Chesapeake, VA	Base	Coal	May-1962	217	221
Chesapeake CT 1	Chesapeake, VA	Peak	Light Fuel Oil	Dec-1967	15	20
Chesapeake CT 2	Chesapeake, VA	Peak	Light Fuel Oil	Dec-1969	36	49
Chesterfield 3	Chester, VA	Base	Coal	Dec-1952	100	104
Chesterfield 4	Chester, VA	Base	Coal	Jun-1960	166	171
Chesterfield 5	Chester, VA	Base	Coal	Aug-1964	325	332
Chesterfield 6	Chester, VA	Base	Coal	Dec-1969	652	663
Chesterfield 7	Chester, VA	Intermediate	Natural Gas-CC	Jun-1990	197	226
Chesterfield 8	Chester, VA	Intermediate	Natural Gas-CC	May-1992	200	236
Clover 1	Clover, VA	Base	Coal	Oct-1995	215	218
Clover 2	Clover, VA	Base	Coal	Mar-1996	217	219
Cushaw Hydro Unit	Big Island, VA	Intermediate	Hydro-Conventional	Apr-2005	2	4
Darbytown 1	Richmond, VA	Peak	Natural Gas-Turbine	May-1990	84	98
Darbytown 2	Richmond, VA	Peak	Natural Gas-Turbine	May-1990	84	97
Darbytown 3	Richmond, VA	Peak	Natural Gas-Turbine	Apr-1990	84	95
Darbytown 4	Richmond, VA	Peak	Natural Gas-Turbine	Apr-1990	84	97
Elizabeth River 1	Chesapeake, VA	Peak	Natural Gas-Turbine	Jun-1992	116	122
Elizabeth River 2	Chesapeake, VA	Peak	Natural Gas-Turbine	Jun-1992	116	122
Elizabeth River 3	Chesapeake, VA	Peak	Natural Gas-Turbine	Jun-1992	116	122
Gaston Hydro	Roanoake Rapids, NC	Intermediate	Hydro-Conventional	Feb-1963	220	220
Gordonsville 1	Gordonsville, VA	Intermediate	Natural Gas-CC	Jun-1994	109	135
Gordonsville 2	Gordonsville, VA	Intermediate	Natural Gas-CC	Jun-1994	109	135
Gravel Neck 1	Suny, VA	Peak	Light Fuel Oil	Aug-1970	28	38
Gravel Neck 3	Surry, VA	Peak	Natural Gas-Turbine	Oct-1989	84	98
Gravel Neck 4	Surry, VA	Peak	Natural Gas-Turbine	Jul-1989	84	97
Gravel Neck 5	Surry, VA	Peak	Natural Gas-Turbine	Jul-1989	84	98
Gravei Neck 6	Surry, VA	Peak	Natural Gas-Turbine	Nov-1989	84	97
Hopewell	Hopewell, VA	Base	Coal	Jul-1989	63	63
Kitty Hawk	Kitty Hawk, NC	Peak	Light Fuel Oil	Mar-1971	-	45
Ladysmith 1	Woodford, VA	Peak	Natural Gas-Turbine	May-2001	151	183
Ladysmith 2	Woodford, VA	Peak	Natural Gas-Turbine	May-2001	151	183
Ladysmith 3	Woodford, VA	Peak	Natural Gas-Turbine	Jun-2008	161	183
			Network One Trucking	Lux 0000	400	183
Ladysmith 4	Woodford, VA	Peak	Natural Gas-Turbine	Jun-2008	160	103

(1) Commercial Operation Date.

APPENDIX 3A Cont. - EXISTING GENERATION UNITS IN SERVICE

.

Company Name:

UNIT PERFORMANCE DATA

Virginia Electric and Power Company

Schedule 14a

Existing Supply-Side Resources (MW)

Unit Name	Location	Unit Class	Primary Fuel Type	C.O.D. ⁽¹⁾	MW Summer	MW Winter
Lowmoor CT	Covington, VA	Peak	Light Fuel Oil	Jul-1971	48	65
Mecklenburg 1 (Company-owned)	Clarksville, VA	Base	Coal	Nov-1992	69	69
Mecklenburg 2 (Company-owned)	Clarksville, VA	Base	Coal	Nov-1992	69	69
Mount Storm 1	Mt. Storm, WV	Base	Coal	Sep-1965	524	539
Mount Storm 2	Mt. Storm, WV	Base	Coal	Jui-1966	555	570
Mount Storm 3	Mt. Storm, WV	Base	Coal	Dec-1973	512	529
Mount Storm CT	Mt. Storm, WV	Peak	Light Fuel Oil	Oct-1967	11	15
North Anna 1	Mineral, VA	Base	Nuclear	Jun-1978	813	821
North Anna 2	Mineral, VA	Base	Nuclear	Dec-1980	834	862
North Anna Hydro	Mineral, VA	Intermediate	Hydro-Conventional	Dec-1987	1	1
North Branch	Bayard, WV	Base	Coal	Jan-1992		77
Northern Neck CT	Warsaw, VA	Peak	Light Fuel Oil	Jul-1971	47	70
Possum Point 3	Dumfries, VA	Peak	Natural Gas	Jun-1955	96	100
Possum Point 4	Dumfries, VA	Peak	Natural Gas	Apr-1962	220	225
Possum Point 5	Dumfries, VA	Peak	Heavy Fuel Oil	Jun-1975	786	805
Possum Point 6	Dumfries, VA	Intermediate	Natural Gas-CC	Jul-2003	559	615
Possum Point CT	Dumfries, VA	Peak	Light Fuel Oil	May-1968	72	106
Remington 1	Remington, VA	Peak	Natural Gas-Turbine	Jul-2000	153	187
Remington 2	Remington, VA	Peak	Natural Gas-Turbine	Jul-2000	151	187
Remington 3	Remington, VA	Peak	Natural Gas-Turbine	Jul-2000	152	187
Remington 4	Remington, VA	Peak	Natural Gas-Turbine	Jul-2000	152	188
Roanoke Rapids Hydro	Roanoake Rapids, NC	Intermediate	Hydro-Conventional	Sep-1955	95	95
Panda Company-owned	Roanoke Rapids, NC	Intermediate	Natural Gas-CC	Dec-1990	165	186
Pittsylvania	Hurt, VA	Base	Renewable	Jun-1994	83	83
Southampton	Franklin, VA	Base	Coal	Mar-1992	63	63
Surry 1	Surry, VA	Base	Nuclear	Dec-1972	839	870
Surry 2	Surry, VA	Base	Nuclear	May-1973	839	813
Yorktown 1	Yorktown, VA	Base	Coal	Jul-1957	159	162
Yorktown 2	Yorktown, VA	Base	Coal	Jan-1959	164	165
Yorktown 3	Yorktown, VA	Peak	Heavy Fuel Oil	Dec-1974	818	820
Subtotal - Base					8,083	8,365
Subtotal - Intermediate					4,316	4,535
Subtotal - Peak					4,588	5,165
Total					16,987	18,065

(1) Commercial Operation Date.

.

.

•

APPENDIX 3B – OTHER GENERATION UNITS

Virginia Electric and Power Company

Schedule 14b

UNIT PERFORMANCE DATA

Company Name:

UNIT PERFORMANGE DATA	
Existing Supply-Side Resources (kW)

.

Unit Name	Location	Unit Class	Primary Fuel Type	C.O.D. ⁽¹⁾	MW Summer	MW Winter	Restart Date
Units in Cold Storage							
North Branch	Gormania, WV	Base	Coal	Jan-1992	74	77	Unknow n
Atavista	Altavista, Va	Base	Coal	Feb-1992	63	63	05/2013

Unit Name	Location	Unit Class	Primary Fuel Type	kW Summer	Capacity Resource	Contract Start	Contract Expiration
Non-Utility Generation (NUG) Units							
Spruance Genco, LLC Facility 1	Richmond, VA	Basa	Coal	115,500	Yes	B/1/1992	7/3/2017
Spruance Genco, LLC Facility 2	Richmond, VA	Base	Coal	85,000	Yes	5/1/1992	7/31/2017
Edgecombe Genco, LLC	Battleboro, NC	Bese	Coal	115,500	Yes	10/15/1990	10/14/2015
Dosw el Complex	Ashland, VA	Intermediate	Natural Gas	605,000	Yes	5/16/1992	5/5/2017
Hopew el Cogen	Hopew ell, VA	Intermediate	Natural Gas	336,600	Yes	B/1/1990	7/30/2015
Ogden-Martin Fairfax	Lorton, VA	Base	MSW	63,000	Yes	5/5/1990	5/31/2015
Roanoke Valley I	Waldon, NC	Base	Coal	44,000	Yes	6/1/1995	5/31/2020
Roanoke Valley Project	Weldon, NC	Base	Coal	185,000	Yas	5/29/1994	5/28/2019
SE Birchw ood	King George, VA	Base	Coal	217,800	Yes	11/15/1996	11/14/2021

Behind-The-Mater (BTM) Generation Units ⁽²⁾ BTM Alexandris/Arlington - Covanta	VA	NUG	MSW	21.000	No	1/29/1988	1/28/2023
BTM Richmond Electric	VA	Must Take	Mathane	2,900	No	8/27/1993	8/26/2013
BTM Brasfield Cam		Must Take	Hydero	2,176	No	10/12/1993	10/11/2013
BTM Suffolk Landfill	VA	Mist Take	Methane	3,000	No	11/4/1994	11/3/2014
8TM Columbia Mills	VA	Must Take	Hydro	147	No	2/7/1985	2/8/2019
ETM Schoolfield Dam	VA	Must Take	Hydro	2,500	No	12/1/1990	11/30/2015
STM Lakeview (Swift Creek) Dam	VA	Must Take	Hydro	400	No	11/28/2008	Auto renew
BTM MeadWestvaco (formerly Westvaco)	VA	NUG	Coal/Biomess	70,000	No	11/3/1982	Auto renew
8TM Benister Dam	VA	Must Take	Hydro	1,765	No	9/25/2005	Auto renew
BTM 119 Goose Castle Terrace	NC	Must Take	Solar	3	No	3/15/2006	Auto renew
ETM 4113 Lindberg Ave	NC	Must Take	Solar	2	No	2/19/2006	Auto renew
67M Coquina Beach	NC	Must Take	Wind	2	No	8/22/2006	Auto renew
BTM Ocean Trail	NC	Must Take	Wind	2	No	9/14/208	Auto renew
BTM Owens Road	NC	Must Take	Wind	2	No	5/16/2008	Auto renew
BTM 409 W Villa Dunes	NC	Must Take	Solar	4	No	2/24/2009	Auto renew
ETM 146 Turner Road	NC	Must Take	Solar	2	Nio	7/1/2009	Auto renew
BTM 3620 Virginia Dare Trai N	NC	Must Take	Solar	4	No	9/14/2009	Auto renew
BTM Wayerhasuser/Dontar ⁽³⁾	NC	NUG	Coal/Biomess	28,400	No	7/27/1891	Auto renew
BTM Chepman Dem	VA	Must Take	Hydro	300	No	10/17/1984	Auto renew
BTM-95 Landfill	VA	Must Take	Mathane	3,000	No	1/1/1992	5/31/2012
BTM I-95 Phase 2	VA	Must Take	Methane	3,000	No	2/10/1993	2/9/2013
BTM Smurfit-Stone Container ⁽³⁾	VA	NUG	Coal/Biomass	48,400	No	3/21/1981	10/26/2011
BTM Rivenne	VA	Must Take	Hydro	100	No	4/21/1998	Auto renew
STM Rapidan MB	VA	Must Take	Hydro	100	No	6/15/2009	Auto renew
BTM River Form Energy	VA	Must Take	Solar	8	No	1/30/2009	Auto renew
BTM Dairy Energy Inc.	VA	Must Take	Methane	400	No	8/2/2011	8/1/2015

(1) Commercial Operation Date.

.

(2) These units are provided for informational purposes, they are not part of the 2011 Plan.

(3) Agreement to provide excess energy only.

Unit Name	Location	Unit Class	Primary Fuel Type	kW Summer	Capacity Resource	Contract Start	Contrac Expiratio
ustomer Owned ⁽⁴⁾							
	Ahoskie	Standby	Diesei	1250	No	NA	NA
	Tillery	Standby	Diesel	585	No	NA	N¥A
	Whitekers	Standby	Diesel	10000	No	NA	NA
	Columbia	Standby	Diesel	400	No	N/A	N/A
	Grandy	Standby	Diesel	400	No	NA	NA
	Kill Devil Hills	Standby	Diesel	500	No	NA	NA
	Moyock	Standby	Diesel	350	No	NA	NA
	Negs Head	Standby	Desel	400	No	NA	NA
	Nags Head	Standby	Desel	450	No	NA	NA
	Roanoke Rapids	Standby	Diesel	400	No	NA	NA
	Conw ay	Standby	Diesel	500	No	N/A	NA
	Conw ay	Standby	Diesel	500	No	NA	NA
	Roanoke Rapids	Standby	Diesel	500	No	N/A	NA
	Corola	Standby	Diesel	700	No	NA	NA
	Kil Devil Hils	Standby	Diasel	700	No	NA	NA
	Rocky Mount	Standby	Diesel	700	No	N#A	NA
	Roanoke Rapids	Standby	Cosi	25000	No	N/A	N/A
	Manteo	Standby	Diesel		No	NIA	N/A
	Conw ay	Standby	Diesel	800	No	N/A	N/A
	Lewiston	Slandby	Desel	4000	No	NA	NA
	Ronoke Rapids	Standby	Diesel	1200	No	NKA	N¥A
	Weldon	Standby	Diesel	750	No	NA	N/A
	Tilery	Standby	Diesel	450	No	NA	NA
	Eizabeth City	Standby	Unknown	2000	No	NA	NA
	Greenville	Standby	Diesei	1800	No	NA	NA
	Northern VA	Standby	Diesel	50	No	NYA	NA
	Northern VA	Standby	Diesel	1270	No	N/A	NA
	Alexandria	Standby	Desel	300	No	NA	NA
	Alexandria	Standby	Diesel	475	No	N¥A	NA
	Alexandria	Standby	Diesel	2 - 60	No	NA	NA
	Northern VA	Standby	Diesel	14000	No	NA	NA
	Northern VA	Standby	Desel	10000	Na	NA	NA
	Norfok	Standby	Diesel	4000	Na	NA	NA
	Richmond	Standby	Diesel	4470	No	N¥A	N/A
	Arington	Standby	Diesel	5850	No	N/A	NA
	Richmond	Standby	Diesei	22950	No	N/A	NA
	Northern VA	Standby	Diesel	50	No	N/A	NA
	Hampton Roads	Standby	Diesel	3000	No	N/A	NA
	Northern VA	Standby	Diesel	900	No	NA	NA
	Richmond	Standby	Casel	20110	No	NA	N#A
	Richmond	Standby	Dresel	3500	No	NA	NA
	Richmond	Standby	NG	10	No	NA	NA
	Richmond	Standby	LP	120	No	NA	N/A
	Va Beach	Standby	Diesei	2000	No	N/A	NA
	Chesapeaka	Standby	Diesel	500	No	NA	NA
	Chesapeake	Standby	Diesel	2500	No	NA	NA
	Fredericksburg	Standby	Diesel	700	No	NA	N/A
	Hopew el	Stendby	Diesel	75	No	NA	NA
	New port New a	Standby	Linknow n	1000	No	N/A	NA
	New port New s	Standby	Unknow n	4500	No	N/A	NA
	Norfolk	Slandby	Diesel	2000	No	NA	N/A
	Norfolk	Standby	Diesel	9000	No	NA	NA

APPENDIX 3B Cont. – OTHER GENERATION UNITS

.

.

.

.

(4) These units are provided for informational purposes, they are not part of the 2011 Plan.

AP - 14

.

Unit Name	Location	Unit Class	Primary Fuel Type	kW Summer	Capacity Resource	Contract Start	Contract Expiration		
Customer Dwned ⁽⁴⁾									
	Ve Beach	Standby	Diesel	3500	No	N/A	N/A		
	Ve Beach	Standby	Diesel	2000	No	N/A	NA		
	Chesterfield	Standby	Diesel	2000	No	NA	N/A		
	Central VA	Merchant	Coal	92000	No	NA	NA		
	Central VA	Merchant	Coel	115000	No	NA	NA		
	Walamsburg	Standby	Diesel	2800	No	NA	NA		
	Richmond	Standby	Diesel	30000	No	NA	NA		
_	Charlottes ville	Slandby	Diesel	40000	No	NA	NA		
	Arington	Standby	Diesel	13042	No	NVA	NA		
	Arington	Standby	Diesel/NG	7500	Na	NA	NA		
	Fauquier	Standby	Diesel	1885	No	NA	NA		
	Hanover	Standby	Diesel	12709.5	No	NA	NA		
	Hanover	Standby	NG	13759.5	No	NA	NA		
	Handver	Standby		81.25	No	NA	NA		
	Henrico	Standby	NG	1341	No	N/A	NA		
·	Henrico	Standby	 LP	126	No	N/A	N/A		
+- - -	Henrico	Standby	Diesel	626	No	N/A			
	Northern VA	Standby	Diesel	200	No	N/A	N/A		
	Northern VA	Standby	Diesel	8000	No No	NA NA	N/A		
	New port New s	Standby	Diesel	1750	No No	N/A	N/A		
			Diesel	37000	No	N/A	N/A		
	Northern VA	Standby							
	Chesapeaka	Standby	Unknow n	750	No	N'A			
- <u> </u>	Northern VA	Marchant	NG	50000	No	N/A	N/A		
	Northern VA	Standby	Diesel	138000	No	NA	N/A		
-	Richmond	Standby	Steam	20000	Na	NYA	N/A		
	Herndon	Standby	Diesel	415	No	NA	NA		
	Herndon	Standby	Diesel	50	No	NA	NYA		
	VA	Merchant	Hydro	2700	No	NA	NA		
	Northern VA	Standby	Diesel	37000	No	NA	N/A		
	Fairlax County	Standby	Diesel	20205	No	NA	NA		
	Fairfax County	Standby	NG	2139	No	NYA	NA		
	Fairfax County	Standby	UP	292	No	N¥A	N/A		
	Fairfax County	Standby	Diesel	10	No	NVA	NA		
	Springfield	Standby	Diesel	6500	No	N/A	NA		
	Warrenton	Standby	Diesel	2 - 750	No	NA	NA		
	Northern VA	Standby	Diesel	5350	No	N/A	NA		
	Richmond	Standby	Ciesel	18400	No	NA	N/A		
	Norfok	Standby	Diesel	350	No	NA	NA		
	Charlottesville	Standby	Diesel	400	No	NA	NA		
	Farmville	Standby	Diesel	350	No	N/A	N/A		
	Mechanics ville	Standby	Diesel	350	No	N/A	N/A		
·	King George	Standby	Diesel	350	No	NA	N/A		
	Chelham	Standby	Diesel	350	No .	NA	N/A		
	Hampton	Standby	Diesel	350	Na	NA	NA		
	Virginia Beach	Standby	Diesel	350	No	N/A	NA		
· ····	Portsmouth	Standby	Diesel	400	Na	NA	N/A		
	Pow hatan	Standby	Diesel	350	Na .	NA NA	NA		
		Standby Standby	Diesel	350	Na Na	NA NA	N/A N/A		
	Richmond		Diesei	<u>350</u>		NA NA	NA		
	Richmond	Standby			No				
	Chesapeake	Standby Standby	Diesel		No	N/A	N/A		
·	New port New s	Standby	Diesel	350	No	N/A	NA		
	Dinwiddie	Standby	Diesel		No	NA	NA		
	Goochiend	Standby	Diesel	350	No	N/A	NA		

APPENDIX 3B Cont. – OTHER GENERATION UNITS

(4) These units are provided for informational purposes, they are not part of the 2011 Plan.

.

.

AP - 15

Unit Name	Location	Unit Class	Primary Fuel Type	kW Summer	Capacity Resource	Contract Start	Contrac Expiratio
Justomer Owned ⁽⁴⁾		·					
	Portsmouth	Standby	Ciesel	350	No	NA	N/A
	Fredericksburg	Standby	Desel	350	No	N/A	NYA
	Northern VA	Standby	Diesel	22690	No	NA	NA
	Northern VA	Standby	Diesel	5000	No	N/A	N/A
	Hampton Roads	Standby	Ciesel	15100	No	N/A	NA
	Herndon	Standby	Diesel	1250	No	N/A	N/A
	Herndon	Standby	Desal	500	No	N/A	N/A
	Henrico	Standby	Diesel	1000	Na	N/A	NA
	Alexandria	Standby	Diesel	2 - 910	No	N/A	N/A
	Alexandria	Standby	Diesel	1000	Na	N/A	NA
	Faifax	Standby	Diesel	4 - 750	No	N/A	N/A
	Loudoun	Standby	Diesel	2100	No	N/A	N/A
	Loudoun	Standby	Diesel	710	No	N/A	N/A
	Mount Vernon	Standby	Desel	1500	No	N/A	NA
····	Northern VA	Standby	Diesel	50	No	NA	N/A
	Jarrait	Standby	Diesel	750	No	N/A	NA
	Jarratt	Standby	Diesel	600	No	NA	N/A
	Jarrati.	Standby	Diesel	250	No	<u>N⁄A</u>	N/A
	Jameti	Standby	Diesel	100	No	N/A	N/A
	Hopew el	Standby	Diesel	500	No	<u>N7A</u>	NYA.
	Fals Church	Standby	Diesel	200	No	<u>N/A</u>	NA
	Falls Church	Standby	Diesel	250	No	N/A	NA
	Northern VA	Standby	Diesel	500	No	N/A	NA
	Norfalk	Standby	NG	1050	No	NFA	N'A
	Richmond	Standby	Diesel	6400	No	NA	NA
	Henrico	Standby	Desel	500	No	<u>N/A</u>	NA
	Biton	Standby	Nat gau	6000	No	<u>N/A</u>	NA
	Northern VA	Standby	Desel	5000	No	<u>N/A</u>	NA
	Northern VA	Standby	#2.FO	5000	No	N/A	NA
· · · · · · · · · · · · · · · · · · ·	Northern VA	Standby	Ciesel	50	No	<u>N/A</u>	NA
	Vienna	Standby	Desel	5000	No	NA	N/A
	Northern VA	Standby	Diesel	200	No	NA	NA
	Norfolk	Standby	Desel	1000	No	NA	N/A
	Northern VA	Standby	Diesel	1000	Na	<u>_N/A</u>	N/A
	Norfalk	Standby	Clesel	1500	No	NA	NA
· · · · · · · · · · · · · · · · · · ·	Northern VA	Standby	Diesel	3000	No	<u>N/A</u>	NA
	New part New s	Standby	Diesel	750	No	N/A	NA
	Chesterfield	Standby	Coal	500	No	<u>N/A</u>	NYA
	Richmond	Standby	Diesel	1500	No	N/A	NVA
	Fichmond	Standby	Diesel	1000	Na	N/A	N/A
· · · · · · · · · · · · · · · · · · ·	Richmond	Standby	Diesel	1900	No	N/A	N/A
	Northern VA	Standby	Diesel	3000	No	<u>N/A</u>	N/A
	Richmond Metro	Standby	NG	6000	No	<u>NA</u>	NA
	Sulfok	Standby	Desel	2000	No	NA	N∕A
	Northern VA	Standby	Diesel	5000	No	NA	NA
	Richmond	Standby	Desel	500	No	NA	NA
	Harryton Roads	Standby	Diesei	4000	No	NA	NA
	Northern VA	Standby	Diesel	10000	No	NA	NA
	Northern VA	Standby	Diesel	5000	No	NA	NA
	Hampton Roads	Standby	Desci	12000	No	NA	N/A
	West Point	Standby	Unknow n	50000	No	N/A	NA
	Northern VA	Slandby	Desei	100	Na	NA	NA
	Herndon	Standby	Diesel	18100	No	NA	N/A

APPENDIX 3B Cont. - OTHER GENERATION UNITS

.

.

(4) These units are provided for informational purposes, they are not part of the 2011 Plan.

. .

AP - 16 ·

· ·

Unit Name	Location	Unit Claas	Primary Fuel Type	kW Summer	Capacity Resource	Contract Start	Contract Expiration
Lustomer Owned ⁽⁴⁾							
	VA	Merchant	ROF	60000	No	NA	N/A
	Chesterfield	Standby	Diesel	750	No	NA	N/A
	Henrico	Standby	Diesel	750	No	N/A	NYA
	Richmond	Standby	Diesei	5150	No	NA	N/A
	Culpapper	Standby	Diasel	7000	No	NA	NYA
	Richmond	Standby	Diesel	5000	Na	N/A	NA
	Northern VA	Standby	Diesel	2000	No	NA	N/A
	Northern VA	Standby	Diesel	6000	No	N/A	NA
	Northern VA	Standby	Ciesel	500	No	N/A	NA
• · · · · · · · · · · · · · · · · · · ·	Northern VA	Standby	NG	50000	No	NA	NA
	Hampton Roads	Standby	Unknow n	4000	No	NA	NA
	Northern VA	Standby	Diesel	10000	No	N/A	NA
	Northern VA	Standby	Diesel	13000	No	NA	NA
	Southside VA	Standby	Water	227000	No	N/A	NA
······	Northern VA	Standby	Diesel	300	No	NA	NA
	Northern VA	Standby	Clesel	1000	No	N/A	N/A
	Richmond	Standby	Diesel	1500	No	NA	NA
	Richmond	Standby	Diesel	30	No	NA	NA
	New port New s	Standby	Diesel	1000	No	NA	NA
	Humpton	Standby	Diesel	12000	No	NA	N¥A
	New port New s	Standby	Natural gas	3000	No	NA	NA
	New port New s	Standby	Diesel	2000	No	NA	NA
	Petersburg	Standby	Diesel	1750	No	N/A	NA
	Verious	Standby	Diesel	3000	No	NA	NA
	Various	Standby	Diesel	30000	No	NA	NA
	Northern VA	Standby	Diesel	5000	Na	NA	NA
	Northern VA	Standby	Diesel	2000	No	NA	NA
	Ashburn	Standby	Diesel	16000	No	NA	NA
	Northern VA	Standby	Disael	6450	No	N/A	NA
	Virginia Beach	Standby	Diesel	2000	No	NA	NA
	Ashburn	Standby	Diesel	12 - 2000	No	N/A	NA
	Innsbrook-Richmond	Standby	Diesel	6050	No	NA	N/A
	Northern VA	Standby	Diesel	150	No	N/A	N/A
······································	Henrica	Standby	Diesel	500	Na	N/A	N/A
·	Virginia Beach	Standby	Diesel	1500	No	N/A	N/A

APPENDIX 3B Cont. – OTHER GENERATION UNITS

•

(4) These units are provided for informational purposes, they are not part of the 2011 Plan.

.

•

APPENDIX 3C - EQUIVALENT AVAILABILITY FACTOR (%) Miginia Electric and Power Company

Company Name: UNIT PERFORMANCE DATA Equivalent Availability Factor (%)

.

.

Ibub Manage		ACTUAL)						4443			A-4 A	D)	****	****			40.01	4347	2028
Link Hume	2008	2000	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2821	2022	2023	2024	2028	_
Altevista		85	84	<u> </u>	•	98	86	68	<u>M</u>	- 26	88	86	88	\$6	88	98	- 96	88	8
Bath County Units 1-6	- 85	43	86	<u> </u>	<u> </u>	-	-	-	-		<u> </u>	-	-	<u> </u>	<u> </u>	-	-	-	
Bear Garden CC	<u> </u>	•	-		96		96	90	96	B0		96	88	80	95	88	95	58	90
Bellemeade CC	88	62	81	- 64	- 84	84	84			B4	M	<u> </u>	. 84	. 17	47	87		67	87
Bremo 3		87	87	\$3	83	83	38	89	58	85	69	66	98	89	69	89	98	88	80
Bremo 4	86	89	77	81	91		85	95	85	95	8	85	95	85	85	85	95	85	
Chesapeake 1	83	82	86	48		68	88	<u> </u>		-	<u> </u>	-	<u> </u>	-				•	
Chesapeake 2		ઝા	86	38		63	87	<u> </u>	<u> </u>	-	<u> </u>	-	-		-	<u> </u>			
Chesapeake 3		68	76			90	90	\$0	-	-	-	-	-	-	-	-	-	-	
Chesapeake 4	<u>e1</u>	64	76			90	90	90	-	-	<u> </u>	-	-					•	
Chesapeake CT 1	84	96	85	99	69	60	89	89	98	69	99	-	-	-					
Chesapeake CT 2	#3	99	56	-		-	-	-	-	•	-	•	•	-	-	-	-	-	
Chesterfield 3	84	88	86	87	87	67	87	87	87	47	67	67	87	90	BC	90	60	90	8
Chasterfield 4		77	81		87	17	87	87	87	87	57	57	. 87	91	91	81	91	\$1	
Chesterfield 5	90	92	78	81	91	91	81	91	91	91	m	91	•1	\$2	92	92	\$2	93	
Chesterfield 6	76	92	67	\$2	92	\$2	92	92	92	82	92	82	82	82	. 82	82	82	82	6
Chesterfield 7 CC		81	77	79	78	79	79	79	78	79	73	78	78	55	85	85	85	85	
Chesterfield &CC	78	88	87	79	79	79	78	79	79	78	79	79	79	65	85	85	85	85	
Cipver 1	BM	84	84	86	95	95	65	95	\$5	95	89		85	30	94	88	90	64	
Clover 2	92	12	85			85	85	16		#5			\$5						
Service Genco ,LLC Facility 1			<u> </u>			86		56	20				~			<u>~</u>			
Spruance Genco, LLC Facility 2				84		- BH			84	<u> </u>	<u> </u>	<u> </u>							
Edgecombe Genco, LLC	<u> </u>	.	<u> </u>		<u></u> н					<u> </u>	<u> </u>		.		·	<u> </u>			
Combined Cycle 3x1 :2016		<u> </u>	<u> </u>	<u> </u>			<u> </u>				<u> </u>	<u> </u>							
		<u> </u>							96		BA								_
Combined Cycle 3x1 :2019	<u> </u>			<u> </u>	<u> </u>		<u> </u>	-	<u> </u>			96	88	96	84	86	66	66	_
CT:2020		<u> </u>	-	<u> </u>	<u>.</u>		<u> </u>	-	-	-	-		88	86	86	98	66	96	
CT:2021	<u>.</u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	•				89		98	96		_
CT:2023	<u>.</u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	. ·		<u> </u>	<u> </u>	· ·		. <u> </u>	98		98	_
CŤ:2024	<u> </u>	<u> </u>		<u> </u>	<u> </u>	-	<u> </u>			•	-			-	•		9 0	98	_
CT:2025	<u> </u>	<u> </u>	•	<u> </u>	<u> </u>	-	<u> </u>		-	-	-	-	-				-	96	-
CT:2076	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>			-					-	-	-	-	1
Cushaw Hydro Unit	73	62	- 2	<u> </u>	<u> </u>	-	<u> </u>		-	-	-	-		-	-	•	-	-	
Darbytown 1			96		96	90	- 54	95	96	68	95	9 1	86	86	98	68	95	88	
Darbytown 2	78	100	84	94	94	96	64	96	96	98	95	88	96	98	88	848	60	68	9
Darbytown 3	92	78		98			94	64	96	9	96	ĥ	85	86	BØ	Đđ	BØ	68	B
Darbytown 4	83	99	73	98	98	P4	98	. 86	94	98		98	96	95	66	64	96		
Doswell Complex			•	94	94	M	94	84	94	94	-	-	-		-	-	-	-	
Elizabeth River 1	87	98	93	97	87	87	87	87	87	87	97	87	87	97	17	67	97	97	
Elizabeth River 2	87		97	97	97	97	97	87	97	87	97	87	87	87	97	67	17	97	9
Elizabeth River 3	87		82	97			8/	87	87	87	87	97	87	87	97	87	97	87	8
Gaston Hydro	BM	89	99				<u> </u>							_		-			
Gondonsville 1 CC		- 64	69			88	86	86	86	88	-	84		87	87	87	67	17	
Gardonsville 2 CC			71						81			89				90	90	80	
Gravel Neck 1			17						89										
Gravel Neck 3																			
Gravel Neck 4					N								 M				15	90	
	87		71						80		 		0	0			0	0	
Gravel Neck 5 Gravel Neck 6			 N										98		_		FR	60	
				98			96				88		88			88	N		
(jaj)fex Soler	-	-	-	-	-			50	50	50	50	50	50	50	50	50	50	50	

Scheduje S

•

.

.

.

-

APPENDIX 3C Cont. – EQUIVALENT AVAILABILITY FACTOR (%)

Company Name: Wrginia Elactric and Power Company UNIT PERFORMANCE DATA

Equivalent Availability Factor (%)

.

Schedule I

Equivalent Availability Factor (%)		(ACTUAL)								(PF	ROJECTE	D)							
Linit Name	2008	2009	2010	2911	2012	2013	2014	2016	2016	2017	2018	2010	2020	2021	2622	2023	2024	2024	2026
Hopewall	89	\$7	81		89	98	58	96	Be	86	98	98	88	86	96	68	98	98	88
Hopewell Cogen	-	-		85	95	95	95	85	-		-		-	-	-	-	-		-
Kitty Hawk	99	90	91						-	-		<u> </u>			-			-	-
Ladysmith 1	92	BQ	97	98	68	96	96	96	96		95	88	86	68	98	98	86	98	68
Ladysmith 2	91	89	93	98	94	96	98	96	96	98	96	96	96	88	98	96	96	98	88
Ladysmith 3	93	PI	98	88	99	96	58	89	98	58	98	68	86	88	RE	98	BB	BE	58
Ladysmith 4	H	89	96		88	96	94	84	96		98	98	98	98	98	96		98	98
Ladysmith 5	<u> </u>	88	99	96	98	86	98	94	96	98	96	98	98	98	96	98		98	96
Lowmoor CT	99	\$9	99	99	99	99	99	99	-	-	-	-	-	-	-		-	-	-
Mecklenburg 1	56	84	84	83	63	83	83	83	83	63	53	83		65	85	95	95	\$5	95
Mecklenburg 2		91	84	83	63	83	83	83	53	63	83	63	53	85	85	\$5	95	\$5	65
Mount Storm 1	81		55	80	60	90	BO	80	60	80	90	80	90	82	\$ 2	\$2	92	- 82	92
Mount Storm 2	- 96	88	87	80	ê0	60	90	BO	60	ê0	BQ	90	60	63	83	93	93	93	83
Mount Storm 3		- 91	91	P1	92	82	92	82	92	62	92	82	82	63	93	93	83	93	63
Mount Storm CT	93	78	86	68	69	B9	89	69	-		-	-	-	•	-	-	-	-	-
North Anna 1	90	91	84	96	98	96	98	59	96	98	98	96	98	-	96	96	98	98	98
North Anna 2	61	99	79	96	98	98	98	96	86	96	98	96	98	94	96	83	98	98	96
North Anna 3	<u> </u>	-	-	-		-	-	-	-	-	-	• •	-	-	98	68	98	99	66
North Anna Hydro		<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
North Branch	-	-	-	-	-	•	-	•	•	-	-		-	-	-	-	-	-	-
Northern Neck CT	- 98	98	93	99	99	99	99		99	•	-	-	-	-		-	-	-	-
Ogden-Martin Fairfax	-	-	-	68	63	<u>98</u>	88	86	-	-	-	-	-	-	-	-	-	-	-
Pittsylvania 1	BI	80	89	88	58	55	88	86	68	88	68	88	65	88	88	48	55	şa	88
Possum Point 1	-	-	-	•			-			-	-	-	-	-	-	-	-	-	
Possum Point 2	•	-	-	· · ·					-	-	-	-	-	-	-	-	-	-	-
Possum Point 3	. 91	ên.	· 83	81	91	18	91	91	81	91	61	91	91	91	B1	81	81	B1	91
Possum Point 4	83	8	43	80	90	90	90	90	90	90	60	90	60	90	90	90	80	66	90
Possem Point 5	80	66	78	85	85	85	85	65	85	85	85	85	85	85	85	85	65	65	85
Possum Point 6 CC	82	85	56	86	68	88	58	68	58	55	55	88	58	94	84	84	64	84	54
Possum Point CT	95	99	96	99	9 9	98	-	-	•	-	-		-	-	-	-		•	
Remington 1		89	95	99	89	99	99	99	99	99	99	\$ \$	99	99	99	99		99	99
Remington 2		95	87	89	\$ 9	90	88	89	89	69	88	69	89	89	89	99	98	68	89
Remington 3	90	95	97	98	99	99	88	69	99	89	99	99	59	\$9	99	99	89	89	99
Remington 4	62	98		89		99	89	68	90	98	99	99	99	89	89	89	90	89	99
Roenoke Rapids Hydro	100	98	97		-	-	-	-	-	-	-	-	-	-	-	-		-	•
Roanoke Valley II	•	•	-	99	98	96	98	96	86	\$1	96	\$8	96	-	-	-			•
Roanoke Valley Project	-	-	-	87	87	. 97	87	87	97	67	97	87	-	-	-	-	-	-	
Rosemary CC	86	73	80	79	79	79	79	79	79	78	79	79	79	80	8 0	80	• 80	80	50
SEI Birchwood	-	-	-	92	92	82	\$2	\$ 2	92	92	\$2	92	92	97	-	-	-	-	-
Southampton	93	86	89	90	90	96	98	90	98	98	98	94	98	98	98	98	96	98	98
Surry 1	97	83	87	96	54	96	94	98	\$ 5	90	98	96	98	90	\$ 4	96	96	96	96
Surry 2	93	90	94	96	98	96	98	98	98	98	98	96	98	98	98	96	98	96	96
Virginia City	-	-			**	20	95	95	65	95	95	95	95	15	95	85	95	85	95
Warren 3x1	-	-	-	-	-	-	-	96	95	96	96	96	96	95	96	96	96	*5	98
Yorktown 1		71	64	68	- 88	88	89				-	-	-	-	-	-		<u> </u>	
Yorktown 2	94	86	78	82	91	81	P1	91	91	91	91	91	91	P1		-			<u> </u>
Yorktown 3	82	π	68	85	58	85	5	65		65	55	85	85			-	-	-	-

APPENDIX 3D – NET CAPACITY FACTOR

Company Naute: UNIT PERFORMANCE DATA Net Capacity Factor (%)

•

Urginia Electric and Power Company

.

.

Unit Name	2000	2009	2810	2011	2012	2813	2014	2014	2018	2017	2018	2019	2020	2821	2022	2023	2824	2025	2026
Altavista	33.5	23.5	37.4	<u> </u>		27,1	62.1	82.0	\$2.3	82,1	81,9	82.0	82,3	62,1	91,6	90.5	81.3	90.4	81.5
Bath County Units 1-6	11.5	13.0	19.4	18.0	16.0	11.0	15.4	14.5	13.9	15.5	18.4	15.2	15.1	17.5	12.1	14.2	14.7	16.1	18
Bear Garden CC		· · · ·		39.4	5/.9	58,3	61.9	41.3	49,2	50.1	43.8	47,7	48.1	47.1	44.4	43.6	43.5	45.1	43.
Bellemande CC	19.8	20.1	32,1	242	18.6	24.8	28.5	27.A	18.6	20.2	18.0	18.3	18.8	19 /	1/#	17.1	18,5	14,1	16
Bramo 3	50.6	24.1	37.1	214	23.5	18.0		7.0	7.7	7.8	7.0	6.1		8.0	82	6.4	8.4	8.6	
Bremo 4	643	54 8	55.2	59.0	11.0	41.7	17.8	13.2	143	14.3	12 5	11.4	11.8	11.0	10.1	10.0	8.8	10.2	8
Chesapeake 1	51.5	49.1	62,4	27,5	30.5	29,6	28,4	-								· · ·			
Chesapeake Z	59,1	54.1	84.7	28.7	32.1	31.9	28.5	<u> </u>			<u> </u>	· ·			- ·	<u> </u>		·······	<u> </u>
Chesapeake 3	75.0	78.4	64.0	43.8	44.1	47.7	41.0	35.1			<u> </u>		<u> </u>			<u> </u>	<u> </u>	<u> </u>	
Chesapeake 4	71,4	72.0	86,0	37.8	41.8	39.2	42.1	50,0					·	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
Chesapenka CT 1	0.1	0.1	0.1	0.00	0.01	0.01	0.01	0.01	0.02	0.01			÷	<u> </u>		<u> </u>	<u> </u>		
Chesapeake CT 2		0.1	0.4		<u> </u>								-		<u> </u>	<u> </u>			
Chesterfield 3	58.3	49.4	38.0	28.5	25.3	18 5	28.5	37.	45.9	54,0	29.3	21.0	244	28.3	23.4	22.0	23.2	24.2	22
Chesterfield 4	67.4	36.1	60.4	37,3	34.8	34.6	48,7	61,6	64,1	66.6	40,1	41.2	317	40.1	38.4		33.8	35.1	
Chesterfield 5	77.8	45.0	724	70.2	77.7	81.0	61.5	77.0	84.4	65.7	704	78.0	782	78.0	77.5	- 248	73.4	785	75
Chesterfield 6	67.1	43.2	61.0	78.6	74.6	73.9	73.6	88,4	41.2	74.0	75.0	75.0	742	71.6	724	7.4	72.4	72.9	72
Chesterfield 7 CC	432	67.7	50,8		41.8	43,5	- 418	36.5	33,0	29.1	31.7	34.7	392	30.7	207	27.0	28.4	21.7	
Chesterfield SCC	40.1	780	72,3	44.4	43,4	39.2		33.9	31.3	34.8	30.7	32,1	30.5	342	30.1	- 201	28.5	- 20	
Claver 1	77.3	75.2	61.0	51.5	78.3	91.0		67.6	91.5	81.7	40,7	88.4	88.4	66.1			- 63.5		
Clover 2	75.0	72.5	82.1	\$7.0	10.2	#1.2	79.1	91.0	3.19	42.9	91.5		M.1	150 150	8.0	<u>- 65.7</u>	8.9		
					70.5		51.7	50.2	53.5	37.3						<u> </u>	<u> </u>		
Spruance Genco ,LLC Facility 1 Spruance Genco, LLC Facility 2		÷	<u> </u>	77.4	773	645		585	56.2									÷	
		÷	÷		80.5	60.2	50.6	38.4		-42.5	.		-	<u> </u>		<u> </u>	<u> </u>	<u> </u>	_
Edgecombe Genco, LLC		~	<u> </u>	42.5					52.7	53.1	- 51.0	495	41		<u> </u>	<u> </u>	<u> </u>	<u> </u>	45
Combined Cycle 3x1 :2016		<u> </u>	•	<u> </u>	- <u></u> -	<u> </u>	<u> </u>	<u> </u>	32.7	33.1		53.0			41.1	48.1	45.8	92	
Combined Cycle 3x1 :2019		<u> </u>		<u> </u>	. <u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>		52,8	52.1	<u></u>	- 415	4.5	49.6	4
CT:2020		<u> </u>				<u> </u>		<u> </u>					69	10		0.5	<u>t.o</u>	0.3	
CT:2021	<u> </u>	<u> </u>	-	····	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-			-	<u> </u>	8.0	1,2	1.0	0.6	0.5	
CT:2023	<u> </u>	<u> </u>		<u> </u>	<u>-</u> -	<u> </u>	<u> </u>	-		<u> </u>	<u> </u>	<u> </u>	•	<u> </u>	<u> </u>	<u>as</u>	1.2	0.6	
CT:2024		<u> </u>		<u> </u>	·	<u> </u>	<u> </u>	<u> </u>	•	<u> </u>	-	<u>.</u>	-	<u> </u>	· ·	<u> </u>	1,2		1
CT:2025	.	<u> </u>		.	. <u> </u>	<u> </u>	<u> </u>	<u> </u>	· ·	· ·	<u> </u>	<u> </u>	-			<u> </u>	<u> </u>	1.4	
CT:2026	·	<u> </u>	•	<u> </u>	<u> </u>	<u> </u>			•	. . .		<u> </u>	-	<u> </u>	· ·	<u> </u>	<u> </u>	<u> </u>	
Cushaw Hydro Unit	70.1	69.7	67, a	47.7	4.7	42,7	42,7	42,7	42.7	49.7	42.7	42.7	42.7	42.7	42.7	42,7	42,7	42.7	45
Darbytown 1	3.4	32	6.4	1.2	<u></u> L1	1.2	13	0.7		8.0	80	0.6	0.5	0.3	0.2	0.2	0.1	0.2	
Danytown 2		2.5	1.2	1.0	08	1.0	1,1	D,8	- 6.8	6.7	B.0	0.6	0,5	6.0	02	0.1	0.1	0.1	
Darbytown 3	3.5	21	6.2	<u>as</u>	0.6	0.9	1.0	0.5	0.7	0.8	0.5		0,4	02		0.1	0.1	0.1	
Darbytown 4	3.2	1.0	5.4		1.0	0.6	8.0	9.5	0.6	.05	0.4	0.4	0,3	02	8,1	0,1	0,1	0,1	
Doswell Complex	<u> </u>	•		387	#7.3	61,6	51.0	34.8	344	•	<u> </u>	-	-	<u> </u>	<u> </u>	<u> </u>	-		
Elizabeth River 1		3,1	5,0	10,2	A ,3	8.5	10,3	6,0	82	4,8	7,8	4.6	74	7.0	8.7	6.7	8.5	4.0	
Elizabeth River 2	3.1	3.1	<u>. 64</u>	9.4	35	8.7	8.5	7.2	<u> 13</u>	7.9	4.8	6.1	8,7			6.1	5.0	6.3	
Elizabeth River 3	3.1	3.1	8.3	8.6	7.3	7.8	8.7	<u> </u>	7.5	7.1	4.1	- 14	8,0	6.7	5.3	5.9	5.4	5.7	
Geston Hydro	42	16.3	7.0	143	14.3	143	143	14.3	14.3	14.3	14.3	14,3	14.3	14.3	14 3	14,3	14,8	14,3	1
Gordonsville 1 CC	19.6	24.6	36.4	18,3	19.1	12.7	16.2	14.4	148	15 6	14.5	126	13.4	12.9	11.2	10.9	11.1	11.9	10
Gordonsville 2 CC	14.3	34.0	29.3	16,0	14,3	147	18.2	15,6	16.5	17.8	16.2	14 8	145	15.1	12.6	13.2	12.1	13,6	12
Gravel Neck 1	0.1	-	6.1	90	80	6.0	6.0	0.0	0.0	0.0	-	-	•	<u> </u>					
Gravel Neck 3	2.2	3.5	4.8	0.6	0.6	0,6	67	0.4	0.5	0.5	0,4	دە	دە	0.2	0.1	Q.1	9.1	0,1	
Gravel Neck 4	1.4	1.3	B.7	0.5	20	25	0.6	0.3	0.4	0.4	0.3	0.3	ູ	02	\$1	9.1	8.1	0.1	
Gravel Neck 5	22	3.3	3.0	0.0	0.0	0.0	6.0	80	0.0	0.0	0.0	0.6	8.0	00	6 0	8,0	م ہ	08	
Gravel Neck 6	1.6	1.5	\$.1	90	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	80	0.0	80	8.0	9,0	0.0	
Halifax Solar		-					-	30.1	30.1	30.1	30.1	30.1	38.1	30.1	39.1	38.1	30.1	30.1	3
Battery Storage			.	·			-	3,3	3,4	5,3	3,4	3,4	1.1	3.6	3.5	3.5	3.5	3.5	

;

.

APPENDIX 3D Cont. - NET CAPACITY FACTOR

Company Name: UNIT PERFORMANCE DATA Net Capacity Factor (%)

.

ăchedule B

۰,

		(ACTUAL)								(Pi			_						
Unit Name	2003	2089	2018	2011	2012	2013	2014	2018	2016	2617	2014	2019	2028	2021	2022	2023	2024	2025	292
Hopewell	46.0	18.0	<u> </u>	14,6	13,1	48.4	60.6	90,7	81,6	91.6	88.9	80.5	60.8	10,6	ALL R	87,0	87,5	AL 5	
Hopewell Cagen	<u> </u>	<u> </u>	-		332	27.5	24.0	143	<u> </u>		<u>.</u>	<u> </u>	<u> </u>	<u> </u>		-		-	
lütty Hawk	<u></u> <u>A,1</u>			<u> </u>	<u> </u>	<u> </u>	-	<u> </u>			<u> </u>	-	_ <u> </u>	-	-	-	-	-	
Ledysmith 1	5.8	46	13.3		3.5	3.3	17	2,3	2.8	2.7	21	2.0	2.5	2.3	21	23	2.5	2.7	2
Ladysmith 2	- 5.7	4.2	12.0	41	3.6	78	3,8	2.6	3.1	2,8	2.3	2,0	2,6	2.4	22	2,4	2.5	2.8	;
Ladysmith 3	6.0	5,9	14.3	7.1	6.3	65	69	4.8	6.4	63	4.6	3.9	4.8	43	40	41	41	45	
Ladysmith 4	6,7	4.2	13,6	8.1	5.4	5.6	9.8	40	48	44	3,7	3.2	3.9	3,6	3,3	3.5	3.6	3,8	
Ladysmith 5		6.2	11.0	52	48		6,0	3,3	40	3,6	3,0	2.6	1.3	3.0	2.7	0.C	3.1	3.4	
lowmoor CT	0.1	-	•	0.0	00	0.0	0.0	-	-	-				-	•			-	
Meddenburg 1	44,6	32.1	41.0	28.5	24.7	24.3	31,1	33,1	39,2	61,0	25.6	24,7	22.6	26.4	24.8	23.1	25.5	25.6	3
Macklenburg 2	42.5	53.4	39.4	25.5	23.6	21,9	29.0	32.3	37.5	49,1	24.8	23.2	20.9	25.3	23.7	21.9	23.1	23.5	7
Mount Storm 1	88.6	51.1	74.1	83.6	82,1	73,4	79.5	82.7	76.3	83.7	79.3	72.4	78.3	80 2	73,1	TT A	77,4	746	7
Mount Storm 2	81.5	\$1.7	72.1	B1.7	82,1	80.5	78,4	82.2	62.4	76.4	78.7	78.0	74.6	41.3	78.3	78.2	78.9	785	7
Mount Storm 3	62.5	#6.4	61,7	50.4	no	77,0	82.0	82.1	62.7	\$3.6	71.1	77.4	76.0	74.9	75,9	78,6	72,7	78,3	÷
Mount Storm CT	81	0.1	0.1			<u>an</u>	0.0	.	.	.	<u> </u>		<u> </u>	-				-	
North Anna 1	89,4	91,8	84,3	87,5	MI.4	88.8	86.1	90.7	88.0	86.1	80.7	90.9	96,3	88,6	50.8	96.1	\$1.0	50.8	
North Anna 2		#9.5	79.7	88.9	\$4.7	68.6	80.2	98.4	81,3	91.2	86.4	88.9	91.4	96.4	91.0	69.1	96.7	91.0	-
North Anna 3	<u> </u>		-		<u> </u>	<u> </u>									96.5	90.0	\$4.7	\$1.1	
North Anna Hydro		<u> </u>	<u> </u>	28.1	28.1	24.1	28.1	28.1	28.1	28,1	20,1	28.1	28.1	28.1	24.1	28.1	28.1	26,1	
North Branch	<u> </u>					<u> </u>	<u> </u>	<u> </u>		<u> </u>					<u> </u>	-			
Northern Neck CT	0,1		63			<u>.</u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>		÷	
Ogden-Martin Fairfax		<u> </u>		67.8	81.8	72.6	\$43		<u> </u>	<u> </u>	<u> </u>	÷	<u> </u>	<u> </u>	<u> </u>	<u> </u>	÷	÷	
•	67,0			53.4	662	422	43.7	47.5	52.1		- 13	78.0	78.1	80.5	78.0	77.2	77,6	78.6	
Pittsylvania 1																			
Possum Point 1					<u> </u>			<u> </u>	<u> </u>		<u> </u>		<u>.</u>	<u> </u>	-	-	•	•	
Possum Point 2	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>		-			
Possum Point 3	5.6	5.0	12.4	54.1	11.0	10.6	12.6	121	12.4	124	10.5	82	<u>B7</u>		8,1	6.2	8.0	8,4	
Possum Point 4	<u> </u>	5.0	11.0	53.8	12.4	12.0	12.0	11.5	13.0	14.D	13.3	11.7	12.0		10.3	10.4	10.0	10 7	
Possum Point 5	4,B	3.2	5.7	0.1	0.1	<u>0.1</u>	D,1	<u>41</u>	0,1	Q.1	0.1	0.1	0.1	0.1	0.1	D.1	0.1	0.1	
Possum Point & CC	42.8	<u>62.1</u>	61.6	55.7	45.2	51,7	60.8	42.7	41.1	44.1	41.4	40.1	42.4	42,7	39.4	36.5	38.5	40,1	
Possum Point CT		<u> </u>	<u> </u>	0.0	00	0.0	-	-	-	-	-	-	<u> </u>	<u> </u>	-	-	•	•	
Remington 1	5.0	3.9	<u>R.3</u>	2.9	25	2.7	29	1.6	21	1.8	1.5	1.4	1,8	1.7	1.5	1.7	1.0	22	
Remington 2		4.4		1.4	12	1.4	1,5	0.8	1.1	1.0	0,8	0.7	1.0	1.0	0.9	1.0	1.2	1,4	
Remington 3		33	6.9	23	20	2.7	2.3	1.3	1.7	1.5	1.2	1.1	1.5	1.4	1.2	1.4	1.6	1,9	
Remington 4	3.6	5.9		1.8	16	1,7	1.9	1.0	1.4	1.2	0.9	0.8	12	1.2	1,0	1,1	1,3	1,6	
Roanoke Rapids Hydro	20.3	20.4	48.2	211.9	218	31.0	33.9	33.9	33.9	33.9	33.9	33.9	33.9	13.9	33.9	21.9	33,9	33,9	
Roanoke Valley II	-		-	\$2.7	84.1	ALL	-	81.7	88.1	888	88.6	HL7	<u> </u>		-	•	•		
Roanoke Valley Project	-		-	90 .4	86.3	88.4	66,3	85,4	88,7	88.4	85,3	•			-	-	•	•	-
Rose many CC	12.8	10.0	8.3	11.1	11.7	11.1	12,3	12.3	12.6	13.9	11.5	11.6	11.5	11.6	10.0	10.2	9.8	10.4	
SEI Birchwood				31.0	40.8	24.4	18,6	20,9	24.8	30,2	82,5	54.4	53.9	495	-	-	-	•	
Southampton	49.4	21.2	31.7	18.3	18,4	64.1	814	81.2	82.2	\$2.1	91.0	91.6	91,1	91.6	91,3	88.4	89.0	89.5	-
Surry 1	87.4	93.6	87,7	96,3	89,8	88.8	98.3	89.0	B1.1	94.3	89.0	80.8	26.5	91,1	88,7	68,3	B1,3	86.7	_
Surry 2	813	60.9	68.8	87.2	88.4	96,1	en.9	90.7	86.4	88.8	90.7	96.1	91.Z	88.6	96.1	90.6	B1.0	86L1	
Vinginia City					805	83,7	84.9	08.0	58.5	72.7	60.0	55.4	58.4	58.5	57.1	56.1	57.9	58.9	
Warren 3x1		<u> </u>	<u> </u>	_			<u> </u>	65.4	58.5	56.1	56.9	53.3	59,2	60,0	54,1	53,6	ы.1	64.8	
Yorktewn 1	55.1	65.7	49.8	45.5	43.4	34.9	27.4	-							-		-		_
Yorktown 2	68.7	65.5	56.8	54.0	51.2	50,4	37.5	9.9	12	10.9	8.3	7.9	9,3	8,6			<u> </u>		
Yorktown 2 Yorktown 3	4.9	32	4.5	0.3	03	04	0.8	0,4	05	0.6	0.5	0.4	- 0.4	0.2		<u> </u>	<u> </u>	<u> </u>	

APPENDIX 3E – HEAT RATES

. . .

Company Name:	Virginie E	inchic and	Power C	pen pé ný	Schedule 1
UNIT PERFORMANCE DATA Average Heat Rate - (mmBtuMWh) (Ar	Marinemi				
		(ACTUAL)		(PROJECTED)	
Signal Materia	2004	2003	2010	2011 2012 2013 2014 2013 2016 2017 2018 2019 2020 2021 2022 2023 2024	2024 202
Altavista	12.09	12.90	12.49		
Bath County Units 1-6		<u> </u>		지수는 사람들은 지원에 가지 않는 것 같은 것을 수 없는 것을 수 있는 것을 수 있다. 것을 것 같이 같이 않은 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것을 것 같이 같이 같이 않는 것 않는 것 같이 않는 것 같이 않는 것 같이 않는 것 같이 않는 것 않는 것 않는 것 않 않는 것 않는 것 않는 것 않는 것 않	
Bear Garden CC	-	•	-	and the second secon	
Bellemende CC	0.15	8.95	8,00		
Bremo 3	12.00	12.05	12.55	しょうし しゃしいかん とうぎょう 学校 法国際部分 たいさいせい	
Bremo A	18.35	10.32	10.48	바다 가는 지수가 지수가 가지 않는 것이 말 물건물 감독하는 것이라. 이 가슴을 망가 나는 것이 나는 것이 나는 것이 나는 것이 없는 것이 같이 많이 많이 나는 것이 없는 것이 없는 것이 없는 것이 나는 것이 없는 것이 없 않이 않은 것이 없는 것이 않은 것이 없는 것이 없는 것이 없는 것이 않은 것이 없는 것이 않이	· ^ _
Chesapeake 1	10.65	10.55	10.44	이 이 것 같은 것이다. 상품에서 가장 감독 소리가 가장 감독 것이 없는 것 같은 것 같	· · · ·
Chesapeake 2	10.60	10.49	10,50		i to as
Chesapeake 3	10.14	16.08	10.31		, e e - ,
Chesapeake 4	10.17	10.12	19,46	영상 바람에 관광 방향을 방향을 하며 있는 것 같은 것 같이 없는 것 같이 많이 하는 것 같이 많이 있다.	
Chesapeake CT 1	16.83	17.02	18.76	- N 와 이 같은 모르고 있는 것이 것을 위한 것값 중간들에 X로 것은 이상이 가능하지.	
Chesapeake CT 2	18.47	14.76	19.84	[편] ^ 2. 옷을 잡았다. 가지 않는 것 않는 것 않는 것 않는 것 같아요. 한 것 같아요. 이 것 않는 것 같아요. 이 것 않는 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 않는 것 같아요. 이 것 같아요. 이 것 않는 것 같아요. 이 것 않는 것 같아요. 이 것 않아요. 이 집 않이 않아요. 이 집 않아요. 이 집 않아요. 이 집 않아요. 이	
Chesterfield 3	11.50	\$1.58	11.79		<u>.</u> .
Chesterfield 4	10,05	19 25	10,61	- 영수가 요즘도 같은 것이다. 것은 것은 것은 방법적 귀엽을 사람을 통해야 한다. 것이다.	
Chesterfield 5	18.14	10.14	10.te		N. 64. 26
Chesterfield 5	8,45	8,83	10.01		55 9 3 4
Chesterfield 7 CC	7.52	7.32	7.33		С. <u>Р</u> С. (
Chesterfield SCC	7.92	7.01	7.59		1.5
Clover 1	9.85	8.68	89.6		5
Clover 2	8.84	5.85	9.01		S. S. S.
Spruance Genco , LC Fedility 1				~ 것 같은 도움이 같은 약을 했다. 것은 것을 바람이야 않는 것 같아요. 것 같은 것 같은 것 같은 것 같이 있다. 것 같은 것 같은 것 같은 것 같이 있다. 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은	
Spruance Genco, LLC Fadility 2		<u> </u>			1 6 2
Edgecombe Genco, LLC	<u> </u>	<u> </u>	<u>-</u>		ે નાવ
Combined Cycle 3x1 :2016		<u> </u>	<u> </u>		
Combined Cycle 3x1 :2019		<u>.</u>	<u> </u>		n^{1-1}
C1:2020					1.00
CT:2021	-	-	-		25 6 50
		<u> </u>	<u> </u>		
C1:2023	-				
CT:2024	<u> </u>	-	<u> </u>		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
CT:2075		•	-		$2 \xi_{1} < \xi_{2}$
CT:2026	<u> </u>	· ·	-		10 A 44
Cushaw Hydro Unit			-	- 김정도 동안 전 전 것 같은 것은 것 같은 것 같은 것 같은 것 같은 것 같은 것	승규가 같다.
Darbytown 1	12.64	12.46	12,60	영화에는 아파 전 가지가 웃 집안에서 한 것 마가지 않는 것이 가지 않는 것 같이 같이 있다.	10 E - Q
Darbytown 2	12.52	12.59	12.70		
Darbytown 3	12.60	17.61	12,70	医外结膜的 化氯化化 医外外的 化乙烯酸医乙烯酸 化氨基乙烯酸 化乙烯乙烯酸乙烯酸	
Darbytown 4	12.64	12.57	12.80	1、 法国家政策的 建成合成 医原子 网络拉斯 医根状的 医根状的 医神经神经 医神经神经	
Daswell Complex	<u> </u>				5 5 3
Elizabeth River 1	_ 12.10	12.00	12.20		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Elizabeth River ?	12.10	12.09	17,30		Sec. 1.
Elizabeth River 3	12.10	12.09	12.10		
Gaston Hydro	-		-		1.50
Gardonsville 1.CC	B.48	8.61	4.26	1.1. 多利的局部的。但我们的问题,我是我们的意思,我们就是我们的。	1.5 4 3
Gordonsville 2 CC	1.45	8.52	4.16		2.1
Gravel Nork 1	18.33	16.92	13.08		1. 1. 1. 1.
Gravel Neck 3	12,75	12,56	12,60	· 计编码 新闻》 新闻》 新闻》 的复数形式 新闻的 新闻的 新闻的 新闻 新闻 新闻 新闻	A Service
Gravel Neck 4	12.75	12.72	13.20	了,一些主义,这些主义的是"这个时候"的"你们没有你有关"。 第二章	$A_{i} = A_{i} + A_{i}$
Gravel Neck 5	13,43	13,03	13,20		1 - 10
Gravel Neck 6	12.32	12.66	13.00	· · · · · · · · · · · · · · · · · · ·	N
Hallfax Solar	-	-	-	The second of the standard state of the second s	90 in 1
Ballery Storage		· ·	-	the second s	1.1
·· •					

APPENDIX 3E Cont. – HEAT RATES

Average Heat Rate - (mmStufilit) h)		(ACTUAL)	•	(PROJECTED)
Unit Name	2010	2669	2010 2	<u>11 2812 2813 2014 2016 2018 2017 2818 2018 2020 2021 2022 2023 2024 2025 2021</u>
lopewell	1277	12.42	11.85	
lopswall Coges		<u> </u>	•	しきあらら みっとしい ごうき たいたい おうかい ション ダムビン 分子 おうたい
Otty Hawk	14.28	18,90	19.41	수사님이 나와 이 것이 아이지 않는 것은 것 물건에 비가 가지 않는 것이 봐야? 동안 물건물건 것이다.
edysmith 1	10.26	10,68	18,90	「なられたないがないがい」 切りたて発気通り コージャング 「読み」でお知識的ながかい。
adysmith 2	10.74	10.44	10.60	计通知的 化氯化 化增强 建杀法转移运动运行 医氏结门 化碘化磷酸 化分子的
adysmith 3	11.13	18.51	10.50	
adysmith 4	11,10	10.46	10.50	
adysmith S	-	10.68	10.40	
awmaar CT	17.09	17.60	18.66	
Acklenburg 1	11.79	11.57	11.50	
Action burg 2	11.69	11.87	11.56	
Aount Storm 1	10.11	10.02	10.07	
Viount Storm 2	10,14	8,90	8,99	
Hount Storm 3	10,00	10,15	10,23	
Abunt Storm CT	14.30	11.90	16.87	
Iorth Anna 1	10.82	10,78	10,00	
iorth Anna 2	10.61	10.41	10.08	한 것 다. 지금 수 없습니 것 옷 알았다. 정도 가지 않는 다. 방송을 받았을까요? 이 것
iorth Anna 3		-	-	반응 그녀는 것은 소프가 변경했다. 것 것 가 가나님께서는 것 같다.
Iorth Anna Hydro				전에 가 많은 것이 없는 것 없이 없는 것이 없는 것이 것 비슷한 운영을 가 없다.
lorth Branch	13.20	13.78		지금 그는 것, 그가 있는 것을 거야 한다. 것은 것 같은 감독을 가지 않는 것가 정말한 말한 것을 것 같아.
lorthern Neck CT	17.13	16.95	18.51	"你,这一个人,可以这些你们的,你就是你们的?" 法法的复数形式 计算法分词控制 探口
Igden-Martin Fairfax				이 같은 것 같은 것 같은 것 같은 것 같은 것이 있는 것 같은 것 같
Agazen-wai un rannat. Attsylvania 1	15,48	76.09	15.49	이 방 영상 않는 것 같이 밖에 적장 적석의 소문을 가 나라고 있는 것 같이 있는 것 않는 것 같이 없는 것 같이?
ossum Point 1		- 10.00	10.00	
Postum Point 2		<u> </u>	— <u> </u>	
Possum Point 3				
Possum Point 4	11,46	11.48	11.46	
		_	11.08	
ossum Point 5	12,35	10,86	11.00	
ossum Point 6 CC	7.34	7,13	7.18	
Possum Point CT	18.82	18.23	19.30	
Remington 1	10,02	10,63	10,60	
lemington 2	10.70	10.41	10,70	
Remington 3	10.78	10,71	10,90	
Remington 4	·11.07	10 97	10.78	
toanoke Rapids Hydro	.		<u> </u>	
Roanoke Valley ił	.	-	<u> </u>	
Roanoke Valley Project	<u> </u>	<u> </u>		
losemary CC	9.59	1.55	4.71	
El Birchwood		<u> </u>	· · · · ·	
outhampton	12	12.21	11.76	人名布尔 医水白 医子宫 化合成合成合成合成合成合成合成合成合成合成合成合成合成合成
iurry 1	10,76	10,77	10.00	
iurry 2	10.74	10.74	10,00	
/irginia City		-		
Warren 3x1		-		
forktown 1	10.35	10,52	10,50	は、「「「「「」」」、「「」」、「「「」」、「「」」、「「」」、「「」」、「」」、「」」、「」」、「」」、「」、「
forktown 2	10.06	10.01	94.6	
forktown 3	10.59	10,83	11.11	

APPENDIX 3E Cont. – HEAT RATES

.

.

Average Heat Rale - (mmBiu/W/h) (At I																		
	- 1	(ACTUAL)								(PRO	JECIED)							
Link Name	2906	1608	2010	2011	2012	2613	2014	2018	2010	2017 :	2618 3	019 SI	20 1	1021 20	22 2023	2024	2026	20
ltavista			•					- * <u>-</u>			-	• •					•	
ath County Units 1-6									2 e - 1									
ear Garden CC	-		•						5									
ellemeade CC		-	•															
remo 3		-	— <u> </u>								~	· . ·		1				
remo 4								· · ·	· · · ·							तम् ।		
hesapeake 1		<u> </u>	<u> </u>	· ·														
hesapeake 2	<u> </u>			1.1.1		· · .,				·	1 - Er 2.		· .		·			
hesapeake 3			<u> </u>	: ÷		<u>.</u> .		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			2 - a	1. N		12.00	- 1 . ÷.	<u>К 1</u> .	· · · · ·	<u>۶</u> ۰.
hesapeake 4		<u> </u>	<u> </u>	• · · · ·	×			- P	5				1.2	1.1.5		19.20	1.1	
hesapeake CT 1		<u> </u>		1.1			્ સં	, 1 40	1			1 A S		·	1.2	e 11 - 1		
hesapeake CT 2		<u> </u>			. v.		6 y 22 y	5 N	- i j	St. 21.				1.20	~	1.000	~ · · ·	
hesterfield 3	<u> </u>	÷	.		· 1 - F			. ° . q	- a -	9 S. Se	· · · ·	1.1	N + 2	. K. 5	8. 5 3.	S		
Chesterfield 4	÷		<u> </u>				2.2.2	17	1.0	18 L	16	1. 1. 1.		200	. 3.1			
Chesterfield S							$\mathcal{A} \subseteq \mathcal{S}$	- S. F	10.2	5		S. 1	12 - 2	4010	6. 3.50	. · · · ·	2 11.2	· `
		<u> </u>	-		- C		- A -	Sec. 2.	S .		F. 🛀 👌		- S - C		1.7	av .		"
hesterfield 6		<u> </u>	-			. <u>(</u>	1.2		2. 3.4	્ય	-	- C . S	· · · .	1000	1,62, 5	100		1.1
hesterfield 7 CC	<u> </u>	<u> </u>	<u> </u>	1 . I	1.1	N 14		1.50	\$ p - 2	\$ 40		1	1. 1.		. 4 C	- L 3		·
Chesterfield & CC		<u> </u>	-			· · · ·		- °				er	·	1		و م نیخ ک	- 61 - C	
lover 1		-	•	- i .				<u> </u>	ð n <u>i</u> 1.	· · · ·	1 <u>1</u> 1	1.1	· · · · · · · · · · · · · · · · · · ·		f. 2**	č (post	- P -	1
Jover 2		-							- S -		1-1-5-5			c]		1.1		
pruance Genco ,LLC Facility 1		•		[× 0		3 N - 1		· · · ·	· · · ·	100	6 S.A			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
pruance Genco, LLC Facility 2	•	•	-		2 1		1.14	1. 1. 1.		·	4 ¹¹ -		, ¹ 4.		The Var Va	5 / E	а.	
dgecombe Genco, LLC		•		i						Mire.	् भू े		i e i a	(2.		۲. T.		
combined Cycle 3x1 :2016	-		-	· · ·			A		S. 11	14.12	199 - A						· .	
Combined Cycle 3x1 :2019							. V	2 A 41			5		-12 i	C 14		· • • •		
T:2020	-							- 1		(. ÷		` s ⁻ `	59. A		
T:2021			<u> </u>		1 2 -	5			· · · ·								· _ >	
T:2023			<u> </u>				·			Ъ	. i		1	- A.				
T:2024		<u>-</u>	<u> </u>	- C 1		- 4	- 3	برتر تخمور	2 10 2				1.10					1.5
		<u> </u>		1			Sec. 6 .	A	- Ten	ې چې کې	. L	· · · · · ·	1.1	۰ <u>۶</u> -	ఎి.రా			• •
T:2025	.		<u> </u>	. h.	1.1			Č .		100		7		, An Y	11 S 1	1.		
T:2026		<u> </u>	•					·	1. 3. 4	55 L S	_ J/	18 I.J.	1.00	3-°				
Cushave Hydro Unix		•	<u> </u>	1.11	1 th 2		. 5.	1. S	S. S. S.	* ° \$				<u></u>	N3 457	(5 S	- <u>.</u> .
Darbytown 1	-	•	<u> </u>	ι, F. C		- C. A.	S (6 - 6	ц Уч	1 - C	A.	· · · · ·		1. 1. 1	1. 16	5-1-6-31	- -	14 - Terra	
Darbytown 2	-	-			1. 1		· · · · ·	a. 77			1.000	~ 10.5	12.0	كالربين أسري	可强力	Sec. A. Sec.	5 5 1	. ,
Darbytown 3	-	•	•	141.0	S	1.1	18 34	`\$	- 11	· • •	11.		- 1 A S		1. 5- 1	- <i>11</i> -	15.15	
Arbytown 4	-	-	-	·			, · · ·	5	$s \rightarrow s$		· · . /	100		2.0	1.2 M. Cak	3,140		
Xoswell Complex	-	-	-				Sec. 2.	14 A - 2		5 É .	¥ . 5 .		9 B		20 D C - X	".u	12	
Uzabeth River 1	-	-	-		1 1	ė čiji	1.00	- 1	2		i l'		1.5		S 2 1 2 1	1.4	6 E	
lizabeth River 2		•	•		1	dt - 2	- 1 x	يو لند ت	1.89	1.1		$= 10^{\circ}$	14 P	$-\pi k^{-1}$				e
lizabeth River 3	-	· · ·	· · ·			- S &			1	1	. UN		3	Y . *	Sec. 9			
Saston Hydro	-	· · ·		· ·	· · ·		1	5 Q.2	0,15	1.11			1.15	- ++ f	1.1			. I
Fordansville 1CC		<u> </u>	<u> </u>					۰. ·		í ú l	3				P		1 K.	
Sordonsville 2 CC		<u> </u>				- · · ·						1. 2. 1	1				- T - S	·
Gravel Neck 1		<u> </u>	<u> </u>				6.5.7		1.00		⁻	- N 🏠	1.18	۰ N	1			
Aravel Neck 1 Gravel Neck 3							an a		1.1			-6-95	· . •					
	-	•	-							ž –		· `	2.4.1	47.0	9 ?		• j 🗤	
iravel Neck 4	_ _	<u>.</u>	<u> </u>											- i-		3. 1		
Sravel Neck S		•	<u> </u>						. 2		22				ЪЧ.			
iravel Neck 6	-	<u> </u>				<u> </u>						· .		÷ ,	Sec. 2			
lalifax Solar		-	-												3 N B			
altery Storage	-																	

AP - 24

APPENDIX 3E Cont. – HEAT RATES

UNIT PERFORMANCE DATA																			
Average Heat Rate - (mmBluiLAVIA) {		(ACTUAL)								æ	ROJECT	ET3)							
Unit Nume	2004	2009	2810	2011	2012	2813	2814	2016	2018	2017	2010	2019	2620	2424	2032	2023	2824	2036	2026
Hopeweil					4014	2013	2019	20(0 .		2017	2010	2013	2020	2021	2023	4520	1424		
Hopewell Cogen		<u> </u>	÷										. · · ·	1					
Kitty Hawk	· — — — — — — — — — — — — — — — — — — —	.	÷	:															
Ladysmith 1		÷	÷	14														а	
Ladysmith 2		<u> </u>	<u> </u>	1.1				2					. E. S.	N 19.				, :	
Ladysmith 3		- <u></u>	.	1.1					e > 0			1. 1. 1	S. 18			3°. s			a 51 .
Ladysmith 4		<u> </u>	<u>—</u> ;	21 1		T /		42					1.1	1.0		2		9. n. 1	1.1.1
Ladysmith 5				(d) :=		۰.,								, (*),			e añ is		
		<u> </u>	•	1 N 1 1	·				- e 1	17	<u>1</u>	1.1	- f ^a	de à la			· .		1.0.5
Lowmoor CT		-	-				- 1	4.51		ſ,	1 ·	1- <u>8</u> -	ÉSo	" (j				<u> </u>	
Mecklenburg 1	<u> </u>	-	•	1 er			1 1 1	::,						(ر ۹			· `` ' ' ' ' '	်းကို	
Mecklenburg 2	<u> </u>	-	•	2 1 1			>			• • •			· 6	1. s. s.		14 C	ي. م		- F
Mount Storm 1		-	-				1 - S	L	17.5			. t. j.	÷.,	- j . s	· ()			· · ·	
Mount Storm 2		-	-					- · · ·		. 7				. t ja				S. 6	
Mount Storm 3	•	-		ji i				. · ·	1 :	× 9.,		· · .	(i i i i i i i i i i i i i i i i i i i		. ⁶⁷ -				· · · ·
Maunt Storm CT	-		•							• \$	5. J.		. N-3	1. 2			÷'	· · · · ·	
North Anna 1	•	•		1.1			n i Ar		÷.				5.67		10 C				~ ·
North Anna 2	-	-	-							· · ·	5					• • •			ē
North Anna 3		•	•		. X 1.	· · •		à		<u>.</u>		1 10	· · · ·		ił .				100
North Anna Hydro		•				- 1 4	· · ·				1	č.		- S		1		2. 0. 0	
North Branch				1.1			കിപ്പ	1.1		Sec. 1	J. 1	5	. i - i	15.	÷ .	k		1 C 7 1	
forthern Neck CT					× ? `	- P	. • • • • • • • • • • • • • • • • • • •	98 a.	1.1	3.7	1.1		80	اس اسر			S & H & P	. j 🕈	p) 1.
Ogden-Martin Fairfax		· · ·				1.1	والمتعني ال	1.1	18 6			100	\$ E .		:	: ey	1. A.	1.10	Concerne 1
Pittsvivania 1	<u> </u>				Sec. 25	13	- S. A	- P	10	1	Ê S		5-27E	P .	공연은 음	8 a 20	-t., (**	<u></u>	
Potsum Point 1		<u> </u>	<u> </u>	1.1.6	1.1	1 22	1. 2. 1.2.	(d. 3)	1.1	, He pr	5 1 -) - <u>î</u> -	5 8	i ^{an} ne i	<u>.</u>		1	オードラ	(n. 1
Possum Point 2			·					ં સુ	्रिः	l'à de	<u> </u>	`*÷``i.	£	8 . T S	198		ha Çîvel	, °F,	
Possum Point 3		<u> </u>					t, i hea				L		<u>~</u>	× 6	÷ 1	· · · .		<u> </u>	
Possum Point 4						r	1.1.1						1 de 1 de 1	<u>.</u>			·	1.5	<i>i</i>
	<u> </u>	· ·	<u> </u>						р ^с		1		., °°.		1 B	1 . i .	. Y	Ča≩∵	
Possum Point 5		-	-			* <u>;</u> `.	ి వైద్	÷. `.	·		`*s	- C					3	2 C 1	÷.,
Possum Point 6 CC	-	•	•				197	÷0.			- · ·		ر کی ایک	5	5			·	5 J.
Possum Point Cf			•			~ 가 갈	· *•	1997 (N		- S.			1	- 10 C			· · · ·	. T 🔓	
Remington 1		•	•						តី						1. 60	1.1			•
Remington 2	•	-	•				- C					2120			τ.		् _२ २ - २	్సంగి	7
Remizeton 3	•	-	•			دا آن آ	- 11 J.	- <u>(</u>	1.1.2			<u> </u>	· •	1.1	î î		5 S I.	2.7	
Remington 4	•	•	•			10	- 1 64	65	·	* *	1.00	, <u>,</u>		5 (a)	2. H. H.			1.7	5
Roanoke Rapids Hydro		-	-	1. 11		1. 1.		1.		- T	. <u>`</u> {	(e. e.	37 Y L L	14 e V	5.00	3.014	1. 	, V.	· · · ·
Roanoke Valley II			•			2 C	王 詩 房谷				•"	-10 S	1.2	- 1 - L	Sec. 14	C			12
Roanoke Valley Project				·	÷	1. 6	- <u>-</u>	<u>ن</u>		· ·	- 2 ⁶ - 3	e		В	· () , · · ·	Sec. 1.	32. E	L	a
Rosemary CC			· · ·			· · ** . ;	- 87 P	61 A.	8 Ju		- <u>1</u> -10	1.19	567	1.11			<u>ر</u> .	1	
SEI Birchwood	<u> </u>	· · ·						6	· · ·	1.1		. 7.3					.v.	- 161 ⁷⁸	. · · ·
Southampton			-			5	11	1, 10			·	n gr		ibse !!	1/1	9 · ·		- 1	2 M S
Surry 1			<u> </u>	100	¢	- 1		1	- T. P.					8 C - C	1		1.1.1.1	ال ن	1.1.2
Surry 2		<u> </u>	<u> </u>	1.0		5. S.		6	· · · `				A			<u> </u>	10.00		9.5
surry 2 Virginia City			<u> </u>			- S	1. A. S.		2		· · ·	1.21.4	ୁର ନ୍ୟୁ	n, 11 ↔	Υ.		1.00	2.5	10.15
								P			· · ·	0.	- e	1410	1. T	2	- N.F.	·	· · ·
Warren 3±1			•				7. 4		· ·				<u> </u>	-				- i,	
Yorktown 1		· · ·	-				* ·					a	· · · ·						5 A.
Yarktown 2																			
Yorktown 3		•	-													-			

AP - 25

APPENDIX 3F – EXISTING CAPACITY

Company Name:	Virginia El	lectric and	d Power C	ompany														Sci	hedule 7
CAPACITY DATA	,	ACTUAL)								(DR	OJECTE	ור							
	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										-,							
	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2016	201 9	2020	2021	2022	2023	2024	2025	2026
I. Installed Capacity (MW) ⁽¹⁾																			
a. Nuclear	3,194	3,194	3,280	3,325	3,343	3,343	3,343	3,343	3,343	3,343	3,343	3,343	3,343	3,343	4,796	4,796	4,796	4,796	4,796
b. Coal	4,774	4,774	4,781	4,675	5,254	5,180	4,902	4,357	3,984	3,981	3,975	3,970	3,964	3,958	3,955	3,955	3,955	3,955	3,955
c, Heavy Fuel Oil	1,604	1,604	1,604	1,604	1,604	1,604	1,604	1,589	1,583	1,583	1,583	1,583	1,583	1,583	779	779	779	779	779
d. Light Fue! Oil	352	352	352	257	257	257	185	126	79	79	0	0	0	0	0	0	0	0	0
e. Natural Gas-Soiler	316	316	316	3 16	316	316	316	316	316	316	316	316	316	316	316	316	316	316	316
f, Natural Gas-Combined Cycle	1,584	1,554	1,606	2,196	2,196	2,230	2,452	3,850	5,287	5,287	5,287	6,624	6,624	6,624	6,468	6,468	6,468	6,468	6,468
g. Natural Gas-Turbine	2,231	2,415	2,415	2,411	2,411	2,411	2,411	2,411	2,411	2,411	2,411	2,411	2,811	3,211	3,211	3,611	4,011	4,411	4,811
h. Hydro-Conventional	318	318	316	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318	318
i. Pumped Storage	1,754	1,802	1,802	1,802	1,802	1,602	1,802	1,802	1,802	1,802	1,802	1,802	1,802	1,802	1,802	1,802	1,802	1,802	1,802
j. Renewable	83	83	13	63	63	112	265	271	271	274	280	286	292	298	301	301	301	301	301
k. Total Company Installed	16,210	16,442	16,557	16,987	17,584	17,573	17,598	18,483	19,394	19,394	19,315	20,652	21,052	21,452	21,945	22,345	22,745	23,145	23,545
I. Other (NUG)	1,749	1,661	1,749	1,747	1,747	1,747	1,747	1,684	1,232	627	427	262	218	218	0	0	0	0	0
n. Total	18,070	18,303	18,306	18,735	19,331	19,320	19,345	20,167	20,626	20,021	19,742	20,914	21,270	21,670	21, 9 45	22,345	22,745	23,145	23,545
······································																			
IL installed Capacity Mix (%) ⁽²⁾																			
a. Nuclear	17.7%	17.5%	17.9%	17.7%	17.3%	17.3%	17.3%	16.6%	16.2%	16.7%	16.9%	16.0%	15.7%	15.4%	21.9%	21.5%	21.1%	20.7%	20,4%
b. Coal	26.4%	26.1%	26.1%	25.0%	27.2%	26.8%	25.3%	21.6%	19.3%	19.9%	20.1%	19.0%	18.6%	18.3%	18.0%	17.7%	17.4%	17.1%	16.8%
c. Heavy Fuel Oli	8.9%	8.8%	8.8%	8.6%	8.3%	8.3%	8.3%	7.9%	7.7%	7.9%	8.0%	7.8%	7.4%	7.3%	3.6%	3.5%	3.4%	3.4%	3.3%
d. Light Fuel Oil	1.8%	1.9%	1.9%	1.4%	1.3%	1.3%	1.0%	0.6%	0.4%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
e. Natural Gas-Bolter	1.7%	1.7%	1.7%	1.7%	1.6%	1.6%	1.6%	1.6%	1.5%	1.6%	1.6%	1.5%	1.5%	1.5%	1.4%	1.4%	1.4%	1.4%	1.3%
f. Natural Gas-Combined Cycle	6,8%	6.7%	8,6%	11.7%	11.4%	11.5%	12.7%	19,6%	25.6%	26.4%	26.5%	31.7%	31.1%	30.6%	29.5%	28.9%	28.4%	27.9%	27,5%
g. Natural Gas-Turbine	12.3%	13.2%	13.2%	12.9%	12.5%	12.5%	12.5%	12.0%	11.7%	12.0%	12.2%	11.5%	13.2%	14.8%	14.6%	16.2%	17.6%	19.1%	20,4%
h. Hydro-Conventional	1,8%	1,7%	1,7%	1,7%	1,6%	1,6%	1,6%	1,6%	1.5%	1,6%	1,6%	1.5%	1,5%	1,5%	1.4%	1.4%	1,4%	1,4%	1,4%
i. Pumped Storage	9,7%	9,8%	9.8%	9,6%	9,3%	9,3%	9,3%	8,9%	6,7%	8.0%	9,1%	8,6%	8.5%	8,3%	6.2%	8,1%	7,9%	7.8%	7,7%
j. Renewable	0.5%	0.5%	0,5%	0,4%	0,4%	0,6%	1,4%	1,3%	1,3%	1,4%	1,4%	1,4%	1,4%	1,4%	1,4%	1,3%	1,3%	1.3%	1.3%
k. Total Company Installed	89.7%	89.8%	90.4%	90,7%	91,0%	91.0%	91.0%	91.6%	84.0%	96,9%	97.8%	98.7%	99.0%	99.0%	100.0%	100,0%	100.0%	100.0%	100.0%
I. Other (NUG)	9.7%	10.2%	9.6%	9.3%	9,0%	9.0%	9.0%	8.4%	6.0%	3.1%	2.2%	1.3%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%
n. Total	100,0%	100,0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100,0%	100.0%	100.0%	100.0%	100,0%	100,0%	100.0%

.

(1) Net dependable installed capability during peak season.
 (2) Each item in Section I as a percent of line n (Total).

.

.

AP - 26

.

APPENDIX 3G - ACTUAL ENERGY GENERATION BY TYPE (GWh)

.

Company Name: GENERATION	Virginia E	lectric and	d Power C	ompany									-					Sci	hedule 2
		(ACTUAL)								(PF	OJECTEI))							
	2008	2009	2010	2011	2012	2013	2014	2016	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
I. System Output (GWh)				<u> </u>															
a. Nuclear	26,232	26,449	25,092	27,984	27,555	27,769	26,297	27,871	27,954	28,296	27,871	27,877	28,534	27,704	40,547	40,121	40,820	39,648	40,241
b. Coal	28,775	27,644	27,097	27,613	29,345	31,037	29,288	29,353	27,840	27,993	25,436	25,144	25,022	25,498	24,855	24,577	24,743	25,173	24,990
c. Heavy Fuel Oit	468	440	707	28	29	32	54	37	45	54	39	37	35	19	8	7	4	4	5
d, Light Fuel Oil	68	196	199	0.2	0,3	0.3	0,4	0.2	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0
e. Natural Gas-Boiler	205	144	317	1,536	341	329	359	333	364	385	354	312	322	315	273	278	266	284	261
f. Natural Gas-Combined Cycle	4,640	6,511	6,709	8,091	8,269	8,707	10,082	15,641	21,569	21,606	20,791	26,862	27,678	27,729	25,673	25,366	25,313	25,996	25,284
g. Natural Gas-Turbine	556	669	1,701	903	· 601	538	898	607	725	680	572	501	631	625	573	626	673	770	758
h. Hydro-Conventional	336	1,049	1,192	576	578	576	576	576	576	576	576	576	576	576	576	576	576	576	576
i, Hydro-Pumped Storage	1,712	2,453	2,911	2,511	2,815	2,489	2,481	2,284	2,029	2,428	3,032	2,386	2,483	2,735	1,890	2,228	2,304	2,516	2,816
J. Renewable ⁽¹⁾	486	430	413	391	636	869	1,725	1,766	1,830	1,971	2,042	2,069	2,112	2,143	2,108	2,070	2,090	2,109	2,120
k. Total Generation	63,478	65,985	68,338	69,633	70,387	72,667	73,760	78,487	82,932	83,989	80,713	85,764	87,395	87,344	96,504	95,848	96,789	97_276	97,051
I. Purchased Power	24,495	20,965	25,579	19,259	22,413	21,349	21,127	17,215	15,074	15,157	19,477	16,882	17,120	18,939	12,627	14,743	15,642	16,748	18,777
m. Total Payback Energy ⁽²⁾		-	-	4	9	14	20	25	30	34	37	40	41	42	43	41	39	36	32
n. Less Pumping Energy	-2,150	-3,062	-3,631	-3,154	-3,536	-3,126	-3,118	-2,871	-2,550	-3,052	-3,811	-3,000	-3,121	-3,437	-2,378	-2,801	-2,896	-3,162	-3,539
o. Less Other Sales ⁽³⁾	-24	-126	-571	-732	-640	-714	-443	-1,193	-2,285	-1,686	-519	-1,882	-1,380	-1,181	-3,230	-2,399	-1,976	-1,732	-1,255
p, Total Şystem Firm Energy Req.	85,798	83,762	87,715	85,006	88,605	90,176	91,326	91,619	93,171	94,408	95,661	97,765	100,014	101,664	103,525	105,391	107,559	109,131	111,030
IL Energy Supplied by Competitive Service Providers	N/A	NA	NYA	NVA	NA	NA	NKA	NA	NYA	N/A	NA	N/A	NYA	NA	N/A	NA	NVA	NA	NVA

(1) Include current estimates for renewable energy generation by VCHEC in 2012, when it is commissioned.

(2) Payback Energy is accounted for in Total Generation.

.

.

(3) Include all sales or delivery transactions with other electric utilities, i.e., firm or economy sales, etc.

.

APPENDIX 3H - ACTUAL ENERGY GENERATION BY TYPE (%)

Company Name : GENERATION	Virginia El	ectric and	Power C	ompany														Sci	hedule 3
	(ACTUAL)								(PR	OJECTE)							
	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
III. System Output Mix (%)												· ·							
a. Nuclear	31.4%	31.6%	28.6%	32,9%	31.1%	30,8%	31.0%	30.4%	30.0%	30.0%	29.1%	28.5%	28.5%	27.3%	39.2%	38.1%	38.0%	36.5%	36.2%
b. Coal	34.4%	33.0%	30.9%	32.5%	33,1%	34.4%	32.1%	32.0%	29,9%	29.7%	26.5%	25.7%	25.0%	25.1%	24.0%	23.3%	23.0%	23.1%	22.5%
c. Heavy Fuel Oil	0.6%	0.5%	0.8%	0.0%	0.0%	0.0%	0.1%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
d, Light Fuel Oil	0.1%	0.2%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0,0%	0.0%	0.0%	0,0%	0.0%	0.0%	0.0%	0.0%	0.0%
e. Natural Gas-Boiler	0.2%	0.2%	0.4%	1,8%	0,4%	0,4%	0,4%	0.4%	0.4%	0.4%	0.4%	0.3%	0.3%	0.3%	0.3%	0.3%	0.2%	0,3%	0.2%
f. Natural Gas-Combined Cycle	5,6%	7.8%	7.6%	9.5%	9,3%	9,7%	11,0%	17.1%	23.2%	22.9%	21.7%	27.5%	27.7%	27.3%	24,8%	24,1%	23,5%	23.8%	22.6%
g. Natural Gas-Turbine	0,7%	0,8%	1,9%	1.1%	0.9%	0.9%	1.0%	0.7%	0,8%	0,7%	0.6%	0.5%	0.6%	0.6%	0.6%	0.6%	0.6%	0.7%	0.7%
h. Hydro-Conventional	0.4%	1.3%	1,4%	0.7%	0.7%	0.6%	0.6%	0.6%	0.6%	0,6%	0,6%	0,6%	0,6%	0,6%	0.6%	0.5%	0.5%	0.5%	0.5%
I. Hydro-Pumped Slorage	-0.5%	2.9%	3.3%	3.0%	3.2%	2.8%	2.7%	2.5%	2,2%	2,6%	3,2%	2,4%	2,5%	2.7%	1.8%	2.1%	2.1%	2.3%	2.5%
J. Renewable Resources	0.6%	0.5%	0.5%	0,5%	0,7%	1.0%	1.9%	1.9%	2.0%	2,1%	2,1%	2.1%	2,1%	2,1%	2.0%	2.0%	1.9%	1.9%	1.9%
k. Total Generation	73.3%	78.8%	75.6%	81,9%	79,4%	80,6%	80,8%	85,6%	89.0%	69,0%	84,2%	87,7%	67.4%	85,9%	93.2%	90.9%	90.0%	89.1%	87.4%
I. Purchased Power	29.3%	25.0%	29.2%	22.7%	25.3%	23.7%	23.1%	18,8%	16.2%	18.1%	20.3%	17.3%	17.1%	18.6%	12.2%	14.0%	14.5%	15,3%	16.9%
m. Direct Load Control (DLC)	0,0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
n. Less Pumping Energy	-2.6%	-3.7%	-4.1%	-3.7%	-4,0%	-3.5%	-3.4%	-3.1%	-2.7%	-3.2%	-4.0%	-3.1%	-3.1%	-3,4%	-2.3%	-2.7%	-2.7%	-2.9%	-3.2%
o, Less Other Sales ⁽¹⁾	0.0%	-0.2%	-0.7%	-0.9%	-0,7%	-0,8%	-0,5%	-1.3%	-2.5%	-1.8%	-0.5%	-1.9%	-1.4%	-1.2%	-3.1%	-2.3%	-1.8%	-1.6%	-1.1%
p. Total System Output	108.0%	100,0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	160.0%	100.0%	100.0%	100.0%	100,0%	100.0%	100.0%	100.0%	100.0%
IV. System Load Factor	58.4%	58.6%	58.4%	56,1%	58,4%	56.0%	58.0%	58.0%	58.3%	58.1%	58,0%	58,1%	58.1%	58.0%	58.0%	58.0%	58.4%	58.3%	58.2%

(1) Economy energy.

.

AP - 28

APPENDIX 3I – PLANNED CHANGES TO EXISTING GENERATION UNITS

Unit Size (MW) Uprate and Derate																			
and and fact to be see and restand		(ACTUA	L)							(PI	IOJEC TE	D)							
Linit Name	2698	2009	2010	2011	2012	2813	2014	2016	2016	2017	2018	2019	2020	2821	2022	2823	2024	2025	202
\itavista		-		-		-12	-	-		-	•	-						-	
lath County Units 1-6	4	4	<u> </u>			-	-	-	•	-		-							
Bear Garden CC		-		-		-	•	-	•	-	-							-	
Sellemeade CC	13		. 22		-		-	-	•	-	-	-	-	-					
kemo 3	-						-	-	-			-		-				-	
kemo 4	-					-		_										-	
Chesopeake 1						-					_ •	-	-	-	-	-	-	-	
hesapeake 2				· · ·		•	-	•			•	-	-				-	-	
Chesapeake 3		-			·	<u> </u>	· · ·			—	· ·	-					-	-	
Jiesapeake 4		-			· · ·						•	-							
chesapeake CT 1		-				-						-							
Thesapeake CT 2		-		-44				· · ·								·	· · ·		
chesterfield 3									<u>_</u>									·	_
Chesterijeld 4										 -		-							
Chesterfield S						-		-											_
chesterheid 6	-12					<u> </u>		·	<u> </u>	<u> </u>	-						<u> </u>		
chesterfield 7 CC				· <u> </u>	· — ÷			<u> </u>	÷		<u> </u>			_				·	
hesterfield & CC	_			_	· — ÷									-	_	_	_		-
									<u> </u>	<u> </u>									
lover 1					·		·	-	· · · · ·	<u> </u>	<u> </u>						<u> </u>		
lover 2					·			<u> </u>		<u> </u>	-						·		
pruance Genco ,LLC Facility 1			· <u> </u>		·		. <u> </u>		-	<u> </u>	•								_
pruance Genco, LLC Facility 2	<u> </u>				· <u> </u>		<u> </u>	· ·	-	<u> </u>	-				_	_			_
dgecombe Genco, LLC					- <u> </u>	<u> </u>		•	-	<u> </u>						·			
Combined Cycle 3x1 :2016								-	•	<u>.</u>		-	· ·	· <u> </u>					_
Combined Cycle 3x1 :2019	-				· <u> </u>			-	-	<u> </u>	-	-				<u> </u>	<u> </u>		
CT:2020					<u> </u>		<u> </u>		<u> </u>	<u> </u>			· <u> </u>	·	· · ·	<u> </u>	<u> </u>		
CT:2021				<u> </u>					-	<u> </u>			· ·		·	·•	-	-	
ct:2023	-					_ •	-					-							
CT:2024							-			· ·	-								
T:2025	-					-	-			•	-	-							
CT:2026	-					-	-	-		· ·	-	-					-	-	
Cushaw Hydro Unit							-			-	-								
Darbytown 1		i .		•													-	-	
Darbytown 2					. — .	·····.					-	-					·		
Carbytown 3					· — .														
Derbytown 4		8 .			· — .			· · ·		·	-								
oswell Complex					· · · ·				-		-								
Dizabeth River 1	1			_	· — .					<u> </u>	<u> </u>		_						
lizabeth River 2					· —			· · · · · ·											_
lizabeth River 3										<u> </u>									
Seston Hydro								<u> </u>		<u> </u>	~ -		-	_				-	
Section ryuru Sorcionaville 1 CC																			
					· _ ·			· ·		. <u> </u>	<u> </u>	·							_
iordonsville 2CC					·	·				^			-		_		. <u> </u>		
Gravel Nock 1			<u> </u>	<u> </u>	. <u> </u>					<u> </u>	-			-		<u> </u>			
iravel Neck 3			5.	_	<u> </u>				-	<u> </u>							<u> </u>		
Gravel Neck 4			•			-		· <u> </u>	-	<u> </u>			·	· ·		· _ ·			
Gravel Nack S	-		4 -								-						-		

(1) Peak net dependable capability as of this filing. incremental uprates shown as positive (+) and decremental derates shown as negative (-).

.

.

APPENDIX 3I Cont. -- PLANNED CHANGES TO EXISTING GENERATION UNITS

Company Name: LINIT PERFORMANCE DATA⁽¹⁾ Virginia Electric and Power Company

(ACTUAL)

Unit Size (NW) Uptale and Derate

(PROJECTED)

Schedule 13a

Unit Marne	2000		2010	2011	2012	2013	2814	2016	2016	2817	2018	2018	2020 · 2021	2022	2023	2024	2020	20
Gravel Neck 6		5	•					<u> </u>	<u> </u>		-	<u> </u>	<u> </u>				-	
Hallfex Solar	-	-			· <u> </u>	<u> </u>				-	•	-		·		:		
Battery Storage	-	-	-	-	-			<u> </u>	•			-	• •					
lopewell	-		-			-12		-			-		<u> </u>					
lopewell Cogen	-	•						-		-	-	-				•	-	
Gtty Hawk	-1	-					-	-		-	-	-						
adysmith 1	5						-	-			•				-	-		
Ledysmith 2	-	•					-		-			-				-		_
Ladysmith 3	10	-	-	-		-			-	-	-	•			-		· · · ·	_
Ladysmith 4	9	-	-	-				· ·	.		-							
Ledysmith 5								·			-	-				<u> </u>	· <u> </u>	
Lowmoor CT	-	•	•					· · · · · ·										
Mechlenburg 1	-								<u> </u>	-	-	-						
Mecklenburg 2								· <u> </u>										
Mount Storm 1	-1	-	-					·	<u> </u>			· · · ·						
Mount Storm 2		-	-	31				-	-			-					-	
Mount Storm 3	-	· · ·					<u> </u>		<u> </u>				-					
Mount Storm CT				·		•	<u> </u>	<u> </u>	<u> </u>			· — ÷		_				_
North Anna 1			16						<u> </u>									_
North Anna 2			61				·	·	÷			<u> </u>	······································		<u> </u>	0	-	_
North Anna 3																		_
North Anna Hydro																		_
Yorth Brench				•						<u> </u>				· ·	-			_
Yorthem Neck CT			-				<u> </u>		<u> </u>		-	-		· <u>·</u> ·	-		-	_
		<u> </u>	<u> </u>						<u> </u>		_	· · · · · · · · · · · · · · · · · · ·		<u> </u>			· · · · ·	
Ogden-Martin Fairfax	<u> </u>	-		-7				·						<u> </u>				
Pittsylvania 1		-	-			-				-				<u> </u>				
Possum Point 1	<u> </u>	•	•		·	~		-	-				· · · · · · · · · · · · · · · · · · ·	· ·	_		_	
Possum Point 2	<u> </u>	-	-					<u> </u>	·				<u> </u>	<u> </u>				
Possum Point 3	<u> </u>	•				·	<u> </u>	<u> </u>	-			-	<u> </u>	<u> </u>			<u> </u>	
Possum Point 4	4	· · · ·	-	<u> </u>		·		-	î				<u> </u>	<u> </u>			<u> </u>	
Possum Point 5	:							-1				<u> </u>		<u> </u>			<u> </u>	
Possum Point 6 CC	27	-	-	<u> </u>	<u> </u>	. <u> </u>	·		<u> </u>		<u> </u>	-				·	<u> </u>	
Possum Point Cl	<u> </u>				_ <u></u>			. <u> </u>	-			-	-	<u></u>				
Remington 1		-	-															
Remington 2	5								-		-		-					
Remington 3	,	-	-															
Remington 4		•	-									-	-					
Roantke Rapids Hydro		-						-										
Roanoke Valley II		•	•						-	-		-	-					
Roanoke Valley Project	-	-	-						•									
Rosemary CC									· · ·	-	-	-						
SEI Birchwood	-		-	·,									-					
iouthampton									-			-			0			_
Surry 1	-												·					
Surry 2				4							_							_
Virginia City		-														-	_	_
Warren 3e1	<u> </u>				_					_		_						-
Yorktown 1	<u> </u>								<u> </u>			· — · —	i			_		_
Yarktown 2	;				_							-			<u> </u>			

(1) Peak net dependable capability as of this filing. Incremental uprates shown as positive (+) and decremental derates shown as negative (-).

APPENDIX 3I Cont. – PLANNED CHANGES TO EXISTING GENERATION UNITS

Company Name:

Virginia Electric and Power Company

Schedule 13b

UNIT PERFORMANCE DATA⁽¹⁾

Planned Changes to Existing Generation Units

Station / Unit Name	Uprate/Derate Description	Expected Removal Date	Expected Return Date	Base Rating	Revised Rating	MW
Altavista	Fuel Switch	2010	2013	63	51	-12
Bremo 3	Fuel Switch	N/A	2014	71	71	-
Bremo 4	Fuel Switch	N/A	2014	156	156	-
Chesapeake CT 2	Partial Retirement	2012	 N/A	100	. 36	-64
Chesterfield 3	Scrubber Installation	2011	2011	100	97	-3
Chesterfield 4	Scrubber Installation	2011	2011	166	162	-4
Hopewell	Fuel Switch	N/A	2013	63	51	-12
Mount Storm 1	Turbine Rotor	2013	2013	524	554	30
North Anna 1	Turbine Uprate	2012	2012	813	831	18
Possum Point 5	SNCR	N/A	2015	786	779	-7
Possum Point 6	Chiller	2013	2013	559	593	34
Southampton	Fuel Switch	N/A	2013	63	51	-12
Yorktown 2	Fuel Switch		2015	164	156	-8
Yorktown 3	SNCR	N/A	2015	818	810	-8

(1) Peak net dependable capability as of this filing. Incremental uprates shown as positive (+) and decremental derates shown as negative (-).

APPENDIX 3J – POTENTIAL UNIT RETIREMENTS

Company Name: UNIT PERFORMANCE DATA

.

.

Potential Unit Retirements⁽¹⁾

Virginia Electric and Power Company

Schedule 19

-

Unit Name	Location	Unit Type	Primary Fuel Type	Projected Ratirement Year	MW Summer	MW Winter
Chesapeake CT 2	Chesapeake, VA	Com bustion Turbine	Light Fuel Oli	2011	64	99
Chesapeake GT7					16	-
Chesapeaka GT8					16	
Ciesapeake GT9					16	
Cresspeaks GT10					16	
Kity Hawk	Kitty Hawk, NC	CombustionTurbine	Light Fuel Oil	2011	31	45
Kitty Hawk GT1					15	
Kity Hewk GT2					16	
Possum Point CT	Dumfries, VA	Combustion Turbine	Light Fuel Oil	2014	72	105
Possum Point GT1					12	
Possum Point GT2					12	_
Possum Point GT3					12	-
Possum Point GT4	-				12	
Possum Point GT5					12	_
Passum Point GT6					12	
Yorktown 1	Yorktown, VA		Cosi	2015	159	162
Chesapeake Energy Center	Chesepeake, VA		Coni	2015	222	222
Chesapeake 1					111	
Chesapeaka 2					111	
Lowmoor CT	Covington, VA	Combustion Turbine	Light Fuel Oil	2015	4	65
Low moor GT1					12	
Low moor GT2					12	
Low moor GT3			_		12	
Low moor GT4		· · · · · · · · · · · · · · · · · · ·			12	
Mount Storm CT	Mt, Storm, WV	Com bustion Turbine	Light Fuel Oil	2015	11	15
M. Storm GT1					11	
pr. doniron		·	-		···-	
Chesapeake Energy Center Chesapeake 3	Chesapeake, VA		Coal	2015	373	343
			-		217	
Chesapeake 4	(n				217	
Northern Nack CT	Warsaw, VA	Com bustion Turbine	Light Fuel Of	2018	47	70
Northern Neck GT1		· · · · · · · · · · · · · · · · · · ·			12	
Northern Neck GT2					11	
Northern Neck GT3			_		12	
Northern Neck GT4				·	12	
Chesapeake CT 1	Chesapeake, VA	Combustion Turbine	Light Fuel Oil	2018	15	20
Chesapeake GT1		· <u> </u>			15	
Chesapezke CT 2	Chesapeake, VA	CombustionTurbine	Light Fuel Oil	2018	36	49
Chesapeake GT2		. <u></u>			12	
Chesapeaka GT4					12	
Chesapeaka GT6					12	
Gravel Neck 1	Surry, VA	CombustionTurbine	Light Fuel OI	2018	28	
Gravel Nack GT1					12	
Gravel Neck GT2					16	
forktown 2	Yorktown, VA		Natural Gas	2022	164	165

(1) Reflects retirement assumptions used for planning purposes, not firm Company commitments.

.

APPENDIX 3K – PLANNED GENERATION UNDER CONSTRUCTION

.

Company Name: UNIT PERFORMANCE DATA

Planned Supply-Side Resources (MW)

Virginia Electric and Power Company

•

Schedule 15a

Unit Name	Location	Unit Type	Primary Fuel Type	C.O.D. ^{1}	MW Summer	MW Nameplate
Under Construction						
Virginia City Hybrid Energy Cente	r Wise County, VA	Baseload	Coal	Apr-2012	585	635

(1) Commercial Operation Date

Company Name:	VER SALES CONTRAC	Virginie Electric and Po	wer Comp	any															8c1	nedule 20	
THOLEDALE FOR	er sales con fine	13		(Aclual)							(Projecte	d)									
Entity	Contract Length	Contract Type	2008	2009	2010	2011	2012	2013	2014	2016	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2028
Old Dominion Electric Coop	12/31/2009	Non-Firm Partia) Requirements ⁽²⁾	930	600																	
North Cerolina Electric Membership Coop	12/31/2014	Non-Firm Partial Requirements	150	150	150	150	150	150	150								<u></u>				
Craig-Bolatourt Electric Coop	12-Month Termination Notice	Full Requirements ⁽¹⁾	6	6	6	6	6	8	6	6	6	6	8		6	6	7	7	7	7	
Town of Windsor, North Carolina	12-Month Termination Notice	Full Requirements ⁽¹⁾	8	8	9	10	10	11	<u>11</u>	. 11	11_	11	<u>U</u>	12	12	12	12	12	13	13	1;
Virginia Municipal Electric Association	5/31/2031	Full Requirements ⁽¹⁾⁽³⁾	252	253	321	331	333	337	342	348	355	362	369	376	383	390	396	404	411	419	42

APPENDIX 3L – WHOLESALE POWER SALES CONTRACTS

(1) Full requirements contracts do not have a specific contracted capacity amount. MWs are included in the Company's load forecast.

(2) ODEC contract expired year end 2010.

.

.

(3) VMEA contract reflects values as of July 5, 2011.

					((11))	Oyare		νοη								
Programs	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Air Conditioner Cycling Program	35,283	76,877	125,309	176,082	224,116	266,778	304,335	336,920	384,399	386,506	403,508	413,172	420,476	425,418	429,939	434,454
Commercial HVAC Upgrade Program	3,787	6,256	13,445	18,883	19,130	19,367	19,598	19,829	20,057	20,281	20,501	20,716	20,926	21,132	21,336	21,539
Commercial Lighting Program	10,738	23,241	37,811	53,088	53,780	54,446	55,096	55,743	56,385	57,016	57,634	58,239	58,830	59,408	59,981	60,552
Low Income Program	796	1,744	3,659	5,145	5,228	5,306	5,382	5,457	5,531	5,603	5,873	5,741	5,807	5,870	5,933	5,995
Residential Lighting Program	68,048	68,048	68,048	68,048	68,048	68,048	68,048	51,150	36,703	18,866	0	0	٥	٥	٥	0

APPENDIX 3M – APPROVED PROGRAMS NON-COINCIDENTAL PEAK SAVINGS (kW) (System-Level)

.

Programs.	2011	2012	2013	2014	2015	2016	2017	2018	2010	2020	2021	2022	2023	2024	2926	2026
Air Conditioner Cycling Program	35,263	76,877	126,309	176,082	224,116	266,778	304,335	336,920	384,399	366,508	403,508	413,172	420,476	425,418	429,939	434,454
Commercial HVAC Upgrade Program	3,389	7,388	12,031	16,898	17,118	17,330	17,538	17,743	17,948	18,149	18,345	18,538	18,726	18,910	19,092	19,274
Commercial Lighting Program	8,897	14,927	24,284	34,095	34,541	34,968	35,388	35,802	36,213	38,619	37,016	37,404	37,784	38,155	38,523	38,890
Low Income Program	421	921	1,834	2,578	2,620	2,659	2,697	2,735	2,772	2,608	2,843	2,877	2,910	2,942	2,973	3,004
Residential Lighting Program	18,836	18,630	18,838	18,836	18,836	18,836	18,636	14,158	10,159	5,222	0	0	0	٥	0	0
Totals	84,805	118,948	182,294	248,489	297,231	340,572	378,791	407,357	431,491	449,304	461,713	471,891	479,885	485,428	490,528	485,622

APPENDIX 3N – APPROVED PROGRAMS COINCIDENTAL PEAK SAVINGS (kW) (System-Level)

.

					_ (MW)	h) (Sys	stem-L	evel)								
Programe	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024 ·	2025	2026
Air Conditioner Cycling Program	a	0	D	a	0	٥	0	0	0	0	٥	0	٥	0	D	0
Commercial HVAC Upgrade Program	8,403	18,318	29,832	41,599	42,446	42,972	43,485	43,996	44,502	45,000	45,488	45,965	46,432	46,589	47,340	47,791
Commercial Lighting Program	54,946	118,920	193,471	271,633	275,183	278,588	281,918	285,228	288,509	291,741	294,904	207,997	301,020	303,982	306,909	309,832
Low Income Program	2,285	5,006	8,684	13,899	14,123	14,334	14,539	14,741	14,941	15,137	15,327	15,510	15,687	15,658	16,027	16,195
Residential Lighting Program	215,251	215,251	215,251	215,251	215,251	215,251	215,251	161,797	118,098	59,677	D	0	D	٥	٥	٥
Totals	280,885	357,495	448,438	542,682	547,003	651,146	\$\$5,193	505,762	464,051	411,555	355,719	359,472	363,139	366,729	370,277	373,819

APPENDIX 30 – APPROVED PROGRAMS ENERGY SAVINGS (BRA/b) (Questions 1 aug)

.

.

.

APPENDIX 3P - APPROVED PROGRAMS PENETRATIONS

(System-Level)

.

, Programs	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2821	2022	2023	2024	2025	2026
Air Canditioner Cycling Program	35,226	76,796	125,177	175,897	223,880	266,488	304,015	336,565	364,015	386,099	403,083	412,737	420,033	424,971	429,487	433,996
Commercial HVAC Upgrade Program ¹⁹	289	630	1,026	1,441	1,460	1,478	1,496	1,513	1,531	1,548	1,564	1,581	1,597	1,513	1,628	1,844
Commercial Lighting Program ¹³	213	461	750	1,053	1,967	1,080	1,093	1,108	1,118	1,131	1,143	1,155	1,187	1,178	1,190	1,201
Low Income Program	5,528	12,109	19,786	27,795	28,243	25,566	29,074	29,479	29,860	30,271	30,650	31,016	31,371	31,714	32,051	32,386
Residential Lighting Program ⁽²⁾	7,681,964	7,681,964	7,661,964	7,661,964	7,681,964	7,681,964	7,681,964	5,774,277	4,143,350	2,129,759	0	D	0	0	. 0	٥

(1) Program penetrations have been adjusted for exempt customers. (2) Number of bulbs.

.

AP - 38

.

APPENDIX 3Q – PROPOSED	PRO	GRA	M N	ON-C	OINCIDENTAL PEAK SAVINGS
	/1 1 a m			-	

(kW) (System-Level) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2

.

-

Г

Programs	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Commercial Energy Audit Program	0	827	3,055	6,630	10,803	15,198	15,450	15,632	15,812	15,989	16,162	16,332	16,497	16,659	16,620	16,980
Commercial Duct Testing & Sealing Program	0	982	3,606	7,813	12,738	17,908	18,204	18,418	18,630	16,638	1 9 ,043	19,242	19,438	19,629	19,618	20,006
Commercial Refrigeration Program	0	15, 986	46,267	80,890	106,007	123,122	48,538	35,810	22,660	9,114	8,227	7,244	5,724	3,690	2,283	707
Commercial Distributed Generation Program	20,021	26,344	37,935	47,418	49,526	57,956	66,386	72,708	77,977	81,138	84,299	87,460	90,622	93,783	94,689	95,595
Residential Lighting Program (Phase II)	0	17,583	35,333	54,574	73,997	93,627	95,837	98,045	99,376	100,678	101,939	103,157	104,336	105,477	108,598	107,717
Residential Bundle Program	0	5,121	19,084	41,694	68,304	96,330	98,967	100,394	101,757	103,090	104,361	105,628	106,635	108,003	109,151	110,297
Residential Home Energy Check-Up Program	0	109	399	867	1,417	1,999	2,053	2,108	2, 137	2,165	2,192	2,218	2,244	2,268	2,292	2,316
Residential Duct Testing & Sealing Program	o	385	1,437	3,138	5,142	7,251	7,451	7,555	7,657	7,758	7,855	7,949	8,040	8,128	8,214	B,300
Residential Heat Pump Tune-Up Program	0	2,823	10,524	22,994	37,671	53,128	54,593	55,354	56,106	56,841	57,552	58,240	58,906	59,550	60,183	60,815
Residential Heat Pump Upgrade Program	0	1,804	6,725	14,594	24,075	33,953	34,890	35,376	35,857	36,326	36,781	37,221	37,646	38,058	38,462	38,866

					<u> </u>	(-)										
Programs	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Commercial Energy Audit Program	U	660	2,440	5,296	8,629	12,140	12,341	12,486	12,630	12,771	12,910	13,046	13,178	13,307	13,435	13,563
Commercial Duct Testing & Sealing Program	0	810	2,975	6,445	10,508	14,772	15,017	15,193	15,368	15,540	15,708	15,873	16,034	16,192	18,348	16,503
Commercial Refrigeration Program	0	13,874	40,154	70,201	91,998	106,844	41,781	30,751	19,567	7,853	6,923	6,102	4,839	3,136	1,907	624
Commercial Distributed Generation Program	20,021	26,344	37,935	47,418	49,526	57,956	68,386	72,708	77,977	81,138	84,299	87,460	90,622	93,783	94,689	95,595
Residential Lighting Program (Phase II)	0	14,084	28,301	43,713	59,270	74,994	76,764	78,532	79,599	80,641	81,651	82,627	83,571	84,485	86,383	66,279
Residential Bundle Program	0	3,714	13,639	30,233	49,530	69,852	71,779	72,801	73,789	74,756	75,692	78,597	77,472	78,319	79,151	79,982
Residential Home Energy Check-Up Program	o	89	327	709	1,159	1,636	1,680	1,725	1,749	1,772	1,794	1,815	1,836	1,856	1,876	1,895
Residential Duct Testing & Sealing Program	0	347	1,292	2,822	4,623	6,520	6,700	6,793	6,885	8,975	7,063	7,147	7,229	7,308	7,386	7,463
Residential Heat Pump Tune-Up Program	0	2,157	8,040	17,567	28,780	40,588	41,708	42,289	42,884	43,425	43,969	44,494	45,003	-15,495	45,978	46,461
Residential Heat Pump Upgrade Program	o	1,122	4,181	9,135	14,967	21,108	21,691	21,993	22,292	22,584	22,867	23,140	23,404	23,660	23,912	24,163
Totals	20,021	59,486	125,644	203,306	269,461	338,668	284,047	282,472	278,930	272,500	277,184	281,704	286,715	289,222	290,913	292,548

.

.

APPENDIX 3R - PROPOSED PROGRAM COINCIDENTAL PEAK SAVINGS

.

.

(kW) (System-Level)

•

APPENDIX 3S – PROPOSED PROGRAM ENERGY SAVINGS (MWh) (System-Level)

Programs	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2025
Commercial Energy Audit Program	G	3,739	13,818	29,987	48,861	68,738	59,879	70,700	71,513	72,314	73,096	73,864	74,814	76,348	76,073	76,798
Commercial Duct Teating & Sealing Program	G	3,654	13,386	29,001	47,284	66,622	67,572	68,366	69,152	70,084	70,685	71,426	72,151	73,024	73,562	74,263
Commercial Refrigeration Program	0	82,736	238,547	418,922	549,139	637,970	252,288	186,213	119,298	47,931	43,194	38,021	30,039	19,368	11,915	4,077
Commercial Distributed Generation Program	91	4	177	232	19	14	351	2,437	163	427	237	61	58	49	40	42
Residential Lighting Program (Phase II)	0	66,365	133,361	205, 9 83	279,294	353,387	361,727	370,050	375,085	379,099	384,756	389,355	393,805	398,11D	402,341	406,566
Residential Bundle Program	0	11,823	44,040	96,204	157,598	222,265	228,394	231,703	234,849	237,928	240,904	243,784	246,570	249,265	251,915	254,560
Residential Home Energy Check-Up Program	0	517	1,893	4,113	6,722	9,485	9,742	10,004	10,140	10,273	10,401	10,526	10,646	10,762	10,877	10,991
Residential Duct Testing & Sealing Program	0	560	2,086	4,557	7,467	10,530	10,820	10,971	11,120	11,265	11,406	11,543	11,675	11,802	11,928	12,053
Residential Heat Pump Tune-Up Program	0	7,378	27,502	80,091	98,448	138,841	142,671	144,680	146,624	148,545	150,404	152,202	153,941	155,625	· 157,278	158,930
Residential Heat Pump Upgrade Program	0	3,369	12,559	27,443	44,982	63,410	65,160	66,069	66,966	67,843	6 8 , 692	69,513	70,308	71,077	71,832	72,586
Totala	91	188,321	444,330	780,329	1,082,195	1,348,996	980,212	929,478	\$70,061	808,680	812,875	816,511	817,236	815,166	815,847	\$16,305

APPENDIX 3T – PROPOSED PROGRAM PENETRATIONS

(System-Level)

Programe	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2921	2022	2023	2024	2025	2026
Commorcial Energy Aubit Program ⁽¹⁾	0	145	535	1,161	1,881	2,660	2,705	2,736	2,768	2,709	2,829	2,859	2,888	2,91 8	2,944	2,972
Commercial Duct Testing & Sealing Program ¹⁹	٥	117	430	932	1,520	, 2,136	2,172	2,197	2,222	2,247	2,272	2,295	2,319	2,342	2,364	2,387
Commercial Refrigeration Program ¹²⁾	٥	3,564	10,696	19,440	26, 6 93	32,523	18,148	15,698	13,211	10,313	9,469	6,131	6,386	4,219	3,147	1,822
Commercial Distributed Generation Program ^{(3K4}	19	25	36	45	47	55	63	69	74	77	80	83	86	89	90	91
Residential Lighting Program (Phase II) ⁽³⁾	٥	2,462,928	4,948,248	7,644,357	10,365,066	13,114,764	13,424,295	13,733,536	13,920,029	14,102,371	14,278,928	14,448,582	14,614,736	14,774,523	14,931,531	15,068,310
Residental Bundio Program	0	16,468	61,352	134,025	219,558	309,647	318,185	322,767	327,150	331,435	335,585	339,595	343,477	347,232	350,922	354,607
Residential Home Energy Check-Up Program	0	602	2,207	4,795	7,838	11,058	11,358	11,664	11,822	11,977	12,127	12,272	12,412	12,548	12,681	12,814
Residential Duct Testing & Sealing Program	0	1,267	4,723	10,318	16,905	23,840	24,496	24,838	25,175	25,505	25,824	26, 133	26,432	26,721	27,005	27,288
Residential Heat Pump Tune-Up Program	0	10,203	38,033	83,103	136,148	192,009	197,306	200,056	202,773	205,429	208,001	210,487	212,893	215,220	217,507	219,791
Residential Hest Pump Upgrade Program	a	4,398	16,388	35,809	58,668	82,740	85,024	85,209	87,380	88,524	89,633	90,704	91,741	92,744	93,720	94,713

(1) Program penetrations have been adjusted for exempt customers.
 (2) Penetrations represent measures.
 (3) Number of 1,000 kW participants.
 (4) Values reflect the continuation of the DG/Load Curtailment Pilot for Large Non-Residential customers.
 (5) Number of bulbs.

AP - 42

APPENDIX 3U -- GENERATION INTERCONNECTION PROJECTS UNDER CONSTRUCTION N/A

.

.

.

.

.

.

Line Terminal	Line Voltage (kV)	Line Capacity (MVA)	Target Date	Location
Garrisonville Underground Cable	230	722	Dec-11	VA
Remington CT – Gainesville	230	1,047	Apr-12	VA
Hayes – Yorktown	230	1,047	May-12	VA
Glebe - Radnor Heights - Ballston UG Line	230	500	May-12	VA
Landstown - Virginia Beach	230	847	Dec-12.	VA
Convert Line 49 Loudoun - New Road	230	1,047	May-13	VA
Rebuild Line #551 (Mt Storm - Doubs)	500	4,330	Jun-15	VAWV

APPENDIX 3V – LIST OF TRANSMISSION LINES UNDER CONSTRUCTION

. •

APPENDIX 4A – DELIVERED FUEL DATA

Company Name:	Virginia E	Jectrican	d Power (Company														Sci	ot other
FUEL DATA ⁽¹⁾	_																		
		(ACTUAL)	>							(P	ROJECTE	ED)							
	2008	2009	2010	2011	2012	2013	2014	2016	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
L Delivered Ruel Price (\$/mmBtu)			-						-										
a. Nuclear	0.51	0.55	0,60	·	•														
b. Coal	2,44	2.71	3,05						1		- '_							· .	
c. Heavy Fuel Oil	11.39	9.42	11.49	ч.	:		. Fi *				14 - 24 45		الفرار الم		بالمؤربين في	9 ¹ Transferra		\$. \$ {	
d, Light Fuel (Cil ⁽²⁾	17.84	10.56	15.48	· · · · ·	<u>`</u>	i (° kri	4	- 1	8° - 1		<u> </u>					i Mge	્રીય સંચ્છા છે. આ ગામ છે.		1.7
e. Natural Gas	10.30	5.32	6.44		14 1				 	r i bi							مي کې او ده م		
f. Renewable ⁽³⁾	_288	1.92	2.13		. / c] []				$\frac{1}{2}$										
ll. Primary Ruel Expenses (contu/KWh) a. Nuclear	0.61	0.55	0,60				an a					2 +	ية. 1973 - 1973 - 1974 - 1975 -				د - ا د		i agua. Pagainte
b. Coel	2.50	3.03	3.22		ំរាំ				ή Ľ		. T I <u>E</u>		، ښې او او	4 .): 	1. Sec. 19		6.23		"
c. Heavy Fuel Cl	17.64	7.70	8.93	· .	ieγ.≮	11	÷,	. F	1997) 1997) 1997)		* 3. t			- A	1 - N. E. (-5,		100 C.	
d. Light Fuel Cil ⁽²⁾	18.27	14,15	16.24	1 a. 1	4								1. 1. 1.		· · · ·			ವರಿಷ್ ವಿ. ೩.∳	
e, Natural Gas	9.53	4.41	4.72										5 - 1 - 1		- t j		<i>N</i>		· ·
f, Renewable ⁽³⁾	2.88	3,13	3.43		у.ч На						in a start	, 1.	1. W.			1.		···	2 1. 2 2. 2 4 2 2 2 1
g. NUG	4,60	375	3,74		23. 1. 1. 1.	عربان مارينا - ا	18:20 1911 - 1	e sa é s sa sa sa sa sa	н			()	1		୍ କ				
i. Economy Energy Purchases	8.27	4.12	5.06	· · ·	1											- <u>-</u>	с. С	· · · · ·	
j. Purchases (\$kW-Year)				1.2									· ·						
Energy and Capacity Charges	41.33	38.75	63.62		5.00			•					· .				-		

.

Fuel data delivered fuel prices and fuel expanses reflect average delivered costs.
 Light fuel oil is used for reliability only at dual-fuel facilities.
 Per definition of § 56-576 of the Code of Virginia.

.

		_	Ca	pacity Fac	tor (%)		_		r 		
\$/kW-Year	0%	10%	20%	'30%	40%	50%	60% -	70% 1	80%	90%	100%
Ст		1. 1. 1. 1.					· · ·				· · ·
CC 3x1								1.	аў. 1.18 — .		
CC 2x1		4	n original and the second s		· • •		્રેટ તેવું	f as the		્યું. હે	• • •
Nuclear	19 19 19 19 19 19 19 19 19 19 19 19 19 1			2.1	- C	p. h. t.	188 - F			(*******);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	3 - 2 6 - 46 - 2
Concentrating Solar Power						Colora og	2		1 5 6		, m ,
Solar PV		n in the second seco				. 6	an an the second se				
Onshore Wind	، بر بر بر و به				····· 6.						en la compositione de la composi
Offshore Wind	4	a star a	uz.** j∩ 			3 4 B 4 7					101
Biomass							°.				
IGCC CCS										2	
PC CCS											
Hydro Power				an an an a' an a'			2. ¹ ***.				

APPENDIX 5A – TABULAR RESULTS OF BUSBAR

CONFIDENTIAL AND EXTRAORDINARILY SENSITIVE INFORMATION REDACTED

APPENDIX 5B - BUSBAR ASSUMPTIONS

Nominal \$	Heat Rate	Variable O&M			Overnight Costs	Year 1 . ECC	
	MMBtu/MWh	\$/MWh	\$/kW-Year	Years	\$/kW	%	
СТ		16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 -	e e e e e e e e e e e e e e e e e e e	a fra Anna a Sa tarter	4		
CC 3x1					ిన చినిదిన చిన		
CC 2x1				ار درا برمیکرد. مربود از در پارترک	an season in	1. A.	
Nuclear					an a		
Concentrating Solar Power		್ರಿ ಸಿಕ್ಷೆ ಟ್ರಿ ಬಿಂಗ್					
Solar PV				C			
Onshore Wind		n an			and the second		
Offshore Wind							
Biomass	1997 - 1997 -			ang sanja 200 in Ang ang ang ang Sang ang			
IGCC CCS		γ			د او مرد می و در می ورد و مرد و وارید مرد	ية الاست. باريان	
PC CCS					i i i i i i i i i i i i i i i i i i i		
Hydro Power				ana ta sa	الاس - معرف المراجع ال المراجع المراجع	۶.,	

APPENDIX 5C - PLANNED GENERATION UNDER DEVELOPMENT

Virginia Electric and Power Company

Schedule 15c

UNIT PERFORMANCE DATA

Company Name:

Planned Supply-Side Resources (MW)

Unit Name	Location	Unit Type	Primary Fuel Type	C.O.D. ⁽¹⁾	MW Summer	MW Nameplate	
Under Development							
Halifax County Solar	Halifax, VA	Baseload	Solar	N/A	1.5	4	
Battery Storage	Halifax,VA	Baseload	Storage	N/A	4.5	4.5	
Warren County Power Station	Warren County, VA	Intermediate	Natural Gas-CC	N/A	1,337	1,437	
North Anna 3	Mineral, VA	Baseload	Nuclear	N/A	1,453	1,500	

(1) Commercial Operation Date

APPENDIX 5D - STANDARD DSM TEST DESCRIPTIONS

Participant Test

The Participant test is the measure of the quantifiable benefits and costs to program participants due to enrollment in a program. This test indicates whether the program or measure is economically attractive to the customer enrolled in the program. Benefits include the participant's retail bill savings over time plus any incentives offered by the utility, while costs include only the participant's costs. A result of 1.0 or higher indicates that a program is beneficial for the participant.

Utility Cost Test

The Utility Cost test compares the cost to the utility to implement a program to the cost that is expected to be avoided as a result of the program implementation. The Utility Cost test measures the net costs and benefits of a DSM program as a resource option, based on the costs and benefits incurred by the utility including incentive costs and excluding any net costs incurred by the participant. The Utility Cost test ignores participant costs, meaning that a measure could pass the Utility Cost test, but may not be cost-effective from a more comprehensive perspective. A result of 1.0 or higher indicates that a program is beneficial for the utility.

Total Resource Cost Test

The TRC test compares the total costs and benefits to the utility and participants, relative to the costs to the utility and participants. It can also be viewed as a combination of the Participant and Utility Cost tests, measuring the impacts to the utility and all program participants as if they were treated as one group. Additionally, this test considers customer incentives as a pass-through benefit to customers and, therefore, does not include customer incentives. If a program passes the TRC test, then it is a viable program absent any equity issues associated with non-participants. A result of 1.0 or higher indicates that a program is beneficial for both participants and the utility.

Ratepayer Impact Measure Test

The RIM test considers equity issues related to programs. This test determines the impact the DSM program will have on non-participants and measures what happens to customer bills or rates due to changes in utility revenues and operating costs attributed to the program. A score on the RIM test of greater than 1.0 indicates the program is beneficial for both participants and non-participants, because it should have the effect of lowering bills or rates even for customers not participating in the program. Conversely, a score on the RIM test of less than 1.0 indicates the program is not as beneficial because the costs to implement the program exceed the benefits shared by all customers, including non-participants.

Societal Test

The Societal test is structurally similar to the TRC test but it goes beyond the TRC test in that it attempts to quantify the change in total resource costs to society as a whole rather than to only

the utility and its customers. The Company does not currently use the Societal test to determine the benefits of DSM programs. However, as societal costs and benefits are factored into state and federal requirements (e.g. CO_2 legislation), the Company will consider these factors, as appropriate, in the program assessment process.

.

.

.

.

.

.

· .

.

.

APPENDIX 5E - DSM PROGRAMS ENERGY SAVINGS (MWh) (System-Level)

Congany Name:	Virginia Flattyis & Permy Company			•																			Schwänle 11
net gy LAit ions y D	norgy Milclency- Pennind Response/Peok. Sheday/Dem	milik ki	w.erment (H	47k)	(A)	CTUAL-M	WL)								(Mar)	UI&TTY2) - M	Wh)						
Program Type (1)	Program Name	Dan ^{on}	LIF/ Deration ⁴⁰	Size NTA ^{-+Q}	1000	2884	2010	2011	1012	\$813	30L4	1015	3016	2017	1014	1014	1020	3921	3427	2023	2024	3015	2024
and: Surving	Ain Fundament Cycling Program In	381a	2426	414	-	0	,			•	٠	U	P	٥	U	0		U U	υ	D	•	u	0
absield.				434	-	<u> </u>	•			-	-	•	<u>.</u>	•		_	•	•	•		_,	. •	1
ang Manasa - tauni Repara	Captor stari Databasel Guan et en Program 📽	2610 **	3826		_,	•	157	e 1		177	212	17	н	111	2,411	164	-21	117	41	я	41	43	43
	R stally these state & (hypeliais the seath many Taulis) **	1987	2026	5	1,640	2.140	1 680	840	B 40	840	140	600	610	460	600	606	600	606	600	. són	erie	600	600
Sab jotal				<u>181</u>	3.648	1,168	1,237	991	144	1,017	1,473	419	614	<u>045</u>	1.617	163	_1,827	117	441	- 614	614	140	641
inergy Eliberary	Compared WAC Sparse Program ⁴⁴	30)0	2020	19			2,297	1,4 2 3	14,418	39,132	4.199	42,448	41,972	45,01	43,996	44,590	43,000	-i5,400	45 965	44,-62	46,629	47,348	45,791
	Commorcal Lighting Program. 9	2010	2026	W		•	14,462	54,946	118,939	191,47L	271,433	275,183	271,588	211,910	265,278	2004,509	291, 141	284 904	297,603	301.039	343,987	10.305	.464,812
	Los Incaso Program	3014	20726	,	•	•	585	1,385	5.0MG	9,884	11,599	14,120	N.I.H	14,510	14,141	14,941	15,137	15,127	15,516	15,627	15,656	16,937	36,193
	Product of Lighting Program **	2918**	3936	•	-		135,575	215,251	315,251	215.351	315,351	315,394	205.261	215,251	161,791	114,099	59 671		•	•	•		
	Containing Energy Ands Property *	2013	7726	14	•				3,539	13,016	29,967	48,540	61,776	44,119	70,780	8,93	72,114	33,094	13,861	14 68 4	73.40	76,877	76,7%
	Commerced Dect Testing & Society Program P.	2013	2024	17	•	•	0		3.654	11.116	29,004	47,384	66,622	67,572	68,364	69,152	78,641	78,445	11,426	72.151	11,034	75,563	74,261
	Commercial Rafnymeting Program	2012	2026	,	•	Ų	4		82,736	219,547	41 172	\$40,139	#\$7,¥70	252,300	116,213	119,394	41,931	11.194	34,021	70,039	19,361	11,913	4,017
	Brannystini Laghtma Property (Plane 11) **	3012	3034	M	•	۵	6	•	84,145	111,061	205,203	179,394	193,387	HL.737	370,060	175,MS	128,999	364,756	350,355	384,305	101,110	402,141	406,16
	Frankmind Davids Fragram. ⁴⁴	3012	3826	м	•	4	•	•	11,923	44,848	94,394	157,598	332,365	325,394	\$13,785	Z34,149	257,936	348.484	241.784	144,570	249 286	251,915	254 56
	Residential Hune Kurry Cha.t-Up Program P	3872		· · ·	-		•		317	1,00	+111	6,722	4,411	6,742	10,001	10,140	10,275	10 102	14,134	18,644	10,102	18,477	14,997
	Residential (Inc) Taxing & Sooing Program **	2012	3125	,		ø	ø	•	349	7,846	4337	7,467	10,550	10,420	10,51	11.170	11.265	11,406	11.343	11.6"5	11.801	11,924	12,441
	Reminsted Heat Pump Tene-Up Program 4	3411	1079	44		d			7,574	27,302	68,091	91.44	138,841	142,071	144 648	146,624	1-01,345	/ 50, cite	132 143	[33,64]	110,625	11-274	150,040
	Replaced HeatPany Oppode Program	NW3	2026	14					3,84	(2,159	27,448	H, MG	61,478	65.100	66.661	66,966	67,841	68,812	69.312	1,10	71,877	1110	*1,164
	Vallage Concervation Program 4	3813	2026	•			91,254	97,642	97,643	549,687	1.070,051	1,593,554	1,957,577	3,367,815	2,548,985	2,566,965	2,561,965	3,568,985	2,564,365	2,561,965	2,544,985	1,348,985	2,560,0
	Commend Rothann name y Propert *	304.5	3036	•	6	6		•	•	14,854	54,294	111,734	191.500	200,011	374,031	271.111	396,276	201.014	294,295	289,190	212,014	294,847	397 65
	Chanter and Saler Warders Pda Program **	2001	7016	- 11	- 0	•	0			10,972	48,595	15,645	142.007	201.653	784.002	206.568	269,263	211.550	213.779	215,951	319.081	329,104	222.24
	Commercial Pain Control Company Room Program	2015	2026	2			8			2.570	2,514	12,853	28,543	71,374	28,487	28,837	39,342	10,540	20,00	30,144	40,483	34,584	31,080
	Commercial Commerciants and Program Pr	3913	2024	1	-,					5,340	(4.43)	41,245	63,880	97,844	SIL MAI	100,376	101,73	103,700	103,025	104.755	106,106	107,867	106,13
	Inclusial Cold Boot Program ²⁴	383	1054	59	0					310	843	1,02	1,995	4236	4 370	1.454	1313	4,687	4 634	4,617	4,728	4,778	4,858
in in tetal				467	•		264,572	378,827	633.454	1,476,868	3,516,368	1,444,841	4,284,714	4,445,171	4.615,418	4,516,117	4413,096	4,149 963	وركرلدكره	4314348	4.461.394	4418,751	
and Demonst Side	And researd			941	1,610	1.160	265,900	ATRACE	424,399	1.471.077	1.017,111	3.484.000	4.216.338	4.084.139	1.610.416	1.621.680	6,414,003	4.348.879	4.316.974	1,394,100		4.413.172	

(1) The Program types have been categorized by the Virginia definitions of peak shaving, energy efficiency, and demand response.

(2) Implementation date.
 (3) State expected life of facility or duration of purchase contract. The Company used Program life (Years).

(3) State expected life of facility of duration of purchase contract. The Company used Program life (Years).
(4) Attributable capability and describe in the notes when such reductions are available, i.e.: at peak, all hours, on-peak hours, etc. The MWs reflected as of 2026.
(5) Reductions available during all hours.
(6) Reductions available during all hours.
(7) This Program was an outgrowth of the Company's current Distributed Generation/Load Curtailment Pilot for Large Non-Residential customers.
(8) This Program was an extension of the Company's current CFL price reduction program that began in October 2007.
(9) Residential Bundle Program, Residential Heat Pump Tune-Up Program, and Residential Heat Pump Upgrade Program.

						Joyan	2111-FA	4611								
Programs	2011	2012	2013	2014	2015	2018	2017	2018	2019	2020	2021	2022	2023	2024	2025	2028
Voltage Conservation Program	19,08 1	18,423	107,401	209,263	311,211	369,350	443,171	502,020	502,020	464,709	502,020	502,020	502,020	484,709	502,020	502,020
Commercial Re-Commissioning Program	0	0	4,074	14,876	32,288	52,537	73,962	75,150	76,014	76,865	77,698	78,513	79,310	80,090	80,861	81,632
Commercial Solar Window Film Program	٥	0	3,301	12,153	26,369	42,989	60,489	61,376	62,266	62,965	63,649	64,317	64,971	65,612	66,245	66,877
Commercial Data Center/Computer Room Program	0	0	621	1,864	3,106	4,970	6,834	6,914	6,994	7,072	7,149	7,224	7,298	7,370	7,441	7,512
Commercial Custom Incentive Program	٥	0	1,961	7,271	15,809	25,778	36,315	36,920	37,563	38,002	38,432	38,853	39,264	39,887	40,066	40,464
Residential Cool Roof Program	a	0	467	1,713	3,722	6,086	8,586	8,816	9,050	9,169	9,283	9,394	9,502	9,606	9,708	9,810

APPENDIX 5F – FUTURE PROGRAMS NON-COINCIDENTAL PEAK SAVINGS (kW) (System-Levei)

.

.

.

.

Prògrams	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Voltage Conservation Program	0	o	٥	D	0	0	o	D	0	0	o	o	. 0	0	o	0
Commercial Re-Commissioning Program	0	0	2,949	10,770	23,375	38,034	53,545	54,405	55,031	55,847	56,250	58,840	57,A17	57,961	58,540	59,097
Commercial Solar Window Film Program	0	0	2,533	9,324	20,231	32,983	46,409	47,089	47,772	48,305	48,833	49,346	49,848	50,339	50,825	51,310
Commercial Data Canter/Computer Room Program	0	0	171	513	855	1,368	1,880	1,903	1,924	1,946	1,967	1,986	2,008	2,028	2,047	2,067
Commercia) Custom Incentive Program	ð	Ð	1,510	5,601	12,177	19,854	27,971	28,438	28,933	29,271	29,602	29,926	30,243	30,554	30,861	31,167
Residential Cool Roof Program	D	D	267	979	2,127	3,478	4,906	5,038	5,172	5,240	5,305	5,369	5,430	5,489	5,548	5,606
Totals	0	0	7,430	27,186	58,764	95,716	134,712	136,872	138,832	140,412	141,957	143,469	144,946	146,391	147,820	149,245

APPENDIX 5G - FUTURE PROGRAMS COINCIDENTAL PEAK SAVINGS (kW) (System-Level)

(MWh) (System-Level)

Programs	2011	2012	2013	2014	2015	2018	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Voltage Conservation Program	07,642	97,642	549,803	1,070,857	1,592,556	1,957,572	2,267,835	2,558,985	2,568,985	2,568,985	2,588,985	2,568,985	2,568,985	2,568,985	2,568,985	2,568,985
Commercial Re-Commissioning Program	0	0	14,854	54,244	117,781	191,568	268,691	274,021	277,173	280,276	283,314	286,286	289,190	292,034	294,847	297,656
Commercial Solar Window Film Program	0	0	10,972	40,395	87,645	142,889	201,053	204,002	205,960	209,283	211,556	213,779	215,953	218,081	220,186	222,287
Commercial Data Centar/Computer Room Program	0	0	2,570	7,711	12,852	20,563	28,275	28,607	28,937	29,262	29,580	29,691	30,195	30,492	30,786	31,080
Commercial Custom Incentive Program	٥	٥	5,240	18,431	42,245	69,000	97,044	95,661	100,378	101,728	102,701	103,825	104,925	106,186	107,067	108,132
Residential Cool Roof Program	0	0	230	843	1,832	2,995	4,226	4,339	4,454	4,513	4,589	4,624	4,677	4,728	4,778	4,828
Totals	97,642	97,642	583,469	1,193,481	1,854,862	2,384,567	2,668,124	3,178,615	3,156,888	3,194,047	3,200,705	3,207,390	3,213,924	3,220,505	3,226,649	3,232,969

APPENDIX 5I – FUTURE PROGRAMS PENETRATIONS

(System-Level)

Programs	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2072	2023	2024	2025	2028
Voltage Conservation Program (V	107,000	107,000	602,278	1,173,491	1,745,191	2,145,191	2,485,181	2,815,204	2,815,204	2,815,204	2,815,204	2,815,204	2,815,204	2,815,204	2,815,204	2,815,204
Commercial Re-Commissioning Program 🌣	0	0	53	192	418	680	957	972	983	994	1,005	1,018	1,026	1,038	1,045	1,056
Commercial Solar Window Film Program ⁽²⁾	0	0	866,920	3,191,659	6,925,022	11,269,918	15,885,609	16,118,578	16,352,313	16,535,863	16,715,470	16,691,112	17,052,844	17,230,995	17,397,276	17,563,314
Commercial Data Center/Computer Room Program	0	0	2	6	10	16	22	22	23	23	23	23	23	24	24	24
Commercial Custom Incentive Program	0	٥	48	178	387	631	888	904	920	930	941	951	961	971	981	991
Realdential Cool Roof Program	D	o	744	2,728	5,927	9,691	13,672	14,040	14,412	14,601	14,783	14,960	15,131	15,296	15,459	15,621

 $\mathbf{\tilde{\mathbf{x}}}$

Values in 2011 and 2012 reflect the AMI demonstration.
 Program penetrations have been adjusted for exempt customers.

AP - 54

Ļing Terminai	PJM Queue	Line Voltage (kV)	Lin <u>e Capacity</u> (MYA)	Interconnection Cost (Million \$)	Target Date	Location
North Anna – Ladysmith*	Q-65	500	3,464	48	Apr-18	T VA

APPENDIX 5J – PLANNED GENERATION INTERCONNECTION PROJECTS

*Subject to change based on receipt of applicable regulatory approval(s)

.

EXTRAORDINARILY SENSITIVE **INFORMATION REDACTED**

230 230 230 230	1,047 1,047	Dec-11	VA
230		Apr 12	
	1 047	Apr-12	VA
230	1,047	May-12	VA
	500	May-12	VA
230	583	May-12	VA
230	1,047	May-12	VA
500	2,913	May-12	VA
230	797	Dec-12	VA
230	600	May-13	VA
230	1.047	Mav-13	VA
230			VA
230	1,047	Jun-13	VA
230	608	May-14	VA
230	900	May-14	NC
500	3,377	Jun-14	VA
230	1,047	May-14	VA
500	3,460	Nov-14	VA
230	1,047	Nov-14	VA
230	1,047	May-15	VA
230	706	May-15	VA
230	1,047	May-15	VA
230	706	May-15	VA
230	1,047	May-15	VA
230	1,047	May-15	NC
230	1,047	Jun-15	NC
500	4,330	Jun-15	VAWV
230	706	May-16	VA
500	3,460	May-16	VA
500	3,460	Apr-18	VA
230	1,047	May-18	VA
230	1,047	May-18	VA
230	1,047	Jun-18	VA
	230 230 230 230 230 230 230 230 230 230	230 797 230 600 230 1,047 230 1,047 230 1,047 230 1,047 230 608 230 900 500 3,377 230 1,047 230 1,047 230 1,047 230 1,047 230 1,047 230 1,047 230 1,047 230 1,047 230 1,047 230 1,047 230 1,047 230 1,047 230 1,047 230 1,047 230 1,047 230 1,047 230 3,460 230 3,460 230 1,047 230 1,047 230 1,047 230 1,047	230 797 Dec-12 230 600 May-13 230 1,047 May-13 230 608 May-14 230 900 May-14 500 3,377 Jun-14 230 1,047 May-14 500 3,377 Jun-14 230 1,047 May-14 500 3,460 Nov-14 230 1,047 May-15 230 1,047 May-16 500 3,460

APPENDIX 5K - LIST OF PLANNED TRANSMISSION LINES

.

* Planned transmission lines subject to change based on inclusion in future PJM RTEP and/or receipt of applicable regulatory approval(s)

.

APPENDIX 6A – RENEWABLE RESOURCES

.

Company Name:	IRCE GENERATION (GWH)	Vrgin	sa Electric and Pov	ver Comp ^{any}	-																		Sch	odule 1
KENEWABLE KEBOL	JACE GENERATION (GAN)					(ACTUAL)								(PA	OJECTE	0)							
Resource Type ⁽¹⁾	Unit Name	с.о.д. ⁽²⁾	BuildPurchase/ Convert ⁽⁵⁾	Life/Duration ^[4]	Size MW ⁽⁶⁾	2004	2008	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Hydro																								
	Cushaw Hydra Lint	Apr-05	Buiki	60	2	. 13	12	15	15	15	15	15	15	15	15	15	15	15	16	15	15	15	15	1
	Gaston Hydro	Feb-63	(burki	60	229	157	313	267	276	276	276	276	275	276	276	276	276	278	276	276	276	276	276	27
	Nuclh Anna Hydro	Dec-87	Bulk	60	1	1	1.1	3	2	2	2	2	2	2	2	2	2	2	2	7	2	2	2	
	Roanoke Repide Hydro	Sep-55	Built .	60	65	166	319	275	282	282	262	262	262	242	262	282	282	282	242	262	282	742	282	
<u> Sub-total</u>					318	337	845	580	576	571	576	678	576	678	\$76	576	576	576	578	570	576	574	574	2
Solar						·																		
	Hablax Solar	-	Bunja	25	4			-		-	-	2		8	6	6	8	6	6	6		6	6	
	Ballery Storage	-	Build		45	•	-				-	0	1	1	1	1	1	1	1	1	1	i	1	
Febricial					_ 9	<u> </u>	•	-	<u> </u>			2	8	8	8	8	0	6	•	1		1	8	
Annats m	Unit Name																							
	Pitoyivanin	Jun-84	Build	ø	83	488	430	492	391	496	307	318	345	379	-64	585	575	575	585	567	542	584	571	67.
	Virginia (illy #1	Apr-12	Buld		59			•	<u> </u>	140	233	181	189	209	303	264	283	325	325	318	312	122	128	5
	Alavala	Feb 92	Convert	. 30	51		.		<u> </u>		121	411	411	412	451	411	411	412	411	410	404	408	405	
	Southampton	Kter-92	Convert	20	5t		—	-			71	406	406	412	411	407	-	407	409	405	395	396	401	40
	(ispanya)	3492	Convert	28	51	· ·	•	-	-		157	405	405	409	409	402	404	402	405	367	389	391	395	36
	Ogden-Marin Feitfax	-	Purchase		<u>6</u>	568	585	650	374	502	403	300	122	<u> </u>		-		· .			•		•	
<u>\$u6-to1a]</u>					358	1,077	1,076	1,142	705	1,138	1,292	2,023	1,881	1,822	2,003	2,068	2,082	2,121	2,135	2,100	2,002	2,003	2,101	2,113
<u>Total Panawables</u>					884	1,413	1,670	1,702	1,341	1714	1,558	2,601	2,455	2,406	2,587	2,652	2,676	2,705	2,719	2,684	2,645	2.667	2,685	2.66

(1) Per definition of § 56-576 of the Va. Code.

(2) Commercial Operation Date.

(3) Company built, purchased or converted.

(4) Expected life of facility or duration of purchase contract.

(5) Net Summer Capacity.

(6) Excludes contracted 25 MW BTMG biomass capacity.

(7) Duel fired coal & biomass.

APPENDIX 6B – POTENTIAL SUPPLY-SIDE RESOURCES

Company Name:

Virginia Electric and Power Company

Schedule 15b

•

Potential Supply-Side Resources (MW)

UNIT PERFORMANCE DATA

Unit Name	Location	Unit Type	Primary Fuel Type	C.O.D. ⁽¹⁾	MW Summer	MW Nameplate
Combined Cycle 3x1 :2016	N/A	intermediate	Natural Gas-CC	N/A	1,337	1,437
Combined Cycle 3x1 :2019	N/A	Intermediate	Natural Gas-CC	N/A	1,337	1,437
CT:2020	N/A	Peak	Natural Gas-Turbine	N/A	400	440
CT:2021	N/A	Peak	Natural Gas-Turbine	N/A	400	440
CT:2023	N/A	Peak	Natural Gas-Turbine	N/A	400	440
CT:2024	N/A	Peak	Natural Gas-Turbine	N/A	400	440
CT:2025	N/A	Peak	Natural Gas-Turbine	N/A	400	440
CT:2026	N/A	Peak	Natural Gas-Turbine	N/A	400	440

(1) Commercial Operation Date.

.

AP - 58

.

EXTRAORDINARILY SENSITIVE INFORMATION REDACTED

APPENDIX 6C – SUMMER CAPACITY POSITION

	Virginia E	Ciectric an	i Pewer C	empany														Schu	dule 16
UTLITY CAPACITYPOSITION (MW)		ACTUAL)								(PF		D)							
	2000	2003	2010	2011	2812	2013	2616	2016	2018	2817	2018	2018	3929	2031	2822	2023	2824	2026	2026
Eduing Capacity Conventional Renewable	14,085	14 239	14,394	14,764	14,788	14,785	14,857	14,169	13,773	13,773	13,694	13,094	13,664	13,884	12,734	12,734	12,734	12,734	12,734
Total Edisting Capacity	16,210	18,442	16,557	16,947	16,999	15,995	17,013	16,565	18,128	10,129	10,000	16,050	16,000	10.050	15,090	15,090	15,090	15,090	13,090
Planned Under Censtruction																			
Conventional	<u> </u>		<u>.</u>			1256	564 29	556	556	1983 32	547	641	\$35 50	<u>526</u>	527 50	527	527	527	527
Renewable Total Planned Construction Capacity	<u>.</u>		÷		- 195	- 29 585	545	29 585	565	565	585 (685	44 585	565	585	505	545	545	585 585	50 505
Planned Under Cevelopment																			
Conventional						8	0	1,397	1,337	1,397	1,237	1,337	1,337	1,337	2,780	2,790	2,760	2,790	2,790
Renovable Total Planned Development Capacity	<u> </u>	<u> </u>	•			0		1.337	1.397	1.337	1397	1.397	1.397	1,497	2,710	2,790	2,710	2,790	2,700
ioni Pernet Development Capacity	<u>.</u>	-	·		<u> </u>			1,357	1,347	1,207	1,447	1,227	1,447	1,347	2,780	2,00	2,780	2,700	2,780
Potential (Expected) New Capacity				_	-		_												
Conventeral Renexable	÷		÷		_				1,337	1,337	1,337	2,674	3,074	3 474	.3.474	3,674	4,274	4,674	5,074
Total Polonital New Capacity	<u> </u>		<u>.</u>			0	0		1,341	1,343	1,343	2,640	3,000	3,480	3,480	3,000	4,260	4,680	5,000
Other (NUG)	1,748	1,749	1,749	1,747	1,747	1,747	1,247	1,684	1,732	627	427	262	218	218			-		
Unforced Availability	17.000		18,306			. <u></u>		-				-				22.160	<u> </u>		
Hei Generation Capacity	17,000	16,101	18,308	18,735	18 331	18,320	10,345	20,187	20,624	20,021	19,742	20,914	21,270	21,570	21,045		22,74	23,145	21,545
Existing DSM Reductions Demand Response		18		7			,	,	5	5	5	5	5			3		Б	
Concernite VEntriency	<u> </u>	-	•	<u> </u>	<u>_</u>	-	•	•	· ·	· · · ·	-	•		•		•	· ·		•
Tatal Existing DSM Reductions ⁽¹⁾	22	18	8			7	7	7	5	5	5	5		5		5	<u> </u>	5	
Approved DSNI Reductors																			
Demand Response ¹⁹⁹	<u> </u>	-	<u> </u>		3	125	176	224	267	304	357	34	367	404	413		425		64
Conversion/Efficiency ⁽²⁾⁽⁴⁾ Total Approved DSV Reductions	÷	<u> </u>	17	<u>30</u> 65		67 182	248	297	74 541	74	407	431	63 449		473		485	. 61 	61 490
I part voluciers no v unaridrate	<u> </u>	<u> </u>	28			102	240		341	3/8					4/4		- 480	- 491	
Proposed & Future DSM Reductions																			
Demand Response ¹⁴	<u>.</u>	<u> </u>	12	20	<u> </u>	19	47	50	м		<u>n</u>	78	<u>\$1</u>	64			<u> </u>		
Conservation/Eliciency ⁽⁷⁾ Total Processed & Future DSAI Reductions	<u>.</u>		- 12				217	275	374	<u>- 952</u> 418	<u>347</u> 419	418	332	395			- 342	- 344	412
•	_ -	<u> </u>																	
Total Domand-Bide Reductions ⁽¹⁾		0	37			245	- 45	65	773	796	427	848	142			S 11	621	<u></u>	937
Net Concration & Domand-side	18,070	18,191	16,308	18,735	10,301	19,585	10,011	20,789	21,399	20,618	20.590	21,763	22,132	22,551	<u></u>	23,254	23,660	24 074	24 483
Capacity Sale (2)	• •	1 · **	11					-500	-750	-200	-200	-206	-200	-200	-200	-200	-300	-200	-200
Capacity Purchase (7)	· .							70	43	364	1,003	153	764	205	370	348	284	240	316
Capacity Adjustment ⁽³⁾		1.1.4		.*			2	0		0	0		9			0			٥
Councily Requirement or																			
PJM Capacity Obligation			. •					20,020	20,244	20,500	28,9%	21,309	21,601	22,222	22,610	23,008	23.310	23,718	24,181
Nei Utâty Capacity Position				- 2		•	•	-61	-707	184	803	-47	64	65	170	149	54	40	110

(1) Existing DSM programs are included in the load forecast.

(2) Efficiency programs are not part of the Company's calculation of capacity.

(3) Capacity Sale, Purchase, and Adjustments are used for modeling purposes.

(4) Values in 2010 and 2011 represent modeled capacity; actual historical data based upon measured and verified EM&V results is not yet available. Projected values represent modeled DSM firm capacity.

CONFIDENTIAL INFORMATION REDACTED

Schedule 17

APPENDIX 6D – CONSTRUCTION FORECAST

Mininia Flectric and Rower Company

							0	PROJECTED))							
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
New Traditional Generating Facilities										•						
a. Construction Expenditure (Not AFUDC)				· · ·												
b. AFUDC ⁽¹⁾																
c. Annual Tolal	<i>,</i> .															
1, Cumulative Total		, ,												4		
iew Renewable Generating Facilities																
. Construction Expenditure (Not AFUDC)											19 <u>1</u> 7 1					
AFUDC ⁽¹⁾		· . · ·			• _	· · · ·			· · · · · · · · · · · · · · · · · · ·						1.5	
, Annuaj Totaj		10 Y .		° s `∖_`́π			5.5		¥ , ' '	5		· · ·		- 	્ ્રે	ч. Ц М.
, Cumulative Total		đ				: ?' *3						-				ئر ^م ربع م
Other Facilities	s	•				та 1. та	-	•								
a. Transmission			2 · · ·	· . , ·		· · · · · ·		tin ,			с.		ખુરી≎ું કે જે	2 °C (~ 2	19 P.
. Distribution						1 A				ંંટ્ર			े ने • •	· . · · ·	1 2 25	
Energy Conservation & DR	•															
. Other										و د			. <u>.</u>	1 1		
. AFUDG						$I_{2} \approx$	6 18.25	· · · · / Pa	· •	میں بر اور اور اور اور اور اور اور اور اور او			Sugar and			n
Annusi Total					2 - C - L	7 87				•						
, Cumulative Total	-					=					ý r					
Total Construction Expenditures	• 、		ي. ان رو ا			n San Bara				. 6 				r <u>⊢</u> γ Nov∵×	4	
a, Annuaj	1. C			· · · · ·				· · · · · ·				. 1			· · · · · ·	
b. Cumulative								N. 1.				·				
% of Funds for Total Construction	. :		1	e p					-	· · .						
	-															

(1) Does not include Construction Work in Progress.

Company Name:

EXTRAORDINARILY SENSITIVE **INFORMATION REDACTED**

APPENDIX 6E – CAPACITY POSITION

Company Name:	Virginia E	lectric an	d Power C	ompany														Sc	:hedule 4
POWER SUPPLY DATA																			
		ACTUAL)						<u> </u>			SOLECTE	0)							
	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
I. Capability (MW)																			
1. Summer																			
a, installed Nat Dependable																			
Capacity ⁽¹⁾	16,210	16,442	16,557	16,987	17,584	17,573	17,598	18,483	19,394	19,394	19,315	20,652	21,052	21,452	21,945	22,345	22,745	23,145	23,545
b. Positive Interchange																			
Commitments ⁽²⁾	1,749	1,881	1,749	1,747	1,747	1,747	1,747	1,684	1,232	627	427	262	218	218	-				-
c. Capability in Cold Reserve/																			
Reserve Shutdown Status ⁽¹⁾	0	9	74	166	137	74	74	-	-	-	-	-	-	-	-	-	-	-	-
d. Demand Response - Existing	22	18	9	7	7	7	7	7	. 5	5	5	5	5	5	5	5	5	5	5
e, Demand Response - Approved ⁽⁵⁾		-	9	35	36	125	176	224	267	304	337	384	367	404	413	420	425	430	434
f, Demand Response - Proposed ⁽⁵⁾	-	-	12	20	•	10	47	50	58	66	73	78	6 1	84	87	81	94	95	56
g. Capacity Sale ⁽³⁾				22				-500	-750	-200	-200	-200	-200	-200	-200	-200	-200	-200	-200
h. Capacity Purchase ⁽³⁾								79	43	394	1,003	153	264	285	370	349	254	240	316
i. Capacity Adjustment ⁽³⁾									-			-		-	-	-	-	-	
j. Total Net Summer Capability ⁽⁴⁾	• •			۰, ^۲	: " <u>«</u>	м на с м		20,020	20,244	20,586	20,955	21,309	21,001	22,222	22,616	23,006	23,318	23,710	24,191
2. Winter																			
a, installed Net Dependable																			
Capacity ⁽¹⁾			-	20,981	21,713	21,680	21,656	23,113	24,341	23,191	23,084	23,521	23,961	24,401	24,938	25,378	25,818	26,258	25,690
b. Positive Interchange							_												
Commitments ⁽²⁾	-		<u> </u>	1,940	1,940	1,840	1,940	1,877	1,361	635	434	267	222	222	-		-	-	-
c. Capability in Cold Reserve/																			
Reserve Shutdown Status ⁽¹⁾	0	0	77	140	140	<u> </u>	77		-	-			-	-		-	-		<u> </u>
d. Demand Response ⁽⁵⁾			12	20		19	47	50	58	56	73	78	81	. 14	67	91	94	95	96
e, Demand Response-Existing ⁽⁶⁾	22	18	7	7	7	7	7	1	5	5	5	5	5	5	5	5	5	5	5
f. Total Net Winter Capability ⁽⁴⁾		-		22,920	23,653	23,639	23,544	25,040	25,760	23,892	23,591	23,866	24,264	24,708	25,026	25,469	25,912	28,353	26,794

.

Net Seasonal Capability.
 Includes only firm commitments from Non-Utility Generation.
 Capacity Sale, Purchase, and Adjustments are used for modeling purposes.
 Does not include Cold Reserve Capacity and Behind-the-Meter Generation MWs.
 Values in 2010 and 2011 represent modeled capacity; actual historical data based upon measured and verified EM&V results is not yet available. Projected values represent modeled DSM firm capacity.

(6) Included in the winter capacity forecast

N.C Utilities Commission

•

NC IRP ADDENDUM 1

DOMINION NORTH CAROLINA POWER 2011 REPS COMPLIANCE PLAN

Pursuant to North Carolina Utilities Commission ("NCUC") Rule R8-67 (b), Virginia Electric & Power Company d/b/a Dominion North Carolina Power ("Company") submits its Renewable Energy and Energy Efficiency Portfolio Standard ("REPS") Compliance Plan in accordance with N.C.G.S. § 62-133.8 (b), (c), (d), (e) and (f), and the aforementioned NCUC Rule R8-67(b). The REPS Compliance Plan covers the current (2011) and immediately subsequent two calendar years (2012-2013). This North Carolina REPS Compliance Plan is an addendum to the Company's 2011 Integrated Resource Plan ("IRP").

As indicated in the Company's REPS Compliance Report filed on August 25, 2011, the Company has met its 2010 REPS requirement.

1.1 RENEWABLE ENERGY REQUIREMENTS

An overview of North Carolina's REPS requirements and Virginia's Renewable Energy Portfolio Standard ("RPS") goals are provided in Chapter 4, Section 4.3 of the Company's 2011 Integrated Resource Plan ("2011 Plan") filed simultaneously with this addendum.

1.2 COMPLIANCE PLAN

In accordance with Rule R8-67 (b) (i), the Company describes its planned actions to comply with G.S. 62-133.8 (b), (c), (d), (e), and (f) for each year.

The Company

The Company plans to meet North Carolina's statu tory goals through the year 2021 and thereafter with a REPS Compliance Plan that includes the use of Renewable Energy Certificates ("RECs"), energy efficiency ("EE") and new company-generated renewable energy where economically feasible. North Carolina General Statute § 62-133.8(d) sets the initial compliance target for solar in years 2010 and 2011 as 0.02% of the previous year's baseline load, with overall REPS compliance beginning in 2012, along with swine waste and poultry waste set-asides. The Company began implementing the energy efficiency programs in North Carolina by introduction of the Residential Lighting Program in May 2011 and the other approved programs in June 2011. These programs will contribute to the overall REPS goals, subject to approval by the NCUC.

On September 22, 2009, the NCUC issued an order on the Company's motion for further clarification in Docket No. E-100, Sub 113 ruling that the Company is allowed to utilize out-of-state RECs to meet all of its REPs requirements per G.S. 62-133.8(b)(2)(e). Therefore, in accordance with such order, the Company plans to meet DNCP's obligations with a mix of purchased out-of-state RECs, in-state RECs, qualified energy efficiency programs, and qualified company-generated renewable energy where economically feasible. Figure 1.2.1 provides the summary for the 2011 to 2013 REPS Compliance Plan.

	2011	2012	2013
Baseline Sales Forecast (MWh)	3,996,743	4,135,654	4,287,900
NC Total REPs Requirement %		3%	3%
Total REPS Target (MWh) ¹		119,903	124,070
NC Total Solar Target %	0.02%	0.07%	0.07%
Total Solar Target (MWh) ¹	866	2,798	2,895
NC Total Swine Target %		0.07%	0.07%
Total Swine Target (MWh) ¹		2,798	2,895
NC Total Poultry Target % ^{1,2}		3.02% of 170,000 MWh	3.07% of 700,000 MWh
Total Poultry Target (MWh)		5,137	21,490
General REPS Requirement (net of Solar, Swine and Poultry) (MWh)		109,170	96,790
Energy Efficiency (MWh) ³	a the state	$cs^2 < \beta_{2d}^2$	
Company-Generated Renewables (MWh)			28,939

Figure 1.2.1 2011-2013 COMPANY'S REPS COMPLIANCE PLAN SUMMARY

Notes: (1) 2011 target is based on actual 2010 retail sales of 4,329,303 MWh. 2012-2013 targets are based on baseline retail sales forecasts. The total target is the product of the previous year's baseline load and the current year target percentage. (2)Calculation may not equal due to rounding. (3) Per the statute, the energy savings from EE programs in 2011 can be retained and applied to the 2012 target.

The Town of Windsor

4

The Company is also responsible for meeting REPs requirements for the Town of Windsor, a wholesale customer of the Company, as outlined in Figure 1.2.2

	2011	2012	2013
Baseline Sales Forecast (MWh)	60 11 11		10 - 15 10
NC Total REPs Requirement %	·····	3%	3%
Total REPS Target (MWh) ¹			
NC Total Solar Target %	0.02%	0.07%	0.07%
Total Solar Target (MWh) ¹			
NC Total Swine Target %		0.07%	0.07%
Total Swine Target (MWh) ¹			
NC Total Poultry Target % ²		0.04% of 170,000 MWh	0.04% of 700,000
Total Poultry Target (MWh) ¹			

Figure 1.2.2 2011-2013 TOWN OF WINDSOR REPS COMPLIANCE PLAN SUMMARY

NC IRP ADDENDUM-1 PUBLIC - REDACTED VERSION

General REPS Requirement	
(net of Solar, Swine and	
Poultry) (MWh)	

Notes: (1) 2011 target is based on actual 2010 retail sales of **Carterian** MWh reported by the Town of Windsor. 2012-2013 targets are based on forecasts from the Town of Windsor. The total target is a product of the previous year's baseline retail sales and the current year target percentage.

Solar RECs

4

The Company's strategy for DNCP's compliance with solar requirements is to buy unbundled out-of-state RECs to minimize the compliance cost to the ratepayers. The Company has purchased or entered into contracts to purchase solar RECs for DNCP's compliance with G.S. 62-133.8 (b) and (d) through 2013. Specifically, the Company has entered into contracts for the purchase of Solar RECs for the term of six (6) years with Integrys Energy Sevices Inc (d/b/a Solar Star California). This contract will provide enough Solar RECs to satisfy DNCP's compliance for the years 2012 thru 2014 and approximately 35% of the requirements for 2015 through 2017.

The Company is currently negotiating a contract with a facility located in NC that will satisfy the Town of Windsor's compliance requirements for 2011 and 2012. As per the guidance and advice received from Public Staff, the Company intends to purchase 75% of the Solar Carve-out REPS requirements for the Town of Windsor from solar facilities located inside the state.

Swine and Poultry RECs

Under the oversight of the Commission, a group of electric suppliers subject to North Carolina statutes, including the Company, issued joint requests for proposals ("RFPs") for swine waste and poultry litter energy that meet the current set-aside requirements. Several proposals from Swine and Poultry waste RECs suppliers were received and evaluated. Negotiations were finalized with five (5) swine waste RECs suppliers and the Company has signed long term contracts with all five of these suppliers. The joint buyers' group is also negotiating with a poultry litter RECs supplier for a long term contract.

General REPS Requirements Net of Solar, Swine and Poultry

The Company plans to comply with the general REPS requirements, which begin in 2012, using a combination of the approved options to include obtaining qualifying RECs, applying EE programs, and using company-generated new renewable energy that qualify under North Carolina law. The Company's 2011 IRP, of which this Plan is filed as an addendum, includes in the Preferred Plan, beginning in 2013, company-generated new renewable energy from biomass fuel co-firing at the Company's Virginia City Hybrid Energy Center (VCHEC) expected to go on-line in 2012 as well as biomass fuel conversions at the Altavista, Hopewell and Southhampton power stations (pending approval).

1.3 REC CONTRACTS

In accordance with Rule R8-67 (b) (ii), the Company provides a list of executed contracts to purchase renewable energy certificates.

As mentioned in the previous section, the Company has purchased Solar RECS and entered into long-term Swine Waste and Solar REC contracts to comply with G.S. 62-133.8 (b) and (d) and (e). Figures 1.3.1 and 1.3.3 provide summaries of the contracts.

	Total Volume	Volume / Year	Term	Price / MWh	Total Expense
				4.	
of the state of the			At in		2.00
a second a s		3.			ten and the second s
					Sec.
and the second s		19. juli		1 4 4 4 4 4 4 1 4 4 5 1	
		۰		i se cita G	
		32			1. S. S. S. J.
				- 2 A F	and a second s
Total Volume				Total Expense	

Figure 1.3.1 2011-2013 Solar REC Purchase Contract Summary¹

Notes: Contracts are confidential. (1) The Company plans to retain any surplus RECs from 2010 and 2011 and use for future compliance. (2) Contracts for Town of Windsor compliance.

Type of REC	2011	2012	2013
Solar			
Target (MWh)	- 11 -	1. Carg.	57 N 2
Less Banked RECs	E [†] E [†] E [†] E [†] ∈ ²		
Town of Windsor ²	ž.		
Net Target		1	1987
Purchased RECs		N. A.	
Net Solar REC Position	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		a, k

Figure 1.3.2 COMPANY'S SOLAR REC COMPLIANCE BY YEAR

Notes: (1) 1,313 RECs banked in 2010. (2) Town of Windsor's 25% allowable out of state requirement is added to the Company's requirement for execution efficiency. Town of Windsor's remaining 75% in state solar requirement is satisfied separately. Therefore, it is not included in Figure 1.3.2.

	Total Volume	Volume / Year ¹	Term	Price / MWh ²	Total Expense
		43	Station and the second		
	2000 - 200 - 200 		A CALL AND A CALL	v s _e tati v qr. s. p. s.	$\sum_{k=1}^{N} \sum_{i=1}^{N} \frac{1}{i} \sum_{k=1}^{N} \frac{1}{i} \sum_{i=1}^{N} \frac{1}{i} \sum_{k=1}^{N} $
	alling and the second s	¢2	States Short	19 - A.	$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}$
	14 st		and the second for a		= (17, 10)
	16. 18 A.	· 微子	ALL MARK	$\begin{pmatrix} i_1 \\ i_2 \\ i_3 \end{pmatrix} \overset{\mathcal{D}_{\mathcal{H}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}_{\mathcal{H}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}_{\mathcal{H}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}_{\mathcal{H}}}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{}{\overset{\mathcal{D}}}{}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{}{\overset{\mathcal{D}}}{}}{\overset{\mathcal{D}}}{}{}{}}{\overset{\mathcal{D}}}{}{}}{\overset{\mathcal{D}}}{}{}{}}{}{}$	
Total Volume				Total Expense	$= \sup_{\mathbf{A} \in \mathcal{A}} \mathfrak{D} \cap \mathbb{Z}_0 \mathbb{Z}_0$

Figure 1.3.3 2011-2013 Swine Waste REC Purchase Contract Summary

Notes: Contracts are confidential. (1) Reduced volumes in first year of contract. Volume / Year shows first full calendar year production. (2) Price escalates approximately 2.5% per year. Prices given are for initial year. (3) Assumes 50% of RECs are produced with swine waste (contract requires at least 50% production from swine waste).

Type of REC	2012	2013
Swine		···
Target (MWh)	17-2-4	$\sum_{i=1}^{n} e^{i\phi_{i}}$
Less Banked RECs	1 - 701 (a) - 11 - 12 - 12 - 12 - 12 - 12 - 12 - 12	
Town of Windsor	10 L	
Net Target		
Purchased RECs	ेकिली है।	$\frac{q}{2}$ κ_{i}
Net Swine REC Position	20 g - 3_	5 4 (j) - (<mark>9</mark>

Figure 1.3.4 COMPANY'S SWINE REC COMPLIANCE BY YEAR

Notes: (1) Expected delivery in 2011 from contracts listed in Figure 1.3.2. (2) Company is actively attempting to purchase Swine Waste RECs from out of state suppliers to comply.

Based on the Company's assessment of the current status of the signed contracts (shown in Figure 1.3.3), it is highly unlikely that the Swine Waste Compliance Requirements will be satisfied for the 2012 compliance year.

1.4 ENERGY EFFICIENCY PROGRAMS

In accordance with Rule R8-67 (b) (iii), the Company provides a list of planned or implemented energy efficiency measures, including a brief description of the measure and projected impacts.

The Company will apply its energy efficiency programs approved by the NCUC to meet the NC REPS requirements as permitted by law. Figure 1.4.1 lists the potential energy efficiency programs and gives a projection of the resulting energy savings from each program.

	2011	2012	2013
Commercial HVAC Upgrade Program	20日日) 1、11日) 11日)		194
Commercial Lighting Program		$S = \frac{1}{2} \frac{1}{2} \frac{1}{2}$	
Low Income Program		• \$\$	
Residential Lighting Program	a produce of	and the second	
Energy Efficiency Total			$= \frac{1}{2^{N-1}} \sum_{k=1}^{N-1} \frac{1}{2^{N-1}}$

Figure 1.4.1 NORTH CAROLINA ENERGY EFFICIENCY PROGRAMS ENERGY SAVINGS (MWh)

Note: (1) Per the statute, the energy savings from energy efficiency programs in 2011 can be retained and applied to the 2012 target. (2) Total does not equal due to rounding.

A brief description of these energy efficiency programs can be found in Section 3.2.6 of the IRP of which this report is an addendum. The Company also intends to seek approval of additional programs with the NCUC in the future.

1.5 RETAIL SALES & CUSTOMER ACCOUNTS

In accordance with Rule R8-67 (b) (iv), the Company states the projected Company's North Carolina retail sales and year-end number of customer accounts by customer class for each year.

The Company

Figure 1.5.1 summarizes the Company's North Carolina retail sales and Figure 1.5.2 summarizes the year-end number of customer accounts by customer class for each year of the REPS Compliance Plan.

Year	Residential Sales (MWh)	Commercial Sales (MWh) ²	Industrial Sales (MWh)	Total Sales (MWh)
2011 (projected)	1,588,607	999,488	1,408,648	3,996,743
2012 (projected)	1,621,287	1,051,317	1,463,050	4,135,654
2013 (projected)	1,638,102	1,071,132	1,578,666	4,287,900

Figure 1.5.1 COMPANY'S NORTH CAROLINA RETAIL SALES¹

Notes: (1) Excludes the Town of Windsor's wholesale customer load. (2) Includes the Public Authority and Street and Traffic Lighting load.

Year	Residential Customers	Commercial Customers ²	Industrial Customers	Total Customers
2011 (projected)	103,200	18,202	57	121,459
2012 (projected)	104,541	18,412	57	123,010
2013 (projected)	106,256	18,660	57	124,973

Figure 1.5.2 COMPANY'S NORTH CAROLINA CUSTOMER ACCOUNTS¹

Notes: (1) Customer account totals are year-end forecasts. These differ slightly from Appendix 2F in the 2011 IRP which are average yearly amounts. (2) Includes the Public Authority and Street and Traffic Lighting accounts.

Town of Windsor

Figure 1.5.3 summarizes the Town of Windsor's retail sales and Figure 1.5.4 summarizes the year-end number of customer accounts by customer class for each year of the REPS Compliance Plan.

Year	Residential Sales (MWh)	Commercial Sales (MWh)	Industrial Sales (MWh)	Total Sales (MWh)
2011 (projected)	Sale and		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	$= \left\{ \begin{array}{c} e^{2\omega} e^{-\omega} e^{-\omega} \\ e^{-\omega} e^{-\omega} e^{-\omega} e^{-\omega} \end{array} \right\}$
2012 (projected)	1 State State	the second second	Start age	and the second sec
2013 (projected)	44 H			15

Figure 1.5.3 TOWN OF WINDSOR'S RETAIL SALES¹

Note: (1) Sales are year-end forecasts provided by the Town of Windsor.

Figure 1.5.4 TOWN OF WINDSOR'S CUSTOMER ACCOUNTS¹

	Residential	Commercial	Industrial	Total
Year	Customers	Customers ²	Customers	Customers
2011 (projected)	1 Carp			1 0 % gr
2012 (projected)	1997 A.s.			an training. Maria
2013 (projected)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8	2	Eres 200

Notes: (1) Customer account totals are year-end forecasts provided by Town of Windsor.

1.6 AVOIDED COST RATES

In accordance with Rule R8-67 (b) (v), the Company provides the following statement regarding the current and projected avoided cost rates for each year.

Figure 1.6.1 identifies the projected avoided energy and capacity cost from the Biennial Determination of Avoided Costs Rates for Electric Utility Purchases from Qualifying Facilities – 2010 proceeding E-100, SUB 127 before the North Carolina Utilities Commission. Avoided energy and capacity cost as used in the 2011 IRP are given below in Figure 1.6.2.

	On-Peak (\$/MWh)	Off-Peak (\$/MWh)	Capacity Price (\$/kW-Year)
2011	50.09	38.46	49.93
2012	52.31	40.09	20.23
2013	54.84	41.19	8.41

Figure 1.6.1 PROJECTED AVOIDED ENERGY AND CAPACITY COST (from E-100 sub 127)

Figure 1.6.2 PROJECTED AVOIDED ENERGY AND CAPACITY COST (from NC 2011 IRP)

	On-Peak (\$/MWh)	Off-Peak (\$/MWh)	Capacity Price (\$/kW-Year)
2011	58.13	42.76	49.93
2012	59.52	45.05	20.23
2013	57.20	43.34	8.41

1.7 TOTAL & PROJECTED COSTS

k

In accordance with Rule R8-67 (b) (vi), the Company provides the projected total and incremental costs anticipated to implement the REPS Compliance plan for each year.

The Company

The Company's total and incremental costs for the plan year 2011 are expected to consist of the cost to purchase unbundled out-of-state solar RECs. The projected costs for 2012 and 2013 are expected to consist of the sum of the costs required to comply with solar, swine, poultry and other general renewable requirements. Outside legal costs, joint RFP consulting engineer's fees and NC RETS system development costs and ongoing user fees could also be incurred. Figure 1.7.1 outlines the Company's Compliance Cost Summary for RECs procurement from 2011 to 2013.

Type of REC	2011	2012	2013
Solar			
Target (MWh)	n Mi Sant	St. K. C.	25.5 ⁸ .0
REC Cost (\$/MWh) ¹	and share	Part Sec.	22.54
Projected Cost	A State of the second		$\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} $
Swine			
Target (MWh)		144 to	$\sum_{i=1}^{n-1} \frac{g_{i}}{g_{i}} = \frac{g_{i}}{g_{i}}$
REC Cost (\$/MWh) ²			р.
Projected Cost		the second second	
Poultry			
Target (MWh)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
REC Cost (\$/MWh) ²		13 m	VR. C
		<u>1 </u>	

Figure 1.7.1 COMPANY'S COMPLIANCE COST SUMMARY

NC IRP ADDENDUM-1 PUBLIC - REDACTED VERSION

Projected Cost			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
General REPs			
Target (MWh)		e frie en	A AND
Less Energy Efficiency ³	· ·	6, 202, 35	and the second
Less Company-Generated Renewable			
Net Target		· BOSHIGHT	
REC Cost (\$/MWh) ²		940) 24 -	
Projected Cost		A to approve	
Projected Administrative Cost ⁴		WY TO S	<u>a en el compositor en el c</u>
TOTAL PROJECTED COMPLIANCE COST		$ \begin{array}{c} & & & \\ & $	a a far Eller a se

Notes: (1) Solar REC costs for 2011-2013 are from contracts listed in Figure 1.3.1. (2) 2012/2013 projected REC costs are based on market estimates, signed contracts and/or ongoing negotiations. (3) Energy efficiency for 2012 is the sum of 2011 and 2012. (4) Administrative costs include, but are not limited to: NC-RETs fees, broker fees, and miscellaneous expenses.

The Town of Windsor

The Town of Windsor's total and incremental costs for the plan year 2011 are expected to consist of the purchase of qualified solar RECs. The projected costs for 2012 and 2013 are expected to consist of the sum of the costs required to comply with solar, swine, poultry and other general renewable requirements. Figure 1.7.2 outlines the Town of Windsor's Compliance Cost Summary from 2011 to 2013.

Type of REC	2011	2012	2013
Solar			
Target (MVVh)		а Р	
REC Cost (\$/MWh) ^{1,2}	经 销益	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 Table & .
Projected Cost	-93° - 4	148.2 M	1
Swine		·	
Target (MWh)			
REC Cost (\$/MWh) ²			- region -
Projected Cost		1 S.4 - 12-	and the second sec
Poultry			
Target (MWh)		200 C	
REC Cost (\$/MWh) ²			And the second
Projected Cost		15 19 V. 1 10 6 1	Constraint of
General REPs			
Target (MWh)		A Arts	29 - 0 1
REC Cost (\$/MWh) ²			

Figure 1,7.2 TOWN OF WINDSOR'S COMPLIANCE COST SUMMARY

Projected Cost		A. S. Con	$\mathbb{R}^{n,d}_{n+1} \in \mathbb{R}^{n}_{n+1}$
TOTAL PROJECTED COMPLIANCE COST	1 3 T.C.	$= 0^{-1} \frac{1}{2} 1$	and the state of the

Notes: (1) Solar REC costs for 2011 are weighted averages from contracts listed in Figure 1.3.1. (2) 2012/2013 projected REC costs are based on market estimates, signed contracts and/or ongoing negotiations.

1.8 ANNUAL COST CAPS

In accordance with Rule R8-67 (b) (vii), the Company provides the following comparison of projected costs to the annual cost caps contained in G.S. 62-133.8 (h) (4).

Figure 1.8.1 provides a comparison of the Company's projected costs to the annual cost caps for each year of the REPS Compliance Plan. Compliance costs are allocated to the Customer Classes based on the percentage of each of the Customer Class Cost Caps to the Total Cost Cap.

Compliance Year 2011	Residential Customers	Commercial Customers	Industrial Customers	Total Customers
Projected Year-End Annual Customers		0-25-2		S 5
Annual Cost Cap per Customer				
Annual Cost Cap, Total	$\left\ \begin{array}{c} \left\ $	at the second has stretched and the second s	1212-338403 1212-338403	and the state of the second se
Projected Cost of Compliance ¹	$\frac{1}{M} = -\frac{1}{M} \frac{1}{M} \frac{1}{M} \frac{1}{M}$		370 746	the second second

Figure 1.8.1 COMPANY'S COMPARISON TO ANNUAL CAPS

Compliance Year 2012	Residential Customers	Commercial Customers	Industrial Customers	Total Customers
Projected Year-End Annual Customers		and the start		
Annual Cost Cap per Customer ²		1713×175 2 113234	i saying	
Annual Cost Cap, Total	2	Contract Although Strategy	The grant	1. 1. 1. 2. S. L.
Projected Cost of Compliance ¹	$y_{1} \in b_{1}$	28 a Richard	and the second second	

Compliance Year 2013	Residential Customers	Commercial Customers	Industrial Customers	Total Customers
Projected Year-End Annual Customers		A Contraction		
Annual Cost Cap per Customer		1.28	a standay	
Annual Cost Cap, Total			1. S. M. M. M.	
Projected Cost of Compliance ¹		and the first and the second		There are

Notes: (1) Projected costs were allocated to the customer classes based on customer percentage of total cost cap. (2) Annual cost cap per customer increases in 2012 per 62-133.8 (h) (4).

Figure 1.8.2 provides a comparison of the Town of Windsor's projected costs to the annual cost caps for each year of the REPS Compliance Plan.

Compliance Year 2011	Residential Customers	Commercial Customers	Industrial Customers	Total Customers
Projected Year-End Annual Customers	Sec. Sec.	17%		a start
Annual Cost Cap per Customer				
Annual Cost Cap, Total			2 2 2 2	建
Projected Cost of Compliance ¹				

Figure 1.8.2 TOWN OF WINDSOR'S COMPARISON TO ANNUAL CAPS Confidential information indicated by italics.

Compliance Year 2012	Residential Customers	Commercial Customers	Industrial Customers	Total Customers
Projected Year-End Annual Customers				
Annual Cost Cap per Customer ²			The sector	
Annual Cost Cap, Total		2.55	1. M. D. P	
Projected Cost of Compliance ¹	· · · · · · · · · · · · · · · · · · ·			

Compliance Year 2013	Residential Customers	Commercial Customers	Industrial Customers	Total Customers
Projected Year-End Annual Customers				3.5v/
Annual Cost Cap per Customer	1.2		$\frac{\partial \mathcal{D}_{\mathbf{x}}}{\partial \mathbf{x}} = \frac{\partial \mathcal{D}_{\mathbf{x}}}{\partial \mathbf{x}} \frac{\partial \mathcal{D}_{\mathbf{x}}}{\partial \mathbf{x}}$	l l
Annual Cost Cap, Total	25 A. 10 5		てきるがい。	East Have
Projected Cost of Compliance ¹		·····-		

Notes: (1) The Town of Windsor is to determine the allocation among the different customer classes. (2) Annual cost cap per customer increases in 2012 per 62-133.8 (h) (4).

1.9 REPS RIDER

In accordance with Rule R8-67 (b) (viii), the Company provides an estimate of the amount of the REPS rider and the impact on the cost of fuel and fuel-related costs rider necessary to fully recover the projected costs.

The Company did not file a REPS Rider in 2010 and is not filing a REPS Rider in 2011. As described in the Company's REPS Compliance Report filed on August 26, 2011, the Company expects to spend in total under \$60,000 for 2010 and 2011 REPS compliance for DNCP and Town of Windsor. Due to the relatively small cost of compliance so far, the Company does not consider it to be cost-effective to seek recovery of these costs at this time. The Company recognizes that any recovery of these costs will need to be approved by the Commission.

1.10 REGISTRATION INFORMATION

In accordance with Rule R8-67 (b) (ix), the Company provides the following statement in response to the requirement that, to the extent not already filed with the Commission, the electric power supplier shall, on or before September 1 of each year, file a renewable energy facility registration statement pursuant to Rule R8-66 for any facility it owns and upon which it is relying as a source of power or RECs in its REPS compliance plan.

The Company will confirm that the facilities generating solar, swine, poultry and/or other renewable RECs, used by the Company for its REPS Compliance Plan have registered and filed the appropriate information with the NCUC pursuant to Rule R8-66.

Clerk's Office N.C Utilities Commission

NC IRP ADDENDUM 2

.

•

.

.

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
1	TRANSMISSION LINE STATIST	ICS	-

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property,

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGN	ATION	VOLTAGE (K) (Indicate where other than 60 cycle. 3 pha		Type of Supporting	i report cir	(Pole miles) case of ound lines cuit miles)	Number Of
	From	То	Operating	Designed	Structure	On Structure of Line Designated	On Structures of Another Line	Circuits
	(a)	(b) .	(c)	(d)	(e)		(g)	(h)
1	SURRY	SUFFOLK (531)	500.00	500.00	STEEL	37.27		1
2	DOOMS	CUNNINGHAM (534)	500.00	500.00	STEEL	32.68		1
3	OX	BRISTERS (539)	500.00	500.00	STEEL	22.89		1
4	FLUVANA PWR STA	CUNNINGHAM (542)	500.00	500.00	STEEL	0.28		1
5	PLEASANT VIEW	DOUBS (543)	500.00	500.00	STEEL	3.00		1
6	BRISTERS	MORRISVILLE (545)	500.00	500.00	STEEL	7.91	-	1
7	LEXINGTON	BATH (547)	500.00	500.00	STEEL	34.70		1
8	BATH	VALLEY (548)	500.00	500.00	LATTICE	51.82		1
9	VALLEY	DOOMS (549)	500.00	500.00	STEEL	17.72		1
10	MT. STORM	VALLEY (550)	500.00	500.00	STEEL	64.39		1
11	MT. STORM	DOUBS (551)	500.00	500.00	STEEL	96.40		1
12	BRISTERS	LADYSMITH (552)	500.00	500.00	STEEL	35.41		1
13		(552)	500.00	500.00	STEEL		1.20	
14	CUNNINGHAM	ELMONT (553)	500.00	500.00	STEEL	51.03		1
15	DOOMS	LEXINGTON (555)	500.00	500.00	STEEL	39.04		1
16	CLOVER	CARSON (556)	500.00	500.00	STEEL	76.72		1
17	ELMONT	CHICKAHOMINY (557)	500.00	500.00	STEEL	27.73		1
18	LOUDOUN	PLEASANT VIEW (558)	500.00	500.00	STEEL	13.01		1
19	LOUDOUN	CLIFTON (559)	500.00	500.00	STEEL	12.08		1
20	POSSUM POINT	BURCHES-PEPCO (560)	500.00	500.00	H.FRAME	0.19		1
21	CLIFTON	OX (561)	500.00	500.00	STEEL	7.05		1
22	CARSON	SEPTA (562)	500.00	500.00	STEEL	38.47		1
23	CARSON	MIDLOTHIAN (563)	500.00	500.00	STEEL	37.41		1
	CUNNINGHAM	FLUVANA PWR STA (564)	500.00	500.00	STEEL	0.26		1
25	SUFFOLK	YADKIN (565)	500.00	500.00	STEEL	4.80		1
26	<u> </u>	(565)	500.00		ALUM TOWER	8.66		
27	LEXINGTON	CLOVERDALE-APCO (566)	500.00	500.00	STEEL	7.09		1
28	CHICKAHOMINY	SURRY (567)	500.00	500.00	STEEL	44.44		1
29	POSSUM POINT	LADYSMITH (568)	500.00	500.00	STEEL	47.56		1
30	LOUDOUN	MORRISVILLE (569)	500.00	500.00	STEEL	22.36		1
31		(569)	500.00	500.00	STEEL	1.26		
32		(569)	500.00	500.00	STEEL	8,16	· · · · · · · · · · · · · · · · · · ·	
	CARSON	WAKE (570)	500.00	500.00	STEEL	56.40		1
	OX	POSSUM POINT (571)	500.00	500.00	H.FRAME	12.86		
-	NORTH ANNA	MORRISVILLE (573)	500.00		STEEL	32.91		
36	······································				TOTAL	5,308.05	860.32	425

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	TRANSMISSION LINE STATIST	<u></u>	<u>ا</u> ــــــ

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction if a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIG	NATION	VOLTAGE (KV (Indicate wher other than 60 cycle, 3 ph		Type of Supporting	i report ciri	(Pole miles) case of bund lines cuit miles)	Number Of
{	From	То	Operating	Designed	Structure	On Structure	On Structures of Another Line	Circuits
	(a)	(b)	(C)	(d)	(e)	of Line Designated (f)	Line (g)	(h)
1	ELMONT	LADYSMITH (574)	500.00		STEEL	26.19		1
<u> </u>	NORTH ANNA	LADYSMITH (575)	500.00		STEEL	13.59		
3		(575)	500.00		H.FRAME	0.94		,
4		NORTH ANNA (576)			STEEL	41.30		1
		SURRY (578)	500.00		STEEL	11.46	··	1
		SEPTA (579)	500.00		LATTICE	46.86		1
7	MORRISVILLE	MEADOWBROOK (580)	500.00		STEEL	47.54		1
8		MEADOWBHOOK (380)	500.00	300.00	<u> </u>			
9	SUBTOTAL-500KV	·	500.00	500.00	F	1,141.84	1.20	37
10							1.20	<u>.</u>
11	PENDER	BULL RUN (200)		230.00	STEEL	0.63		1
12		(200)	230.00		H.FRAME	2.87		
13		(200)	230.00		STEEL POLE	3.99		
14		PLEASANT VIEW (201)	230.00		STEEL	7.97		1
┣	IDYLWOOD	CLARK (202)	230.00		STEEL	4.03		1
	PLEASANT VIEW	DICKERSON (203)	230.00		STEEL	3.03		1
17		JEFFERSON ST (204)	230.00		STEEL	6.67		
18		(204)	230.00		WOOD POLE	4.12		·
19		LOCKS (205)	230.00		STEEL	2.81		1
20		(205)	230.00		STEEL	9.42	··-	<u> </u>
21	BRADDOCK	IDYLWOOD (207)	230.00		STEEL		4.68	1
22	CHESTERFIELD	SOUTHWEST (208)	230.00		STEEL	10.61	4.00	1
23		(208)	230.00		STEEL	3.78		
24		YORKTOWN (209)	230.00		WOOD	14.13		1
25		(209)	230.00		STEEL	4.57		
		VAN DORN (210)	230.00		STEEL		2.90	1
27	CHESTERFIELD	HOPEWELL (211)	230.00		STEEL	11.17		1
28	HOPEWELL	SURRY (212)	230.00		H.FRAME	0.27		1
29		(212)	230.00		STEEL	42.70		
<u> </u>	CAROLINA	THELMA (213)	230.00		STEEL	10.07		1
	SURRY	WINCHESTER (214)	230.00		STEEL	13.90		1
32		(214)	230.00		STEEL		23.71	
	POSSUM POINT	HAYFIELD (215)	230.00		STEEL	12.44		1
34	+++	(215)	230.00		STEEL	7.62		
35		(215)	230.00		STEEL POLE	0.48		
							1	
36					TOTAL	5,308.05	860.32	425

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) [X] An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of2010/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGN		VOLTAGE (K) (Indicate when other than 60 cycle, 3 phi		Type of Supporting	(In the undergro report circ	(Pole miles) case of ound lines cuit miles)	Number Of
	From	То	Operating	Designed	Structure	on Structure	On Structures of Another Line	Circuits
	(a)	(b)	(C)	(d)	(e)	of Line Designated (f)	Line (9)	(h)
1	LAKESIDE	ELMONT (216)	230.00		H.FRAME	5.74		1
2	LAKESIDE	CHESTERFIELD (217)	230.00		H.FRAME	20.87		1
3		(217)	230.00	230.00			0.63	
4	EVERETTS	GREENVILLE (CP&L) (218)	230.00	-	H.FRAME	20.32		1
5		(218)	230.00	230.00		1.33		
6	MIDLOTHIAN	SOUTHWEST (219)	230.00		STEEL POLE	13.77		1
7		(219)	230.00	230.00			7.52	
8	ox	GUM SPRINGS (220)	230.00	230.00			9.68	1
9		(220)	230.00		WOOD POLE		4.53	
	NORTHWEST	ELMONT (221)	230.00	230.00		5.93		1
	NORTHWEST	SOUTHWEST (222)	230.00	230.00		10.25		1
	SURRY	YADKIN (223)	230.00	230.00		44.10		1
	NORTHERN NECK	LANEXA (224)	230.00	230.00		41.27		1
		THELMA (225)	230.00	230.00		8.69		1
	SURRY	CHURCHLAND (226)	230.00	230.00			37.63	1
16		(226)	230.00		STEEL POLE		0,11	
17	BEAUMEADE	BRAMBLETON (227)	230.00	230.00		5.19		1
18		(227)	230.00	230.00		0.18		
19		(227)	230.00	230.00		0.10	7.88	
20	CHESTERFIELD	HOPEWELL (228)	230.00	230.00			10.97	1
21	EVERETTS	EDGECOMBE (229)	230.00		STEEL POLE	0.28		1
22		(229)	230.00		H.FRAME	42.04		
23		(229)	230.00	230.00		2.53		
24	YADKIN	LANDSTOWN (231)	230.00	230.00		13.16		1
25		(231)	230.00	230.00		2.92		
	GASTON	THELMA (232)	230.00	230.00		0.17		1
27	CHARLOTTSVILLE	DOOMS (233)	230.00	230.00	STEEL POLE		22,46	1
_	WINCHESTER	WHEALTON (234)	230.00	230.00		0.22		1
29	FARMVILLE	CLOVER (235)	230.00	230.00	STEEL	4.31		1
30		(235)	230.00	230.00	H.FRAME	47.51		
31		(235)	230.00	230.00	H.FRAME	3.64		
32	SOUTHWEST	PLAZA (236)	230.00		STEEL POLE	3,30		1
33		(236)	230.00		STEEL POLE	0.74		
	POSSUM POINT	BRADDOCK (237)	230.00				13.55	
35		(237)	230.00		STEEL		7.64	
						,		
36					TOTAL	5,308.05	860.32	425

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of2010/Q4
	TRANSMISSION LINE STATIST	ICS	

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNA	TION	VOLTAGE (KV (Indicate when other than 60 cycle, 3 ph		Type of Supporting	LENGTH {in the undergro report cir	(Pole miles) case of bund lines cuit miles)	Number Of
	From	To	Operating	Designed	Structure	On Structure	On Structures of Another Line	Circuits
	(a)	(b)	(C)	(d)	(e)	of Line Designated (1)	Line (g)	(h)
1		(237)	230.00		STEEL POLE	0.53		
2	CARSON	CLUBHOUSE (238)	230.00		STEEL	1.02		1
3		(238)	230.00	230.00	H.FRAME	27.53		
4		HORNERTOWN (239)	230.00		WOOD	2.51		1
5		(239)	230.00	230.00	STEEL		1.73	
	HOPEWELL	SURRY (240)	230.00		STEEL		42.97	1
7	JEFFERSON ST.	HAYFIELD (241)	230.00	230.00	STEEL	6.21		1
8	MIDLOTHIAN	TRABUE TAP PT (242)	230.00	230.00	STEEL		3.09	1
9	OX	VAN DORN (243)	230.00	230.00	STEEL	9.68		1
10		(243)	230.00	230.00	STEEL POLE	2.64		
11	BULL RUN	BURKE (244)	230.00	230.00	STEEL POLE	8.87		1
12	GREEN RUN	GREENWICH (245)	230.00	230.00	CON/STEEL	3.99	1.12	1
13	SUFFOLK	EARLEYS (246)	230.00	230.00	H.FRAME	41.29		1
14		(246)	230.00	230.00	STEEL	3.10		
15	· · · · · · · · · · · · · · · · · · ·	NUCOR (246)	230.00	230.00	STEEL POLE	5.38		
16	SUFFOLK	WINFALL (247)	230.00	230.00	H,FRAME	35.28		1
17	GLEBE	OX (248)	230.00	230.00	STEEL POLE	4.93		1
18		(248)	230.00	230.00	STEEL POLE	1.37	8.12	
19		(248)	230.00	230.00	UG-HPOF	3.12		
20	· · · · · · · · · · · · · · · · · · ·	(248)	230.00	230.00	STEEL POLE	0.74		
21	LOCKS	CARSON (249)	230.00	230.00	H.FRAME	7.07		1
22		(249)	230.00	230.00	STEEL		3.64	· · · · ·
23	ARLINGTON	GLEBE (250)	230.00	230.00	STEEL POLE		2.50	1
24	ARLINGTON	IDYLWOOD (251)	230.00	230.00	CONCRETE	0.05		1
25	· · · · · · · · · · · · · · · · · · ·	(251)	230.00	230.00	STEEL POLE		7.70	
26	AQUIA HARBOR	POSSUM POINT (252)	230.00	230.00	STEEL	0.54	11.31	1
27	VALLEY	HARRISONBURG (253)	230.00	230.00	STEEL	10.62		1
28	CLUBHOUSE	LAKEVIEW (254)	230.00	230.00	H. FRAME	18.00		1
29	SOUTH ANNA PWR STA	NORTH ANNA (255)	230.00	230.00	H. FRAME	26.96		1
30		(255)	230.00	230.00	STEEL	3.13		
31		(255)	230.00	230.00	H. FRAME	0.63		
32	FOUR RIVERS	LADYSMITH CT (256)	230.00	230.00	H, FRAME	27.27		1
33	CHURCHLAND	SEWELLS POINT (257)	230.00	230.00	STEEL POLE	5.22		1
34	······································	(257)	230.00	230.00	SUBMARINE	1.59		
35	ARLINGTON	GLEBE (258)	230.00	230.00	STEEL POLE	2.49		1
36					TOTAL	5,308.05	860.32	425

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) [X] An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of2010/Q4			
TRANSMISSION LINE STATISTICS						

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIG	NATION	other than	VOLTAGE (KV) (Indicate where other than 60 cycle, 3 phase)		LENGTH (In the undergro report cire	(Pole miles) case of und lines cuit miles)	Number Of
	From	То	Operating	Designed	Structure	On Structure	On Structures of Another Line	Circuits
	(a)	(b)	(C)	(d)	(e)	of Line Designated (I)	Line (g)	(h)
1	BASIN	CHESTERFIELD (259)	230.00		WOOD POLE	0.17		1
2		(259)	230.00		STEEL	3.85	3.83	
3		(259)	230.00		STEEL POLE	4.55		
4	GROTTOES	HARRISONBURG (260)	230.00		H. FRAME	10.63		
<u> </u>	NEWPORT NEWS	SHELLBANK (261)	230.00		STEEL POLE	4,86		
6	YADKIN	GREENWICH (262)	230.00		STEEL	10.62		1
7		(262)	230.00		H. FRAME	0.10		· · · · · · · · ·
8		(262)	230.00		STEEL	2.83		
9	СНИСКАТИК	NEWPORT NEWS (263)	230.00		WOOD POLE	0.22		1
10		(263)	230.00		STEEL	0.09	15.24	·
	HUNTER	RESTON (264)	230.00		STEEL	2.67		1
	CLIFTON	SULLY (265)	230.00		STEEL		2.68	1
13		(265)	230.00		STEEL		4.87	
14		(265)	230.00		STEEL POLE		5.25	
15		(265)	230.00		STEEL POLE		1,16	
16	CLIFTON	GLEN CARLYN (266)	230.00		STEEL	7.01		1
17		(266)	230.00		STEEL POLE	5,15	· ·	
18		(266)	230.00		STEEL POLE	12.44		
19		YADKIN (267)	230.00		STEEL	9.01	2.29	1
20		(267)	230.00		STEEL POLE		0,11	'
	COGENTRIX	HOPEWELL (268)	230.00		STEEL	1.00		
	SHAWBORO	FENTRESS (269)	230.00		STEEL	4.33		
23		(269)	230.00		H. FRAME	21.00		<u> </u>
-	BURKE	RAVENSWORTH (270)	230.00		STEEL	2.98	· · · · · · · · · · · · · · · · · · ·	1
25		(270)	230.00		U.G.=HPOF	2.18		·'
	FENTRESS	LANDSTOWN (271)	230.00		STEEL	8.80		1
27	I ENTITE OF	(271)	230.00		CONCRETE	0.17		
	DOOMS	GROTTOES (272)	230.00	230.00		11.53		1
	GLEN CARLYN	ARLINGTON (273)	230.00		STEEL		2,44	·
30	BEAUMEADE	PLEASANT VIEW (274)	230.00		STEEL		0.16	
31		(274)	230.00		STEEL POLE		0.18	·
32		(274)	230.00		STEEL	· · · ·	5.06	
	GLEBE	CRYSTAL (275)	230.00		U.G.=HPOF	1.23	0.00	1
	GLEBE	CRYSTAL (276)	230.00		U.G.=HPOF	1.20		
	GLEN CARLYN	CLARENDON (277)	230.00		U.G.=HPOF	1.20		1
36					TOTAL	5,308.05	860.32	425

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of2010/Q4				
TRANSMISSION LINE STATISTICS							

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIG	NATION	VOLTAGE (KV (Indicate wher other than 60 cycle, 3 ph		Type of Supporting	LENGTH (In the undergro report circ	(Pole miles) case of und lines cuit miles)	Number Of
	From	То	Operating	Designed	Structure	On Structure	On Structures of Another Line	Circuits
1	(a)	(b)	(c)	(d)	(e)	of Line Designated (1)	Line (g)	(h)
1		CLARENDON (278)	230.00		U.G.≈HPOF	1,95	(8)	1
<u> </u>	FENTRESS	REEVES AVENUE (279)	230.00		STEEL POLE	12.36		1
	MARSH RUN CT	REMINGTON (280)	230.00		STEEL		1.24	1
4	BRADDOCK	RAVENSWORTH (281)	230.00		STEEL		2.06	1
<u> </u>		MIDLOTHIAN (282)	230.00		ISTEEL	18.47		1
6		(282)	230.00		STEEL POLE	10.41	3.12	'
ہ		NORTHEAST (283)	230.00		STEEL	5.22	J. 12	1
8		(283)	230.00		H. FRAME	7.97		
- 9	BASIN	;,	230.00		STEEL	6.27		
10	DASIN	NORTHEAST (284) (284)			H. FRAME	2.26		
<u> </u>	WALLER	· · · ·	230.00		STEEL POLE	13.53		
11	WALLER	YORKTOWN (285)	230.00		STEEL FOLE	6.43		
			230.00		STEEL	10.43		- 1
13 14	DARBYTOWN	WHITE OAK (286)	230.00		STEEL POLE	3.51		- 1
			230.00		H. FRAME	3.31	13.95	
15		CHICKAHOMINY (287)	230.00		STEEL		0.63	
16		(287)	230.00		WOOD POLE			
17		YORKTOWN (288)	230.00		STEEL		3.21	1
			230.00		H. FRAME	0.13	0.00	1
19 20:	SUFFOLK	CHUCKATUCK (289) (289)	230.00		STEEL	9.85	4,31	
		<u>/</u>	230.00		3-POLE	9.65	4.31	
21	SURRY	(289)	230.00		STEEL	0.33		4
22 23	SURRY	CHUCKATUCK (290)	230.00		CONCRETE		23.57	
	DOOMS	(290) CHARLOTTSVILLE (291)	230.00		STEEL POLE		22.52	1
24			230.00		STEEL FOLE	10.55		1
25		(292)	230.00		H. FRAME	3.80		1
20		DOOMS (293)	230.00		H. FRAME	17.73	·	1
27		(293)	230.00	230.00			14.87	1
29		(293)	230.00		STEEL POLE		1.37	
		BRADDOCK (294)	230.00		U.G.=HPOF	3.58		1
	LOUDOUN	BRADDOCK (294) BULL RUN (295)	230.00	230.00		3.00	8.61	1
			230.00		H. FRAME	20.41		1
	HALIFAX ANNANDALE	PERSON-CP&L (296) BRADDOCK (297)	230.00		U.G.=HPOF	3.56	· _	
	BREMO	FARMVILLE (298)	230.00		H. FRAME	3.56		1
34		(298)	230.00		H.FRAME	13.48		1
36					TOTAL	5,308.05	860.32	425

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of
	TRANSMISSION LINE STATIST	ICS	•

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction if a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNA		VOLTAGE (KV (Indicate when other than 60 cycle. 3 pha		Type of Supporting	LENGTH (in the undergro report cire	(Pole miles) case of und lines cuit miles)	Number Of
	From (a)	To (b)	Operating (c)	Designed (d)	Structure (e)	On Structure of Line Designated (1)	On Structures of Another Line (g)	Circuits (h)
1	REMINGTON CT	MARSH RUN CT (299)	230.00		STEEL	1.15	(9/	1
2		(299)	230.00		STEEL POLE	0.56		·'
3	OCCOQUAN	POSSUM POINT (2001)	230.00		WOOD POLE	0.17	~	1
4		(2001)	230.00		STEEL		4.44	
5		(2001)	230.00		STEEL		8.00	┝───┤
6	CARSON	POE (2002)	230.00		WD 3 POLE	0.18		1
7		(2002)	230.00		STEEL	1.16	4.57	
8		(2002)	230.00		H.FRAME	6.78		
9	CHESTERFIELD	POE (2003)	230.00		WOOD POLE	0.24	 ,	- 1
10		(2003)	230.00		STEEL	7.00		
11		(2003)	230.00		STEEL		3.13	
12	·	(2003)	230.00		STEEL		9.02	
	PENINSULA	SHELLBANK (2004)	230.00		STEEL	0.37		
14		(2004)	230.00		STEEL POLE	5.92	·	i
	CLARK	HUNTER (2005)	230.00		STEEL	2.57		
16	CHURCHLAND	LAKE KINGMAN (2006)	230.00		CON/STEEL	1.47		
17	THALIA	LYNNHAVEN (2007)	230.00		CON/STEEL	3.37		1
18	LOUDOUN	DULLES (2008)	230.00		STEEL	4.53		i
19		(2008)	230.00		STEEL POLE	5.25	<u></u>	- <u> </u>
20	- <u> </u>	(2008)	230.00		STEEL POLE	0.20	3.26	
21		(2008)	230.00		STEEL POLE	0.21		
22	MIDLOTHIAN	SHORT PUMP (2009)	230.00		H. FRAME	24.84		1
23	RESTON	TYSONS (2010)	230.00		STEEL POLE	0.42		1
24		(2010)	230.00		CONCRETE	4.63		- <u> </u>
25		(2010)	230.00		WOOD POLE	2.78		
	CLIFTON	CANNON BRANCH (2011)	230.00		STEEL POLE	7.46		1
	ROANOLE VALLEY NUG	EARLEYS (2012)	230.00		STEEL	3.50		1
28		(2012)	230.00		H. FRAME		26.56	
29		(2012)	230.00		H. FRAME	<u> </u>	2.09	†
30		(2012)	230.00		H. FRAME	——	5.68	
	OCCOQUAN	OX (2013)	230.00		STEEL POLE		1.45	1
	EARLEYS	EVERETTS (2014)	230.00		H. FRAME	32.36	0.26	1
	RESTON	DULLES (2015)	230.00		STEEL	1.42		1
34		(2015)	230.00		STEEL	3.64		├'
35		(2015)	230.00		CONC	0.14		
36					TOTAL	5,308.05	860.32	425

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of2010/Q4
	TRANSMISSION LINE STATIST	CS	

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction if a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGN	ATION	VOLTAGE (KV (Indicate where other than 60 cycle, 3 phr		Type of Supporting	LENGTH (lp the undergro report cirr	LENGTH (Pole miles) (In the case of underground lines report circuit miles)	
	From	То	Operating	Designed	Structure	On Structure of Line Designated	On Structures of Another Line	Circuits
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	LANEXA	HARMONY VILLAGE (2016)	230.00	230.00	STEEL	5.19		1
2		(2016)	230.00	230.00	H, FRAME	25.84		
3	HARRISONBURG	ENDLESS CAVERNS (2017)	230.00	230.00	CONC	19.76		1
4	GREENWICH	E. RIVER NUG (2018)	230.00	230.00	STEEL		11.13	1
5	THALIA	GREENWICH (2019)	230.00	230.00	STEEL POLE	2.63		1
6	ELIZABETH CITY	WINFALL (2020)	230.00	230.00	H. FRAME	15.28		1
7	ELIZABETH CITY	SHAWBORO (2021)	230.00	230.00	H. FRAME	10.26		1
8	RAVENSWORTH	POSSUM POINT (2022)	230.00	230.00	STEEL	13.63		1
9		(2022)	230.00	230.00	STEEL POLE		0.53	
10		(2022)	230.00	230.00	STEEL POLE	5.65		
11	GLEBE	JEFFERSON STREET (2023)	230.00	230.00	STEEL POLE		0.83	1
12		(2023)	230.00	230.00	ug-hpof		3.10	
13	CHICKAHOMINY	LANEXA (2024)	230.00	230.00	steel	14.26		1
14	GREEN RUN	LYNNHAVEN (2025)	230.00	230.00	STEEL	5.28		1
15		(2025)	230.00	230.00	CONCRETE	1.85		
16	LANDSTOWN	LYNNHAVEN (2026)	230.00	230.00	STEEL		5.94	1
17	MIDLOTHIAN	BREMO (2027)	230.00	230.00	WOOD/ST	29.28	5.98	1
18	CHARLOTTSVILLE	BREMO (2028)	230.00	230.00	STEEL	25.53		1
19	CIA	SWINKS MILL (2029)	230.00	230.00	STEEL POLE	3.78		1
20	LOUDOUN	GAINSVILLE (2030)	230.00	230.00	H. FRAME	0.19		1
21		(2030)	230.00	230.00	STEEL		7.56	
22	FOUR RIVERS	ELMONT (2032)	230.00	230.00	H. FRAME	8.93		1
23	CLARK	STERLING PARK (2033)	230.00	230.00	STEEL	2.47		1
24		(2033)	230.00	230.00	STEEL	2.63		
25		(2033)	230.00	230.00	STEEL POLE	1.59		
26		(2033)	230.00	230.00	STEEL	3.75		
27	EARLEYS	TROWBRIDGE (2034)	230.00	230.00	H. FRAME	28.50		1
28		(2034)	230.00	230.00	STEEL	6.72		
29	IDYLWOOD	CIA (2035)	230.00	230.00	CONCRETE	6.41		1
30	GLEBE	PENTAGON (2036)	230.00	230.00	U.G. HPFF	2.37		1
31	GLEBE	PENTAGON (2037)	230.00	230.00	U.G. HPFF	2.37		1
32	GREENWICH	REEVES AVENUE (2038)	230.00		STEEL POLE	1.83	3.92	1
33	MORRISVILLE	MARSH RUN CT (2039)	230.00	230.00		3.92		1
34	MORRISVILLE	MARSH RUN CT (2040)	230.00	230.00			3.92	1
35	HOPEWELL	HCF NUG (2041)	230.00	230.00	H.FRAME	0.03		1
36					TOTAL	5,308.05	860.32	425

•							
Name of Respondent	This Report Is:	Date of Report	Year/Period of Report				
VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of				
TRANSMISSION LINE STATISTICS							

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction if a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGN	ATION	VOLTAGE (KV (Indicate when other than 60 cycle, 3 pha		Type of Supporting	undergro report čir	(Pole miles) case of bund lines cuit miles)	Number Of
	From	То	Operating	Designed	Structure	On Structure	On Structures of Another Line	Circuits
	(a)	(b)	(c)	(d)	(e)	of Line Designated	(g)	(h)
<u> </u>	OCCOQUAN	OGDEN MARTIN (2042)	230.00		WOOD/ST	2.95		
2	DISCOVERY	RESTON (2043)	230.00	230.00	STEEL POLE	1.82		1
3		(2043)	230.00		STEEL		3.62	
4	- -	(2043)	230.00	230.00	STEEL		1.46	
5	BEAR ISLAND	FOUR RIVERS (2044)	230.00	230.00	WOOD POLE	0.05		1
6	LOUDOUN	BRAMBLETON (2045)	230.00	230.00	ST TOWER	5.08		1
7	HOPEWELL	POLYESTER PWR STA	230.00	230.00	STEEL POLE	0.72		1
- 8	SURRY	GRAVEL NECK (2047)	230.00		CONCRETE	0.31		1
	SURRY	GRAVEL NECK (2048)	230.00	230.00	CONCRETE	0.44		1
10	CHESTERFIELD	ALLIED (2049)	230.00	230.00	STEEL	2.89		1
11		(2049)	230.00	- 230.00	STEEL POLE	1.67		
12		(2049)	230.00	230.00	H. FRAME	5.35		
	ALLIED	CHICKAHOMINY (2050)	230.00	230.00	STEEL	5.98		1
14		(2050)	230.00	- 230.00	H. FRAME	6.58		
15		(2050)	230.00	230.00	STEEL POLE	2.47		
16	CLIFTON	PENDER (2051)	230.00	230.00	STEEL POLE		6.78	1
17		(2051)	230.00	230.00		2.88		
	LEXINGTON	CLIFTON FORGE (2052)	230.00	230.00	STEEL	33.42		1
19	NORTHEAST	DARBYTOWN (2053)	230.00	230.00	STEEL POLE	3.67		1
20	CHARLOTTESVILLE	GORDONSVILLE (2054)	230.00	230.00	H. FRAME	8.41		1
21		(2054)	230.00	230.00	WOOD POLE	15.92		r
22	BASIN	BELLEMEADE (2055)	230.00	230.00	STEEL	0.52	0.04	1
23	HORNERTOWN	ROCKY MT. CP&L (2056)	230.00	230.00	H. FRAME	26.47		1
24		(2056)	230.00	230.00	STEEL	2.68		
25		(2056)	230.00	230.00	STEEL		4.16	
26	HORNERTOWN	ROSEMARY (2057)	230.00	230.00	STEEL POLE	0.51		1
27	EDGECOMB	ROCKY MT. CP&L (2058)	230.00	230.00	STEEL	4.81		1
28	CAROLINA	ROCKY VALLEY NUG (2060)	230.00	230.00	STEEL	2.00		1
29		(2060)	230.00	230.00	H. FRAME	2.10		
30	FOUR RIVERS	FOUR RIVERS NUG (2061)	230.00	230.00	STEEL POLE	0.17		1
31	RESTON	DRANESVILLE (2062)	230.00	230.00	STEEL POLE	1.56		1
32		(2062)	230.00	230.00	CONCRETE	1.41		
33	CLIFTON	RAVENSWORTH (2063)	230.00	230.00	STEEL	7.13		1
	SHAWBORO	KITTY HAWK (2064)	230.00	230.00	ST. H-FRAME	30.08		1
35		(2064)	230.00		CONC. POLE	2.87	_	
36			·		TOTAL	5,308.05	860.32	425

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	TRANSMISSION LINE STATIST		·

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction if a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGN	ATION	VOLTAGE (KV (Indicate where other than 60 cycle. 3 pha	/) 9 15e)	Type of Supporting	i report circ	(Pole miles) case of bund lines cuit miles)	Number Of
	From	То	Operating	Designed	Structure	On Structure of Line Designated	of Another	Circuits
	(a)	(b)	(c)	(d)	(e)	(1)	(g)	(h)
1		(2064)	230.00	230.00	WOOD POLE	3.96		
2	BASIN	SPRUANCE (2065)	230.00	230.00	STEEL POLE	3.19	0.47	1
3		WINTERPOCK (2066)	230.00	230.00	STEEL POLE	2.83	2.74	1
4		(2066)	230.00	230.00	STEEL	2.91		_
5		(2066)	230.00	230.00	STEEL		7.72	
6		(2066)	230.00	230.00	STEEL		1.44	
7	FOUR RIVERS	FOUR RIVERS NUG (2067)	230.00	230.00	WOOD POLE	0.06		1
8	CLOVER	HALIFAX (2068)	230.00	230.00	H. FRAME	3.65		1
9		(2068)	230.00	230.00	H. FRAME	12.93		
10		(2068)	230.00	230.00	CON. H.	0.21		
11	YADKIN	ELIZABETH RIVER (2070)	230.00	230.00	STEEL POLE	2.56	0.72	1
12	ELIZABETH RIVER	E. RIVER PWR STA (2071)	230.00	230.00	STEEL POLE	0.08		1
13	LYNNHAVEN	VIRGINIA BEACH (2072)	230.00		CONCRETE	4.43		1
14	SHAWBORO	KITTY HAWK (2073)	230.00	230.00	ST. H-FRAME		30.08	1
15	<u>,</u>	(2073)	230.00	230.00	CONC. POLE	~~	2.87	
16		(2073)	230.00	230.00	WOOD POLE	3.92		
17		AYDLETT	230.00	230.00	WD H-FRAME	1.63		
18	GORDONSVILLE	SOUTH ANNA (2074)	230.00	230.00	H. FRAME	0.63		1
19		(2074)	230.00		H. FRAME	0,19		
20		(2074)	230.00		STEEL POLE	0.21		
21	ELMONT	OLD CHURCH (2075)	230.00	230.00		15.91		1
22	BIRCHWOOD	NORTHERN NECK (2076)	230.00		H. FRAME	41.17		
23		(2076)	230.00		H, FRAME	3.05		
24	REMINGTON	REMINGTON CT (2077)	230.00		ST. POLE	0.54		
25	POSSUM POINT 500	POSSUM POINT 230 (2078)	230.00		H.FRAME	0.81	<u> </u>	1
26	BEAUMEADE	DRANESVILLE (2079)	230.00		STEEL POLE	1.51	0.70	1
27		(2079)	230.00	230.00		2.12		
28	,	(2079)	230.00		CONC POLE	0.04	,	
29		(2079)	230.00	230.00			3.67	
30		(2079)	230.00		STEEL POLE		1.70	·
31	BEAUMEADE	STERLING PARK (2081)	230.00	230.00		0.72		
32		(2081)	230.00	230.00			2.24	<u> </u>
33			230.00		CONC POLE		0.03	┞───┤
_	SEWELLS POINT	(2081) NAVY NORTH (2082)	230.00		U.G. HPFF	2.02		
	BIRCHWOOD	FREDERCKSBURG (2083)	230.00		H. FRAME	12.18		
33	BIRCHWOOD		250.00	250.00		12.10		
36					TOTAL	5,308.05	860.32	425

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	TRANSMISSION LINE STATIST		· · · · · · · · · · · · · · · · · · ·

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGN	ATION	VOLTAGE (K) (Indicate when other than 60 cycle, 3 pha		Type of Supporting	(In the undergro report cir	(Pole miles) case of bund lines cuit miles)	Number Of
	From (a)	То (b)	Operating (c)	Designed (d)	Structure (e)		On Structures of Another Line	Circuits (h)
1			230.00		H. FRAME	(f)	(g) 3.05	
		(2083)	230.00	230.00		37.37	3.00	<u> </u>
2		LOWMOOR (2084)						1
3		WEST LANDING (2085)	230.00		STEEL POLE	7.90	<u> </u>	
4	REMINGTON CT	WARRENTON (2086)	230.00		CONC. POLE	11.20		
5		(2086)	230.00		STEEL POLE		0.61	ļ
6	FENTRESS	SHAWBORO (2087)	230.00				4.33	1
7		(2087)	230.00		STEEL POLE	21.04		
8	GORDONSVILLE	LOUISA CT (2088)	230.00		H. FRAME	0.58	<u> </u>	1
9		(2088)	230.00		STEEL POLE		0.21	
	LADYSMITH	LADYSMITH CT (2089)	230.00	230.00		3.94		1
11	LADYSMITH CT	FREDERICKSBURG (2090)	230.00	230.00			5.20	1
12	. <u> </u>	(2090)	230.00	-	H. FRAME	12.09		
13	WHITE OAK	CHICKAHOMINY (2091)	230.00			3.62		1
14		(2091)	230.00	230.00	STEEL POLE	3.51		
15	SEWELLS POINT	NAVY NORTH (2093)	230.00		U.G. HPFF	2.01		1
16	BRAMBLETON	LOUDOUN (2094)	230.00	230.00	ST TOWER		5.09	1
17	BEAUMEADE	GREENWAY (2095)	230.00	230.00	STEEL		0.57	1
18		(2095)	230.00	230.00	STEEL POLE	10.48		
19	CLARENDON	BALLSTON (2096)	230.00	230.00	U.G. XLPE	0.42		1
20	OX	IDYLWOOD (2097)	230.00	230.00	STEEL	7.83		1
21		(2097)	230.00	230.00	STEEL	4,47		
22		(2097)	230.00	230.00	STEEL	0.15		
23	PLEASANT VIEW	HAMILTON (2098)	230.00	230.00	STEEL POLE	9.94		1
24		(2098)	230.00	230.00	U.G. XLPE	2.16		
25	CHURCHLAND	SEWELLS POINT (2099)	230.00	230.00	STEEL POLE		5.25	- 1
26		(2099)	230.00	230.00	SUBMARINE	1.58		
27	GAINESVILLE	BRISTERS (2101)	230.00	230.00	STEEL		14.48	1
28		(2101)	230.00	230.00	STEEL		1.90	
29	CHICKAHOMINY	WALLER (2102)	230.00	230.00	H. FRAME	14.12		1
30		(2102)	230.00	230.00	STEEL POLE	3.83		
31		(2102)	230.00	230.00	STEEL	10.74		
32	SHORT PUMP	ELMONT (2103)	230.00	230.00	H. FRAME	9.66	[1
	FREDERICKSBURG	AQUIA HARBOR (2104)	230.00	230.00	H. FRAME	12.63		1
34		(2104)	230.00	230.00	STEEL POLE	0.78	·	
35		(2104)	230.00		WOOD	0.02		
36					TOTAL	5,308.05	860.32	425

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	TRANSMISSION LINE STATIST	ICS	•

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction If a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGN		VOLTAGE (KV) (Indicate where other than 60 cycle, 3 phase)		Type of Supporting	I report cire	(Pole miles) case of bund lines cuit miles) Cuit miles)	Number Of
	From	То	Operating	Designed	Structure	of Line Designated	On Structures of Another Line	Circults
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	BREMO	BEAR GARDEN (2106)	230.00	230.00	STEEL POLE	1.39		1
2	SULLY	DISCOVERY (2107)	230.00	230.00	STEEL POLE	1.16		1
3,		(2107)	230.00	230.00	STEEL POLE	1.64		
4	SWINKS MILL	TYSONS (2108)	230.00	230.00	STEEL POLE	2.80		1
5	HARRISONBURG	VALLEY (2109)	230.00	230.00	STEEL		10.23	1
6		(2109)	230.00	230.00	STEEL POLE	0.26	0.09	
7	BREMO	BEAR GARDEN (2111)	230.00	230.00	STEEL POLE		1.34	1
8	LANEXA	WALLER (2113)	230.00	230.00	WOOD	14.48		1
9	BEAUMEADE	NIVO (2116)	230.00	230.00	U.G. XLPE	0.68		1
10	AQUIA HARBOR	GARRISONVILLE (2120)	230.00	230.00	U.G. XLPE	5.80		1
11	BEAUMEADE	NIVO (2130)	230.00	230.00	U.G. XLPE	0.72		1
12								[
13	SUBTOTAL - 230		230.00	230.00		1,954.11	621.91	203
14			· · · ·					
15	BREMO	SCOTTSVILLE APCO (8)	138.00	138.00	STEEL	7.30		1
16	FUDGE HOLLOW	APCO INTERCONNECT (14)	138.00	138.00	STEEL	14.94		1
17	EASTMILL	WESTVACO (109)	138.00	138.00	STEEL POLE		0.89	1
18	LOWMOOR	FUDGE HOLLOW (112)	138.00	138.00	STEEL	4.64	0.65	1
19		(112)	138.00	138.00	STEEL POLE	2.14		
20	CLIFTON FORGE	LOWMOOR (133)	138.00	138.00	STEEL	5.05		1
21	EDINBURG	STRASBURG PT. ED. (152)	138.00	135.00	WOOD POLE	16.54		1
22	WESTVACO	FUDGE HOLLOW (155)	138.00	138.00	STEEL POLE	0.57		1
23		(155)	138.00	138.00	WOOD POLE		1.35	
24	LOWMOOR	EASTMILL (161)	138.00	138.00	WOOD POLE	6.41		1
25		(161)	138.00	138.00	STEEL POLE		3.43	
26								
27	SUBTOTAL - 138KV		138.00			57.59	6.32	8
28								
29	VARIOUS	VARIOUS	115.00		H. FRAME			
- 30			115.00		WOOD POLES	2,047.94	230.89	161
31			115.00		Steel			
32								
33	SUBTOTAL - 115KV		115.00			2,047.94	230.89	161
34								
35	VARIOUS	VARIOUS	69.00	69.00	H. FRAME	87.33		6
36					TOTAL	5,308.05	860.32	425
30						0,000.00	000.32	425

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
		20172	•

2. Transmission lines include all lines covered by the definition of transmission system plant as given in the Uniform System of Accounts. Do not report substation costs and expenses on this page.

3. Report data by individual lines for all voltages if so required by a State commission.

4. Exclude from this page any transmission lines for which plant costs are included in Account 121, Nonutility Property.

5. Indicate whether the type of supporting structure reported in column (e) is: (1) single pole wood or steel; (2) H-frame wood, or steel poles; (3) tower; or (4) underground construction if a transmission line has more than one type of supporting structure, indicate the mileage of each type of construction by the use of brackets and extra lines. Minor portions of a transmission line of a different type of construction need not be distinguished from the remainder of the line.

Line No.	DESIGNATIO	DN	VOLTAGE (KV (Indicate when other than 60 cycle, 3 ph	/) e ase)	Type of Supporting	LENGTH (In the undergro report circ	(Pole miles) case of jund lines cuit miles)	Number Of
	From (a)	То (b)	Operating (c)	Designed (d)	Structure (e)	On Structure of Line Designated	On Structures of Another Line (g)	Circuits (h)
1	·		69.00		WOOD POLES			
2		·····	69.00		UG CABLE	19.24		10
3		·						
4	SUBTOTAL - 69KV		69.00	69.00		106.57		16
5		· · ····						
6								
7								
8								
9								
10				<u></u>				· ·
11								
12			┨──────┤					
13			<u> </u>					
14 15	<u> </u>	·-····			<u> </u>			
16								
17			<u> </u>					
18			· · · · · · · · · · · · · · · · · · ·		<u> </u>			
19		·				·		·
20								
21			<u> </u>	****			-	
22							· · · ·	
23								
24								
25								
26								
27								
28			<u> </u>					
29			···					
30			 					
31								
32	··							
33		·	<u> </u>		····			
34 35					-			
35								
36					TOTAL	5,308.05	860.32	425

	304,043,028	1,385,872,194	1,689,915,222	19,946,548	15,558,625	226,188	35,731,361	36	
	,		1						
ACAR 2500					1			35	
ACAR 1534		├ ──── ↓				<u></u>	ļ	34	
ACAR 2500								33	
ACAR 2500						·		32	
AAAC 2049.5		¦─ ──┤				-		31	
ACSR 1351		┟───┤		· · · · · · · · · · · · · · · · · · ·	 			30	
ACAR 2500		<u>├───</u> }			 		1	20 29	
AAAC 2049.5 ACAR 2500		┟────┤					ļ	27 28	
ACAR 2500	· · · · · · · · · · · · · · · · · · ·	<u> </u>					[26	
ACAR 2500		 						25	
AAAC 2049.5		<u> </u>						24	
ACAR 2500								23	
ACAR 2500								22	
ACAR 2500			·			·		21	
ACAR 1534			······					20	
ACAR 2500		<u>† · · </u> †			į			19	
AAAC 2049.5		┼───┼						18	
AAAC 2049.5		<u>├</u> {						17	
ACSR 1351.5		┼───┤			 		 	16	
AAAC 2049.5 AAAC 2049.5		<u>├───</u> ┤		·				14 15	
AAAC 2049.5	ļ	├ ────┤				·		13	
AAAC 2049.5		l						12	
AAAC 2049.5		<u> </u>]						11	
AAAC 2049.5								10	
AAAC 2049.5								9	
ACAR 2500		<u> </u> †		· · · · · · · · · · · · · · · · · · ·				8	
ACAR 2500	· · · · · · · · · · · · · · · · · · ·	<u> </u>			1			7	
ACAR 2500		<u>├</u> ───┤		· · · ·	· · · · · ·			6	
		╎───┤			 		l		
		╂━━━━──┤		<u> </u>			}		
	· <u> </u>	╂────┤		ļ			<u> </u>		
		<u> </u>					l		
	Ű	(К)	()	(m)	(n)	(0)	(p)		
and Material		Other Costs		Expenses	Expenses		Expenses		
Conductor	land	Construction and	Total Cost	Operation	Maintenanco	Bante	Total		
Size of	Land rights,	Land rights, and clearing right-of-way)							
· · · · · · · · · · · · · · · · · · ·	COST OF LIN	E (Include in Colum	in (j) Land,	EXP	ENSES, EXCEPT D	EPRECIATION ANI	D TAXES		
other party is an 9. Designate an determined. Spe 10. Base the pla 10. Bas	associated comp y transmission lin ecify whether less ant cost figures ca COST OF LIN	any. The leased to another the is an associated alled for in columns IE (Include in Colum and clearing right-o Construction and	company and giv I company. (j) to (l) on the boo in (j) Land,	e name of Lessee, ok cost at end of ye EXPE	date and terms of le ar. ENSES, EXCEPT Di Maintenance Expenses	ase, annual rent for	Tyear, and how D TAXES Total Expenses	Line No. 1 2 3 4 5 6	
you do not includ pole miles of the 8. Designate an give name of less which the respon arrangement and expenses of the	le Lower voltage l primary structure y transmission lin sor, date and term dent is not the so d giving particulars Line, and how the	lines with higher vol e in column (f) and t e or portion thereof ns of Lease, and an ole owner but which s (details) of such n e expenses borne b	tage lines. If two he pole miles of th for which the resp nount of rent for yo the respondent op natters as percent	or more transmission the other line(s) in co bondent is not the se ear. For any transm perates or shares in ownership by respo	Ind higher voltage lin on line structures sup plumn (g) ple owner. If such p nission line other that the operation of, fu pondent in the line, na and accounts affecte	pport lines of the sa roperty is leased fro an a leased line, or p rnish a succinct sta ame of co-owner, ba	ame voltage, report om another compar portion thereof, for tement explaining t asis of sharing	the 1y, ihe	
			-	LINE STATISTICS					
	TRIC AND POW	ER COMPANY	(2) A Re	submission	11	End	01 2010/04		
Name of Respor			This Report Is (1) [X] An O	; Iriginal	Date of Rep (Mo, Da, Yr)	. 1	r/Period of Report of 2010/Q4		
				<u> </u>	·				

Name of Respor	ndent		This Report Is:		Date of Repo	ort í Yea	r/Period of Report	
	TRIC AND POW	ER COMPANY	(1) [X] An O	riginal	(Mo, Da, Yr)	End		
<u> </u>	· · · ·			submission	//			
7 Do not report	the same transmi	ission line structure			nd higher voltage line	es as one line . De	signate in a footnot	to if
you do not includ pole miles of the 8. Designate an give name of less which the respon arrangement and expenses of the other party is an 9. Designate an	le Lower voltage il primary structure y transmission line sor, date and term ident is not the so i giving particulars Line, and how the associated compa y transmission line	ines with higher vol in column (f) and t e or portion thereof ns of Lease, and ar le owner but which s (details) of such n expenses borne b any.	Itage lines. If two of he pole miles of the for which the resp nount of rent for yet the respondent op natters as percent y the respondent a company and give	or more transmissio te other line(s) in col condent is not the so car. For any transm perates or shares in ownership by respo tre accounted for, an	n line structures sup	port lines of the sa operty is leased fro n a leased line, or j nish a succinct sta me of co-owner, ba d. Specify whether	ame voltage, report om another compa portion thereof, for tement explaining asis of sharing lessor, co-owner,	the ny, the
10. Base the pla	-	lled for in columns		k cost at end of yea				T
Size of Conductor	Land rights, and clearing right-of-way)						D TAXES	
and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	Û	Other Costs (k)	(1)	Expenses (m)	Expenses (n)	(0)	Expenses (p)	No.
AAAC 2049.5								1
ACAR 2500						_		2
SDC 2500								3
ACAR 2500								4
ACAR 2500								5
ACAR 2500								6
ACAR 2500	(22.02.1.10)							7
	102,034,483		534,189,668	3,696,228	2,883,117	41,914	6,621.259	
	102,034,483	432,155,185	534,189,668	3,696,228	2,883,117	41,914	6,621,259	
ACSR 1033.5		<u> </u>						10 11
ACAR 2500								12
ACAR 2500								13
ACAR 1109								14
ACAR 1192.5								15
ALUM 1177						·		16
ACAR 1033.5							<u> </u>	17
ACAR 1109								18
ACAR 1109								19
ACSR 1033.5	· · · · · · · · · · · · · · · · · · ·							20
ACSR 2500			·					21
ACSR 1033.5								22
ACAR 1109								23
ACSR1033.5								24
ACAR 721								25
ACAR 1109								26
ACAR 1109								27
ACAR 2500							L <u></u>	28
ACAR 721		└─── │						29
ACSR 1033.5								30
ACAR 1534		├────					ļ	31
ACAR 721		└─── ─					ļ	32
ACAR 721		┝───-						33
ACAR 2500						-		34
ACSR 636								35
	304,043,028	1,385,872,194	1,689,915,222	19,946,548	15,558,625	226,188	35,731,36	1 36

Name of Respor	ndent		This Report Is:		Date of Repo	ort Year	/Period of Report	
1	CTRIC AND POW	ER COMPANY	(1) [X1] An O	riginal submission	(Mo, Da, Yr)			
7 Do not report	the come transm			wer voltage Lines ar			lanata in a factact	
you do not includ pole miles of the 8. Designate an give name of les which the respor arrangement and expenses of the other party is an	de Lower voltage l primary structure y transmission lin sor, date and term dent is not the so d giving particulars Line, and how the associated comp	lines with higher vol- e in column (f) and the e or portion thereof ns of Lease, and an ole owner but which s (details) of such m e expenses borne by any.	tage lines. If two he pole miles of th for which the resp nount of rent for ye the respondent op hatters as percent y the respondent a	or more transmission to order line(s) in col- to ondent is not the so ear. For any transm perates or shares in ownership by respo are accounted for, ar e name of Lessee, co	n line structures sup umn (g) le owner. If such pr ission line other tha the operation of, fur ndent in the line, na nd accounts affected	oport lines of the sam operty is leased fro n a leased line, or p nish a succinct stat me of co-owner, ba d. Specify whether	me voltage, report m another compar- portion thereof, for ement explaining t sis of sharing lessor, co-owner, o	the ny, the
	ant cost figures ca	ee is an associated Ilied for in columns (E (Include in Colum	(j) to (l) on the boa	k cost at end of yea				
Size of		and clearing right-of	•.	EXPE	NSES, EXCEPT DE	EPRECIATION AND) TAXES	
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	Ø	Other Costs (k)	(1)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.
ACAR 2500		····					11-1	1
ACAR 795	· · · · · · · · · · · · · · · · · · ·	├──────────					·	2
ACAR 795							·	3
ACAR 1109		1						4
ACAR 1109								5
ACAR 721								6
ACAR 721								7
ACSR 1033.5							·	8
ACAR 1109								9
ACAR 721							······	10
ACSR 1033.5								11
ACAR 721								12
ACAR 1109							_	13
ACSR 1033.5								14
ACAR 721								15
ACAR 2500								16
SSAC 1192.5								17
ACSR 1590								18
ACSR 1033.5								19
ACAR 1109								20
ACAR 1534								21
ACSR 1033.5								22
ACSR 1033.5								23
AAAC 1177								24
ACSR 1033.5								25
ACSR 795		l						26
ACAR 545.6		┟─────┤						27
ACAR 1534	L <u>.</u>	┼─────┤						28
ACSR 545.6		┟───┤					<u>-</u> .	29
ACSR 545.6		<u> </u>						30
ACSR 636		<u>├</u>					·	31
ACAR 2500		┟╌╌╾╴╴╴╴╽					· –	32
ACAR 721		┟────┟						33
ACSR 1033.5		├─── ───						34
SSAC 1033.5								35
	304,043,028	1,385,872,194	1,689,915,222	19,946,548	15,558,625	226,188	35,731,361	36

Name of Respor	ndent		This Report Is	This Report Is:		Date of Report Yea				
	TRIC AND POW	ER COMPANY	(1) X An O	riginal submission	(Mo, Da, Yr)	End				
	-									
				LINE STATISTICS	· · · · · · · · · · · · · · · · · · ·		<u> </u>			
 Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if you do not include Lower voltage lines with higher voltage lines. If two or more transmission line structures support lines of the same voltage, report the pole miles of the primary structure in column (f) and the pole miles of the other line(s) in column (g) Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company. Base the plant cost figures called for in columns (j) to (l) on the book cost at end of year. 										
	COSTOFLIN	E (Include in Colum	ın (j) Land,	EXPE	ENSES, EXCEPT D		D TAXES			
Size of	Land rights,	and clearing right-o	f-way)		_					
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	_ Total	Line		
(i)	σ	Other Costs (k)	(I)	Expenses (m)	Expenses (n)	(o)	Expenses (p)	No.		
ACAR 721		<u> </u>	37		<u></u>		<u> </u>			
ACAR 721			<u> </u>					2		
ACAR 721								3		
ACSR 1033.5			······			<u> </u>		4		
ACSR 1033.5				· · · · ·				5		
ACAR 721		· · · · · · · · · · · · · · · · · · ·						6		
ACAR 1033.5								7		
ACAR 721					<u> </u>			8		
ACSR 1033.5		· ···						9		
ACAR 1109	-			· · · · · · · · · · · · · · · · · · ·	. –			10		
ACAR 1534		· · · · · · · · · · · · · · · · · · ·						11		
SSAC 1590								12		
ACAR 545								13		
ACAR 545	_							14		
ACSR 636				·				15		
ACAR 1109					···· ····			16		
ACAR 2500			·				· · · - 	17		
ACAR 2500								18		
CU 2500								19		
ACSR 636		[]						20		
ACSR 795							· · · ·	21		
ACSR 795								22		
ACAR 2500								23		
AAAC 1600								24		
AAAC 1600						· · · · · · · · · · · · · · · · · · ·		25		
ACAR 721								26		
ACAR 721			-					27		
ACSR 795								28		
ACAR 545.6]						29		
ACAR 545.6								30		
ACAR 1534								31		
ACSR 795			. =					32		
ACAR 721								33		
COPPER 1250								34		
ACAR 2500								35		
	304,043,028	1,385,872,194	1,689,915,222	19,946,548	15,558,625	226,188	35,731,361	36		

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	TRANSMISSION LINE STATISTICS ((Continued)	•

7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if you do not include Lower voltage lines with higher voltage lines. If two or more transmission line structures support lines of the same voltage, report the pole miles of the primary structure in column (f) and the pole miles of the other line(s) in column (g)

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

10. Base the plant cost figures called for in columns (j) to (l) on the book cost at end of year.

Size of	Land rights, and clearing right-of-way)			EXPENSES, EXCEPT DEPRECIATION AND TAXES				
Conductor and Material	Land	Construction and Other Costs (k)	Total Cost	Operation Expenses (m)	Maintenance Expenses (n)	Rents (0)	Total Expenses (p)	Line No.
(i)	0	(K)	(1)	(m)	(n)		(9)	L
ACAR 2500								1
ACSR 1033	ļ	├─── ─┤		ļ	· · · · ·		. <u> </u>	2
ACAR 2500								3
ACAR 1109								4
ACAR 1109			<u></u>			w		5
ACSR 1033	· · ·							6
ACSR 1033	[·					7
ACAR 721						…		8
ACAR 1534		ļ						9
ACAR 1534	<u>.</u>	· · · · ·						10
ACSR 1192					<u>.</u>			11
ACSR 1033.5					·			12
ACSR 1033.5		┥─────┤						13
ACSR 1590					_			14
ACAR 1534 ACSR 1033.5								15
ACSR 1033.5			<u>-</u>					16
AAAC 1600								17
ACAR 2500								18
ACAR 721							·	19
ACAR 2500								20
ACAR 1109								21
ACAR 545								22
ACAR 545			<u> </u>					23
ACAR 1534		<u> </u>						24
COPPER 1750		<u></u> }						25
ACAR 721							<u> </u>	26
ACAR 2500								27
ACAR 721 ACAR 1600								28
ACAR 1600								29
SSAC 1192.5						·		30
ACSR 1590				<u> </u>				31
ACSR 1192.50								32
COPPER 1750								33
COPPER 1750								34
COPPER 1750								35
	304,043,028	1,385,872,194	1,689,915,222	19,946,548	15,558,625	226,188	35,731,36	36

Name of Respon	ndent		This Report Is		Date of Rep		ar/Period of Report					
VIRGINIA ELEC	TRIC AND POW	ER COMPANY	(1) X An O (2) A Re	riginal submission	(Mo, Da, Yr)	End	End of 2010/Q4					
· · · · · · · · · · · · · · · · · · ·			1 Y LI	LINE STATISTICS		· · · ·						
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if												
pole miles of the 8. Designate an give name of les	you do not include Lower voltage lines with higher voltage lines. If two or more transmission line structures support lines of the same voltage, report the pole miles of the primary structure in column (f) and the pole miles of the other line(s) in column (g) 8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent operates or shares in the operation of, furnish a succinct statement explaining the											
				ownership by respo				ne				
				are accounted for, an				or				
other party is an	associated comp	any.										
				e name of Lessee, o	date and terms of le	ase, annual rent fo	r year, and how					
		ee is an associated		ok cost at end of yea	ar an							
	in ooot iigaloo ba											
							•					
	COST OF LIN	E (Include in Colum	nn (j) Land,	EXPE	NSES, EXCEPT D	EPRECIATION AN	D TAXES					
Size of	Land rights, and clearing right-of-way)											
Conductor	Land Construction and Total Cost Operation Maintenance Rents Total Line											
and Material		Other Costs (k)		Expenses	Expenses		Expenses	Line No.				
(i)	()	(K)	(I)	(m)	(n)	(0)	(p)					
COPPER 1750												
ACAR 721								2				
ACSS 795		·						3				
ACAR 721								5				
ACAR 2500							<u> </u>	6				
ACAR 721								7				
ACAR 721							· -·-	8				
ACAR 721	· · · ·							9				
ACAR 721								10				
ACAR 721						-		11				
ACAR 721								12				
ACAR 721								13				
								14				
ACSR 1033.5								15				
ACSR 1033.5 ACAR 721		·						16 17				
ACAR 721	~		-					18				
ACAR 2500								19				
ACAR 721						·		20				
ACAR 721						F		21				
ACAR 721								22				
ACAR 721								23				
ACAR 545.6								24				
ACSR 1033.5								25				
ACAR 721 ACAR 545.6		-						26				
ACAR 545.60			-				·	27 28				
ACAR 545.6								29				
COPPER 250												
ACSR 1033								31				
ACAR 545.6								32				
COPPER 250						<u></u>		33				
ACAR 545.6	~							34				
ACAR 545.6								35				
L												
	304,043,028	1,385,872,194	1,689,915,222	19,946,548	15,558,625	226,18	35,731,361	36				

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of
	TRANSMISSION LINE STATISTICS ((Continued)	

7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if you do not include Lower voltage lines with higher voltage lines. If two or more transmission line structures support lines of the same voltage, report the pole miles of the primary structure in column (f) and the pole miles of the other line(s) in column (g)

8. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company.

9. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company.

10. Base the plant cost figures called for in columns (j) to (l) on the book cost at end of year.

Size of		E (Include in Colum and clearing right-of		EXPE	ENSES, EXCEPT D	EPRECIATION ANI	D TAXES	
Conductor and Material	Land	Construction and Other Costs (k)	Total Cost	Operation Expenses (m)	Maintenance Expenses	Rents (o)	Total Expenses	Line No.
(i)	()	(K)	(I)	(m)	(n)	(0)	(p)	
ACAR 545.6		<u>_</u>						1
ACSR 636 ACAR 2500 ACAR 721 ACSR 636								2
ACAR 2500								3
ACAR 721								4
ACSR 636								5
ACAR 721								6
ACAR 721								7
ACAR 721								8
ACAR 2500								9
ACAR 721								10
ACAR 1109		·		·				11
ACSR 1033.5						· · · · · · · · · · · · · · · · · · ·		12
ACAR 721								13
ACAR 721								14
ACSR 1192.5	l							15
ACAR 1534	_							16
ACAR 2500	-							17
SSAC 1033.5								18
ACSR 1590								19
ACSR 1590								20
ACSR 1590								21
ACSR 636								22
SSAC 1033.5								23
SSAC 1033.5								24
SSAC 1033.5								25
ACSR 1590								26
ACAR 545.6								27
ACAR 545.6								28
ACAR 1534								29
AAC 1590			·					30
ACAR 2500								31
ACAR 545.6								32
SSAC 1192.5					-			33
SSAC 1033.5								34
SSAC 1033.5								35
	304,043,028	1,385,872,194	1,689,915,222	19,946,548	15,558,625	226,188	35,731,361	36

Name of Respon	ndent		This Report Is					ar/Period of Report				
VIRGINIA ELEC	CTRIC AND POW	ER COMPANY	(1) X An Original (2) A Resubmission		(Mo, Da, Yr)							
			1 ' '	V LINE STATISTICS		!						
7. Do not report	the same transm	ission line structure		wer voltage Lines a		es as one line. De	signate in a footnot	e if				
you do not includ pole miles of the 8. Designate an give name of les which the respon arrangement and expenses of the other party is an 9. Designate an determined. Spin	bu do not include Lower voltage lines with higher voltage lines. If two or more transmission line structures support lines of the same voltage, report the oble miles of the primary structure in column (f) and the pole miles of the other line(s) in column (g) Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, we name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for hich the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the rangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing kpenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or her party is an associated company. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how etermined. Specify whether lessee is an associated company. D. Base the plant cost figures called for in columns (j) to (l) on the book cost at end of year.											
10. Base the pla	ant cost figures ca	illed for in columns	(j) to (l) on the boo	ok cost at end of yea	Ir.			ľ				
	COST OF LIN	E (Include in Colum	in (j) Land,									
Size of	Land rights,	and clearing right-o	f-way)		NSES, EXCEPT D		DIALES					
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line				
(i)	Material Other Costs Expenses Expenses Expenses							No.				
SSAC 1033.5	<u> </u>											
SSAC 1033.5						<u> </u>		2				
								3				
ACAR 1534								4				
SSAC 1590 ACAR 1109	·							5				
ACAR 1109								6 7				
ACSR 1033.5				···,		<u> </u>		8				
ACAR 721								9				
ACAR 2500								10				
ACAR 2500								11				
CU 2500								12				
ACAR 721 ACAR 721				<u> </u>				13 14				
ACAR 2500								15				
ACAR 721								16				
SSAC 1033.5				· · · ·	· · ·			17				
ACAR 721								18				
ACSS 1033.5								19				
ACAR 1109								20				
ACSR 636 ACSR 795							- <u> </u>	21 22				
SSAC 1033.5							<u></u>	23				
SSAC 1033.5					-			24				
SSAC 1033.5								25				
SSAC 1192.5								26				
ACAR 545								27				
ACAR 545								28				
SSAC 1033.5 COPPER 1750								29 30				
COPPER 1750								31				
ACAR 2500						·	32					
ACAR 545.6								33				
SSAC 795								34				
ACAR 1534								35				
	304,043,028	1,385,872,194	1,689,915,222	19,946,548	15,558,625	226,188	35,731,361	36				

Name of Respor	ndent	· · · · · · · · · · · · · · · · · · ·	This Report Is		Date of Rep		ar/Period of Report					
VIRGINIA ELEC	TRIC AND POW	ER COMPANY	(1) X An O		(Mo, Da, Yr)	End	End of 2010/Q4					
ļ				submission	11							
				LINE STATISTICS								
7. Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if you do not include Lower voltage lines with higher voltage lines. If two or more transmission line structures support lines of the same voltage, report the pole miles of the primary structure in column (f) and the pole miles of the other line(s) in column (g) 3. Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the arrangement and giving particulars (details) of such matters as percent ownership by respondent in the line, name of co-owner, basis of sharing expenses of the Line, and how the expenses borne by the respondent are accounted for, and accounts affected. Specify whether lessor, co-owner, or other party is an associated company. 3. Designate any transmission line leased to another company and give name of Lessee, date and terms of lease, annual rent for year, and how determined. Specify whether lessee is an associated company. 10. Base the plant cost figures called for in columns (j) to (l) on the book cost at end of year.												
	COST OF LINE (Include in Column (j) Land, EXPENSES, EXCEPT DEPRECIATION AND TAXES											
Size of	Land rights,	and clearing right-o	f-way)									
Conductor and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line				
ano Material (i)	(i)	Other Costs (k)	()	Expenses (m)	Expenses	(0)	Expenses (p)	No.				
ACAR 1534	U U	(N)		<u>(in)</u>	(n)			1				
ACSR 1590								2				
SSAC 1033.5					<u> </u>			3				
SSAC 1192.5		1 1					<u> </u>	4				
ACSR 795		<u>}</u> ₹						5				
ACCR 1033-T13			,,					6				
ACAR 1534						· ·		7				
ACSR 1033.5	·							8				
ACSR 1033.5								9				
ACSR 636								10				
ACSR 636			_					11				
ACSR 636							_	12				
ACSR 636								13				
ACSR 636								14				
ACSR 636								15				
ACAR 2500								16				
ACSR 1033.5								17				
ACSR 1033								18				
ACAR 721			. <u> </u>					19				
ACAR 254.6								20				
ACSR 477	 							21				
ACAR 1534								22				
ACSR 1033.5		<u> </u>						23				
ACSR 1033.5		<u> </u>				··		24				
ACAR 1109 ACAR 1534		┨───────┤						25				
ACAR 1534						<u> </u>		26 27				
ACAR 545.6								27				
ACAR 1534		┥───┦			·	<u> </u>		20				
ACSR 1590	·	{ }						30				
SSAC 1192.5		┥─────────────────────────────────────						31				
SSAC 1033.5								32				
ACSR 1272		<u>├───</u> ─╂						33				
ACAR 545.6	<u> </u>	<u>├──</u>			<u> </u>			33				
ACSR/SD 795		<u>├</u>				<u> </u>		35				
	304,043,028	1,385,872,194	1,689,915,222	19,946,548	15,558,625	226,188	35,731,361	1 36				

•

Name of Respon	ident		This Report Is		Date of Rep	ort Yea	r/Period of Report	,
VIRGINIA ELEC	TRIC AND POW	ER COMPANY	(1) X An O (2) A Re	riginal submission	(Mo, Da, Yr)	End	End of2010/Q4	
				LINE STATISTICS		I		
you do not includ pole miles of the 8. Designate any give name of less which the respon arrangement and expenses of the other party is an 9. Designate any determined. Spe	le Lower voltage I primary structure y transmission lin sor, date and term ident is not the so giving particulars Line, and how the associated comp y transmission lin acify whether less	lines with higher vo in column (f) and t e or portion thereof ns of Lease, and ar ole owner but which s (details) of such r e expenses borne b any. e leased to another ee is an associated	Itage lines. If two the pole miles of th f for which the resp mount of rent for yu the respondent of natters as percent by the respondent a r company and giv d company.	wer voltage Lines a or more transmissio be other line(s) in co bondent is not the so ear. For any transm perates or shares in ownership by respo are accounted for, ar e name of Lessee, o ok cost at end of yea	In line structures sup lumn (g) ble owner. If such p nission line other that the operation of, fur ondent in the line, na nd accounts affecte date and terms of le	oport lines of the sa roperty is leased fro in a leased line, or j rnish a succinct sta une of co-owner, ba d. Specify whether	ome voltage, report om another compar portion thereof, for tement explaining t asis of sharing lessor, co-owner, o	the ny, the
 	COST OF LIN	E (Include in Colum	nn (j) Land,	EXPE	NSES, EXCEPT D		D TAXES	
Size of Conductor	Land rights,	and clearing right-c	of-way)	**				
and Material	Land	Construction and	Total Cost	Operation	Maintenance	Rents	Total	Line
(i)	0	Other Costs (k)	(1)	Expenses (m)	Expenses (n)	(0)	Expenses (p)	No.
ACAR 721								1
ACAR 2500								2
ACSR 636								3
ACSR 636		ļ]						4
ACSR 636							n	5
ACAR 721								6
ACSR 1590 ACSR 636								7 8
ACSR 477			_				1	9
ACSR 545.6								10
ACSR 1534			-	· · · ·		<u></u>		11
ACSR 1590								12
ACAR 2500								13
ACAR 545.6								14
ACSR/SD 795		-	·			 .		15
ACSR 1033.5								16
ACSR 477						· <u> </u>		17
ACSR 1590								18
ACSR 477								19
ACSR 477	<u> </u>							20
								21
ACAR 545.6								22
ACAR 1534								23
ACSR 636		<u> </u> _						24
ACSR 636		 				ļ,		25
ACSR 2-636		├ ───── <mark>-</mark>						26
ACSR 1192.5 SSAC 1033.5		<u>↓</u> ↓				<u> </u>	ļ	27 28
SSAC 1033.5 SSAC 1192.5	<u></u>	┨─────┤			<u>-</u>	<u> </u>	<u>-</u>	28
SSAC 1192.5		<u> </u> ≁						30
ACSR 1192.5		├────-┤						31
SSAC 1192.5		┟────┤	•					32
SSAC 1033.5		┟────┤			· · · · · ·			33
CU 2500				·····				34
ACAR 545.6		┟─────┤						35
	304,043,028	1,385,872,194	1,689,915,222	19,946,548	15,558,625	226,188	35,731,361	36

Name of Respondent This Report Is: Date of Report						ort Yea	r/Period of Report				
VIRGINIA ELEC	CTRIC AND POW	ER COMPANY	(1) X An O (2) A Re	submission	(Mo, Da, Yr)	End	End of 2010/Q4				
		· · ···		LINE STATISTICS	·	[
 Do not report the same transmission line structure twice. Report Lower voltage Lines and higher voltage lines as one line. Designate in a footnote if you do not include Lower voltage lines with higher voltage lines. If two or more transmission line structures support lines of the same voltage, report the pole miles of the primary structure in column (f) and the pole miles of the other line(s) in column (g) Designate any transmission line or portion thereof for which the respondent is not the sole owner. If such property is leased from another company, give name of lessor, date and terms of Lease, and amount of rent for year. For any transmission line other than a leased line, or portion thereof, for which the respondent is not the sole owner is not the sole owner but which the respondent operates or shares in the operation of, furnish a succinct statement explaining the 											
arrangement and	d giving particulars	s (details) of such r	natters as percent	ownership by respo	ondent in the line, na	ame of co-owner, ba	asis of sharing				
	Line, and how the associated comp		y the respondent a	are accounted for, a	nd accounts affecte	d. Specify whether	lessor, co-owner, c	or			
			r company and giv	e name of Lessee, (date and terms of le	ase, annual rent for	year, and how				
	etermined. Specify whether lessee is an associated company. 0. Base the plant cost figures called for in columns (j) to (l) on the book cost at end of year.										
10. Base the pla	ani cosi ilgures ca	llied for in columns	()) to (I) on the boo	ok cost at end of yea	ar.						
Cian of		E (Include in Colum and clearing right-c		EXPE	ENSES, EXCEPT D	EPRECIATION ANI	D TAXES				
Size of Conductor		ano cleanng nghi-c									
and Material	Land										
(i)	0	Other Costs (k)	(1)	(m)	(n)	(0)	(p)	No.			
ACAR 1534								1			
ACSR 477								2			
ACSR 636 ACAR 1109		·		· · · ·				3			
ACAR 1109								5			
ACAR 545.6	h				· · · · · · · · · · · · · · · · · · ·		·	6			
ACSR 636								7			
ACSR 477								8			
ACSR 477								9			
ACSR 636								10			
ACSR 795								11			
ACSR 795						-		12			
ACAR 721								13 14			
CU 2500			·		<u> </u>			15			
ACSS/TW 1233.6						-		16			
ACSR 636								17			
ACSR 636								18			
CU 1500								19			
ACSS 1033.5								20			
ACSR 795 ACSR 636				· · · ·				21 22			
ACSR 636								23			
CU 3500								24			
ACAR 721						· · · · · · · · · · · · · · · · · · ·		25			
COPPER 1250								26			
ACSR 636	ļ							27			
ACSR 636				-				28			
ACSR 1033.5 ACAR 721								29 30			
ACAR 721	1							31			
ACAR 1109								32			
ACAR 721					···			33			
ACAR 721								34			
ACAR 1109								35			
								ļļ			
								1			
· · · · · · · · · · · · · · · · · · ·	304,043,028	1,385,872,194	1,689,915,222	19,946,548	15,558,625	226,188	35,731,361	36			

.

Name of Respon	ndent		This Report Is:		Date of Repo	ort Year	/Period of Report	
· ·	TRIC AND POW	ER COMPANY	(1) [X] An O	riginal	(Mo, Da, Yr)			
				submission	11			
				LINE STATISTICS				
you do not includ pole miles of the 8. Designate an give name of les which the respon arrangement and expenses of the other party is an	le Lower voltage li primary structure y transmission line sor, date and term ident is not the so d giving particulars Line, and how the associated compa	ines with higher vol in column (f) and the or portion thereof ns of Lease, and an le owner but which s (details) of such m expenses borne by any.	tage lines. If two he pole miles of th for which the resp nount of rent for ye the respondent of natters as percent y the respondent a	wer voltage Lines ar or more transmissio te other line(s) in col condent is not the so ear. For any transm perates or shares in ownership by respo tre accounted for, an e name of Lessee, o	n line structures sup lumn (g) le owner. If such pr ission line other tha the operation of, fur ndent in the line, na nd accounts affected	oport lines of the sam roperty is leased fro n a leased line, or p nish a succinct stat me of co-owner, ba d. Specify whether	me voltage, report m another compar portion thereof, for tement explaining t isis of sharing lessor, co-owner, t	the ny, the
determined. Spa	cify whether less ant cost figures ca COST OF LIN	ee is an associated lled for in columns E (Include in Colum	company. (j) to (l) on the boc in (l) Land,	ok cost at end of yea				
Size of Conductor	ze of Land rights, and clearing right-of-way)							
and Material (i)	Land (j)	Construction and Other Costs (k)	Total Cost	Operation Expenses	Maintenance Expenses	Rents (o)	Total Expenses	Line No.
ACSR 636	V	- (1)	k) (i) '(m) '(n) (0) '(p)					1
ACAR 1534								2
ACSR 1590		<u> </u>						3
ACSS 1033.5	_ <u>_</u>						<u> </u>	4
ACAR 721			<u> </u>					5
ACSR 636						—		6
ACSR 636		}	-				-	7
ACSR 1033.5			-					8
CU 3500								9
CU 3500								10
CU 3500								11
	113,470,232	617,464,784	730,935,016	8.330,030	6,497,556	94,460	14,922,048	
	113,470,232	617,464,784	730,935,016		6,497,556	94,460	14,922,046	-
								14
<u> </u>			·					15
				•				16
				·				17
·							<u> </u>	18
								19
<u> </u>		├─── ┤			—			20
		<u> </u>						21
								22
		i						23
								24
								25
	10,302,340		37,861,551	206,665	161,202	2,343	370,210	
	10,302,340	27,559,211	37,861,551	206,665	161,202	2,343	370,210	
								28
VARIOUS		ļ						29
L		ļ l						30
	_							31
	77,205,893	300,184,260	377,390,153	7,369,012	5,747,946	83,563	13,200,521	
	77,205,893	300,184,260	377,390,153	7,369,012	5,747,946	83,563	13,200,521	
								34
								35
	304,043,028	1,385,872,194	1,689,915,222	19,946,548	15,558,625	226,188	35,731,36	1 36

Name of Respon	ndent CTRIC AND POW	ER COMPANY	This Report Is (1) X An O	riginal	Date of Rep (Mo, Da, Yr)	ort Year End	/Period of Report of 2010/Q4	<u> </u>
				SUDMISSION				
			e twice. Report Lo	V LINE STATISTICS	nd higher voltage lin			
pole miles of the 8. Designate an give name of les which the respor arrangement and expenses of the other party is an 9. Designate an determined. Spe	primary structure y transmission lin sor, date and term ident is not the so giving particulars Line, and how the associated comp y transmission lin actify whether less	In column (f) and t e or portion thereof ns of Lease, and ar ole owner but which s (details) of such r e expenses borne b any. e leased to another ee is an associated	the pole miles of the for which the respondent of the respondent of natters as percent y the respondent a r company and giv d company.	or more transmission the other line(s) in co bondent is not the so ear. For any transmip perates or shares in ownership by respo- are accounted for, and re name of Lessee, of the cost at end of year	lumn (g) ble owner. If such p ission line other tha the operation of, fu undent in the line, na nd accounts affecte date and terms of le	roperty is leased fro in a leased line, or p rnish a succinct stat ame of co-owner, ba d. Specify whether	om another company portion thereof, for tement explaining the tests of sharing lessor, co-owner, co	ıy, he
		E (Include in Colum	•	EXPE	NSES, EXCEPT D		TAXES	
Size of Conductor	Land rights,	and clearing right-c	Total Cost	Operation	Maintenance	Rents	Total	Line
and Material (i)	0	Other Costs (k)	(I)	Expenses (m)	Expenses (n)	(0)	Expenses (p)	No.
			=					1
	1,030,080	8,508,754	9,538,834	344,613	268,804	3,908	617,325	
	1,030,080		9,538,834	· · · · ·	268,804	· · · ·	617,325	
		[]						5
								6 7
								/ 8
						·		9
								10
								11
								12 13
								14
		-						15
								16
								17
								18 19
		├─────						20
								21
								22
								23
								24 25
	·	╞────┤						25
								27
	· ·							28
		ļ						29
<u></u>	•	<u> </u>						30 31
		┢━────┤					- ·	32
							<u> </u>	33
								34
								35
	304,043,028	1,385,872,194	1,689,915,222	19,946,548	15,558,625	226,188	35,731,361	36

	Name of Respondent This Report Is: Date of Report Year/Period of Report VIRGINIA ELECTRIC AND POWER COMPANY (1) [X] An Original (Mo, Da, Yr) End of 2010/Q4										
<u> </u>			г•• Ш		DDED DURING YE						
1. R	1. Report below the information called for concerning Transmission lines added or altered during the year. It is not necessary to report										
	minor revisions of lines. 2. Provide separate subheadings for overhead and under- ground construction and show each transmission line separately. If actual										
COSI	s of competed construction a		allable for re								
Line				Line Length		STRUCTURE		RSTRUCTUR			
No.	From	То		in Miles	Туре	Number per Miles	Present	Ultimate			
	(a)	(b)		(c)	(ď)	(e)	(1)	(g)			
		COLINGTON (52))		SC POLE	12.00	1	1			
		ROSSLYN (122)			U.G. XLPE		1	1			
	BALLSTON	ROSSLYN (143)			U.G. XLPE	· ·	1	1			
		EPG (215)			DC POLE	8.00		2			
		tap point (256) (20			STEEL TOWER	7.00		2			
	GREENWAY	BRAMBLETON (2			DC POLE	10.00		1			
		HAMILTON (2098			SC POLE	8.00	1	1			
		BREEZY KNOLL			_		1	2			
	BREMO	BEAR GARDEN (VALLEY (2109)	2106) (2111)		DC POLE STEEL TOWER	7.00	··	2			
	BEAUMEADE	NIVO (2116)			U.G. XLPE	6.00	2				
		GARRISONVILLE	(2120)		U.G. XLPE			·			
	BEAUMEADE	NIVO (2130)	. (2120)		U.G. XLPE		· · · · · · · · · · · · · · · · · · ·	1			
14				0.72			'	'			
15		<u> </u>					· · · · · · · · · · · · · · · · · · ·				
16											
17	······································						·				
18		<u> </u>						·			
19							· ·				
20	<u></u>										
21											
22		<u> </u>									
23	<u> </u>										
24											
25		<u> </u>									
26					~~~~						
27	<u> </u>										
28											
29											
30											
31											
32				· · · ·							
33		· · ·									
34		ļ									
35											
36											
37											
38		ļ									
39		· –				<u></u>					
40											
41											
42	··										
43											
					1	1					
44	TOTAL			54.57		58.00	17	18			

Name of	Respondent		This B	enort Is:		Date of Report		ar/Period of Report	
1	•	POWER COMPANY		eport Is:		(Mo, Da, Yr)		d of 2010/Q4	
			(2)			//			
		Territoria (Contraction)		N LINES ADDE		a sector and the sect		and Deeds and	
	-	er, if estimated an ppropriate footnot				-	Rights-of-way	, and Hoads and	
		s from operating v					ther then 60 c	wala 2 obsea	
	such other chara		ollage, indica	te such lact by	ioutiole, also	where me is t		ycie, 5 pilase,	
	CONDUCT								
Size			Voltage		Poles, Towers		Asset		Line
	Specification	Configuration and Spacing	KV (Operating)	Land and Land Rights	and Fixtures	and Devices	Retire. Costs	Total	No.
(h)	(i)	<u>()</u>	(K)	()	(m)	(n)	(0)	(p)	
1177	AAAC	Vert 10'	115		7,078,297	<u> </u>		8,025,858	1
2500	CU	Segmental	69		275,202		103,401	17,295,616	
2500	cu	Segmental	69		311,499		103,401	17,295,615	
636	ACSR	Vert 18.5'	230		2,003,344		<u>.</u>	2,442,516	
795	ACSR	Vert 19.5	230		5,085,642			8,949,051	5
636	ACSR	Vert 18.5'	230	32,993,653	19,389,131			55,363,827	6 7
636	ACSR	Vert 18.5'	230	5,476,081	29,357,987	Ļ	15,098		
3500	cu	Segmental	230	5,476,081	998,155	· ·	15,098	ļ	8
636	ACSR	Vert 18.5'	230	10,479	3,088,878	<u>}</u>		3,542,491	9
721	ACAR	Vert 19.5'	230		1,216,435	<u> </u>	47,851	3,113,374	10
3500	CU	Segmental	230	191,635	46,874			2,737,387	11
3500	CU	Segmental	230	382,855	7,807,801	73,929,786	17,635	82,138,077	12
3500	CU	Segmental	230	191,635	46,874	2,498,978		2,737,487	13
									14
									15
									16
									17
[18
									19
					<u> </u>				20
									21
									22
	-								23
									24
									25
<u> </u>			1						26
		<u> </u>							27
									28
									29
									30
<u> </u>	1	1	-						31
	-								32
	<u> </u>						-		33
									34
						[35
		·							36
									37
	-		-	·					38
<u> </u>	<u> </u>	· · ·	-						39
├				<u> </u>					40
	-		ł					·	41
<u> </u>									42
		·		····-					43
	+	··					<u> </u>		
						1			
				AA 722 A40	76 706 440	140 694 043	202 494	271 415 035	
1	1	1		44,722,419	76,706,119	149,684,013	302,484	271,415,035	44

•

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4		
SUBSTATIONS					

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	Character of Substation		/a)
No.			Primary	Secondary	Tertiary
1	(a)	(b)	(c) 115.00	(d) 34.50	(e)
-	ACCA	5 0	115.00	13.20	
	AHOSKIE	D	115.00	34.50	
	AIRLINE	D	34.50		_
	ALEXANDERS CORNER	D	34.50		
	ALEXANDERS CORNER	Q	115.00	13.20	
		5	34.50	4.16	
	ALLEGHANY	5 0	46.00	12.50	
	ALTAVISTA		138.00	115.00	12.50
	ALTAVISTA		138.00	69.00	12.5
	ANNANDALE	 D	34.50		
	ANNANDALE	D	230.00	34.50	
	AQUIA	0	230.00	34.50	
	ARLINGTON	0	34.50	13.20	
	ARLINGTON		230.00		<u> </u>
	ARNOLDS CORNER		230.00	34.50	
	ASHBURN		230.00	34.50	
	ASHTON	D	13.20	4.16	····
		0	34.50		
	AYDLETT	D	230.00	34.50	13.2
21	BAILEYS X-ROADS	b	34.50	12.50	10.2
22	BAINS STORE	0	115.00	34.50	13.20
23	BALLSTON		230.00	69.00	
24	BALLSTON		230.00	34.50	
25	BANISTER	D	138.00	34.50	
26	BARRACKS ROAD	5	230.00	34.50	
27	BASIN	D	115.00	13.20	
28	BASIN		230.00	115.00	13.20
29	BASIN	D	230.00		
30	BATTLEBORO	0	115.00	34.50	2.4
31	BATTLEFIELD	D	34.50	13.20	
	BAYSIDE	D	34.50		
	BAYSIDE	D	115.00		13.20
	BAYSIDE	D	115.00		
	BEARSKIN	 T	138.00		7.9
	BEAUMEADE	D	230.00	34.50	
	BECO	D	230.00		
	BELLE HAVEN	0	34.50		
	BELLWOOD	D	115.00		
	BELT LINE	D	34.50		
	<u></u>	L ₁			

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation Primary		/OLTAGE (In MVa)	
No.				Secondary	Tertiary
1	(a) BELVOIR	(b) D	(c) 230.00	(d) 34.50	(e)
-	BENNS CHURCH	D	34.50		
	BERKLEY	D	115.00	11.00	
4	BETHEL CAROLINA	D	115.00	12.50	
-	BEVERLY HILLS	D	34.50	4.16	
	BLOXOMS CORNER	D	115.00	23.00	
	BOLLINGBROOK	D	34.50	4.16	
	BOWERS HILL	D	230.00	34.50	- <u>-</u>
	BOYKINS	D	115.00	34.50	
			34.50	12.50	
10	BRADDOCK	D			
11	BRADDOCK	D	230.00	34.50	
	BREMO	D	115.00	34.50	13.20
	BREMO		138.00	115.00	13.20
	BREMO	<u>Т</u>	230.00	115.00	13.20
	BRIARFIELD	D	23.00	6.00	- <u></u>
	BRISTERS	т	500.00	230.00	
	BRISTERS	T	230.00	115.00	13.20
	BRODNAX	D	115.00	12.50	-
19	BRUNSWICK	T	115.00	69.00	13.20
20	BUCHANAN	D	46.00	12.50	
21	BUCKINGHAM	D	34.50	12.50	
22	BUCKINGHAM	D	230.00	34.50	
23	BUCKROE	D	23.00	6.00	
24	BUENA VISTA	<u> </u> D	115.00	12.50	
25	BULL RUN	Τ	230.00	115.00	13.20
26	BURKE	D	230.00	34.50	
27	BURTON	D	115.00	34.50	13.20
28	CALLAO	D	34.50	12.50	-
29	CAMPOSTELLO	D	11.00	4,16	
30	CANNON BRANCH	D	115.00	34.50	
31	CANNON BRANCH	Т	230.00	115.00	13.20
32	CAROLINA	D	115.00	13.20	-
	CAROLINA	<u> </u> Τ	230.00	115.00	13.20
	CARROLL	D	34.50	13.20	
	CARSON	- <u> </u>	500.00	230.00	34.50
	CARSON	Т <u>т</u>	500.00	230.00	
	CARTERSVILLE	D	115.00	34.50	·
	CARVER	D	115.00	34.50	- <u></u>
	CARVER	D	115.00	13.20	
	CASHIE	D	230.00		
Ŧv			200.00	57,50	

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4		
SUBSTATIONS					

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

4. Indicate in column (b) the functional character of each substation, designating whether transmission or distribution and whether attended or unattended. At the end of the page, summarize according to function the capacities reported for the individual stations in column (f).

Line	Name and Location of Substation	Character of Substation	V	OLTAGE (In MV	a)
No.			Primary	Secondary	Tertiary
1	(a)	(b)	(c) 230.00	(d) 115.00	(e)
-	CENTRAL	D	115.00	12.50	
	CENTRALIA	(D	115.00	13.20	
4	CENTREVILLE	D	230.00	34.50	
-	CHANCELLOR	D	115.00	34.50	
6	CHANCELLOR		500.00	115.00	
7	CHARLES CITY RD	D	230.00	34.50	
8	CHARLOTTESVILLE	D	34.50	12.50	
	CHARLOTTESVILLE	D	230.00	34.50	
10	CHASE CITY	···	115.00	69.00	13.20
11	CHASE CITY	D	115.00	12.50	
	CHATHAM	D	69.00	12.50	_
	CHERRYDALE	D	34.50	12.50	
	CHESTERBROOK		34.50	13.20	<u> </u>
	CHESTERFIELD 230		230.00	115.00	13.20
	CHICKAHOMINY		500.00	230.00	34.50
	CHICKAHOMINY	0	230.00	13.20	
	CHOWAN	D	115.00	34.50	
	CHURCHLAND	D	115.00	13.20	
20	CHURCHLAND		230.00	115.00	13.20
21	CHURCHLAND		230.00	34.50	
22	CIA		230.00	34.50	<u> </u>
23	CITY HALL	D	34.50	11.00	
24	CLARENDON	D	230.00	34.50	
25	CLARENDON	<u>{т</u>	230.00	69.00	
	CLARK	D	230.00	34.50	· · · -
	CLARKSVILLE	D	115.00	13.20	·,
	CLARKSVILLE		69.00	13.20	2.40
	CLIFTON	<mark>т</mark>	500.00	230.00	
30	CLIFTON FORGE	0	138.00	46.00	13.20
31	CLIFTON FORGE	D	138.00	12.50	·
32	CLIFTON FORGE	т	230.00	138.00	13.20
33	CLOVER	т	500.00	230.00	
34	CLUBHOUSE	т	230.00	115.00	13.20
35	COLINGTON	D	115.00	34.50	
36	COLONIAL HEIGHTS		13.20	4.16	
	COLONY		115.00	34.50	
	COLONY		115.00	13.20	
	COLUMBIA	D	34.50	12.50	
	COLUMBIA FURNACE	 D	34.50	23.00	

.

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of2010/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	V	OLTAGE (In MV	/a)
No.		(b)	Primary	Secondary (d)	Tertiary
i	(a) COOKS CORNER	(0)	(c) 34.50	12.50	(e)
		D	115.00	23.00	
- 3	CORRECTIONAL		230.00	34.50	<u></u>
4	COTTAGE PARK		34.50	13.20	
5	COVINGTON		46.00	12.50	
6	COVINGTON		138.00	46.00	12.50
7	CRADOCK		115.00	34.50	
8	CRAIGSVILLE	р	115.00	23.00	
9	CRANES CORNER		230.00	34.50	
	CRESWELL	 D	34.50	12.50	
11	CRESWELL		115.00	34.50	
	CREWE	 D	115.00	12,50	
	CRITTENDEN	D	230.00	34.50	
	CROMWELL ROAD	 D	34.50	4.16	
	CROZET	D	230.00	34.50	
	CRYSTAL	D	230.00	34.50	
17	CULPEPER	D	115.00	34.50	
18	CULPEPER REA	D	34.50	12.50	-
	CUSHAW		12.50	2.40	
20	DAVIS CORNER		115.00	34.50	13.20
	DAVIS CORNER	D	115.00	13.20	
22	DAYTON		230.00	34.50	
23	DEEP CREEK	D	115.00	13.20	
24	DELTAVLLE	D	34.50	12.50	
25	DENBIGH	D	230.00	34.50	
26	DIAMOND SPRINGS	D	34.50	13.20	
27	DINWIDDIE	D	34.50	13.20	
28	DISPUTANTA	D	115.00	13.20	
29	DOMINION	D	115.00	34.50	
30	DOOMS 115	D	115.00	23.00	
31	DOOMS 500	Т	230.00	115.00	13.20
32	DOOMS 500	Т	500.00	230.00	
33	DOOMS 500	Т	500.00	230.00	34.50
34	DOZIER	D	34.50	13.20	
35	DOZIER	D	115.00	13.20	
36	DRANESVILLE	D	230.00	34,50	
37	DRY RUN	D	46.00	12.50	
38	DRYBURG	D	115.00	12.50	
39	DULLES	D	230.00	34.50	
40	DUMFRIES	D	230.00	34.50	

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	VOLTAGE (In MVa)		
No.			Primary	Secondary	Tertiary
1	(a)	(b) D	(c) 230.00	(d) 34.50	(e)
	DUPONT		115.00		
	DWYER	D0	34.50	4.16	•••
	EAGLE ROCK	D	46.00		
	EARLEYS	D	115.00	34.50	
	EARLEYS	тт	230.00	115.00	13.20
	EAST END	D	23.00		10.20
	EAST OCEAN VIEW	D	34.50		
	EDENTON	D	115.00	12.50	
	EDGEWATER	D	34.50		
	EDINBURG	D	115.00		
	EDINBURG	л. Т	138.00	115.00	13.20
	ELEVENTH STREET	D	34.50		
	ELIZABETH CITY	D	230.00	34.50	
	ELKO	D	230.00	34.50	
	ELM	D	34.50		
	ELMONT	т Т	230.00		13.20
	ELMONT	D	230.00	34.50	13.20
	ELMONT	<u>р</u>	500.00		
	ELMONT	' T	500.00	230.00	34.50
	EMPORIA	D	115.00	12.50	34.30
	ENDLESS CAVERNS	D	115.00		•
	ENDLESS CAVERNS	т	230.00	115.00	13.20
	ENGLESIDE	D	34.50	12.50	13.20
	ENON	D	34.50	13.20	
	ENON	D	230.00	34.50	
	EVERETTS	T	230.00	115.00	13.20
	EVERETTS	D	230.00		13.20
	FAIRFAX	D	34.50		
	FAIRFIELD	D	115.00	23.00	
	FALLS CHURCH	D	34.50		
	FALLS CHURCH	D	230.00		
	FARMVILLE	D	115.00		
· ·	FARMVILLE	тт	230.00		13.20
	FARMVILLE	D	230.00		10.20
	FENTRESS	D	230.00		13.20
	FENTRESS	т	500.00		
	FISHERSVILLE	D	115.00		
	FLAGGY RUN	D	34.50		
	FORT HUNT	D	34.50		
40			34.30	12.90	
			04.00		

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	SUBSTATIONS	·	

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation		VOLTAGE (In MVa)		
No.			Primary	Secondary (d)	Tertiary (e)	
<u> </u>	(a)	(b)	(c) 115.00		(6/	
-	FORT MYER	D	34.50	12.50		
	FORT PICKETT	D	115.00			
		D	34.50	4.16		
5	FRANCONIA	D	230.00	34,50		
	FRANKLIN	D	115.00	13.20		
		 D	115.00	34.50		
	FREDERICKSBURG		115.00	13.20		
			230.00	115.00	13.20	
10	·	D				
11	GAINESVILLE			115.00	13.2	
12	GAINESVILLE	D		34,50		
13	······	D	230.00	34.50		
14		D	230.00	34.50		
15	GARYSVILLE	D	34.50			
16	GATESVILLE	D		12.50		
17	GLASGOW	O	115.00	46.00	13.20	
18		D	115.00	12.50		
19		D		34.50		
20	GLEN CARLYN	D		34.50		
21	GLOUCESTER	D	34.50	12.50		
22	GOLDMINE DP	D	34.50	13.20		
23	GORDONSVILLE	D	115.00	34.50		
24	GORDONSVILLE			115.00	13.2	
25	GOSHEN	D	115.00	46.00	4.1	
26	GOSHEN	D	115.00	23.00		
27	GOWRIE PARK	D	34.50	4.16		
28	GRAFTON	D	115.00	34.50		
29	GRASSFIELD	D	115.00	34.50	13.20	
30	GREAT BRIDGE	D	115.00	34.50	13.2	
31	GREEN HILL	D	34.50	4.16		
32	GREEN RUN	D	230.00	34.50	13.2	
33	GREENWAY	D	230.00	34.50		
34	GREENWICH	Т	230.00	115.00	13.2	
35	GREENWICH	D	230.00	34.50	13.2	
36	GRETNA	D	69.00	12.50		
37	GROTTOES	Ð		13.20		
38	GROTTOES	D	115.00	23.00		
39	GROTTOES	D	115.00	12.50		
40	GROTTOES	T		115.00	13.2	

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of2010/Q4		
SUBSTATIONS					

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

4. Indicate in column (b) the functional character of each substation, designating whether transmission or distribution and whether attended or unattended. At the end of the page, summarize according to function the capacities reported for the individual stations in column (f).

2 3 4 5 6	Name and Location of Substation (a) GROVE AVENUE GROVE AVENUE	Character of Substation (b)	Primary (c)	Secondary (d)	Tertiary
2 3 4 5 6	GROVE AVENUE GROVE AVENUE		(0)		(0)
2 3 4 5 6	GROVE AVENUE		34.50	13.20	(e)
3 4 5 6		 D	34.50	4.16	
4 5 6	GROVELAND	 	34.50	13.20	
5	GUM SPRINGS	D	230.00	34.50	
6	HALIFAX	T	230.00	115.00	13.20
	HAMILTON	D	230.00	34.50	
	HAMPTON	D	23.00	6.00	
8	HANOVER	D	115.00	13.20	
	HANOVER	D	230.00	34.50	
	HARBOUR VIEW	P	230.00	34.50	
	HARMONY VILLAGE	D	115.00	34.50	<u> </u>
	HARMONY VILLAGE		230.00	115.00	13.20
	HARMONY VILLAGE	D	230.00	34.50	
	HARRISONBURG	D	115.00	34.50	
	HARRISONBURG		230.00	115.00	13.2
	HARRISONBURG	<u>г</u>	230.00	69.00	13.2
	HARROWGATE	D	115.00	13.20	
	HARROWGATE		230.00	34,50	·
	HARVELL	D	115.00	13.20	
~	HAYES		115.00	34.50	
	HAYFIELD	D	230.00	34.50	
	HERNDON PARK		230.00	34.50	
	HERTFORD	D	34.50	13.20	
	HICKORY	0	115.00	34.50	13.2
	HICKORY		115.00	13.20	
	HICKORY		230.00	115.00	13.2
	HILLWOOD	D	34.50	13.20	
	HILTON	D	34.50	6.00	
	HODGES FERRY	D	115.00	34.50	
	HODGES FERRY	D	115.00	13.20	
	HOLLAND	D	115.00	13.20	
	HOLLIN HALL	D	34.50		
	HOLLYMEADE	D	230.00	34.50	
34	HOPEWELL	D	34.50	13.20	
35	HOPEWELL	D	230.00	34.50	13.2
	HORNERTOWN	D	115.00	34.50	
	HORNERTOWN	D	115.00	13.20	
	HORNERTOWN	D	230.00	34.50	
	HORSEPEN	D	34.50	4.16	
	HULL ST	D	230.00		

,

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line		Character of Substation		VOLTAGE (In MVa)		
No.	Name and Location of Substation		Primary	Secondary	Tertiary	
	(a)	(b)	(c)	(d)	(e)	
1	HUNTER	<u>D</u>	230.00	34.50		
	IDYLWOOD	D	34.50	13.20		
	IDYLWOOD	D	230.00	34.50		
~~~	IGLOO	D	34.50	12.50		
	ILDA	D	34.50	13.20		
6			115.00	34.50	13.20	
7		D	115.00	13.20		
	IRONBRIDGE	D	230.00	34.50		
	IVOR	D	115.00	13.20		
10		D	23.00	6.00		
11	JACKSON RIVER	D	46.00	12.50		
12		D	115.00	13.20		
13		D	230.00	34.50		
		D	115.00	34.50		
	KEENE MILL	D	230.00	34.50		
16	KELFORD	D	115.00	34.50		
17	KENBRIDGE	D	115.00	12.50		
18	KINDERTON	D	115.00	12.50		
19	KING GEORGE	D	34.50	13.20		
20	KINGS FORK	0	115.00	34.50		
21	KINGS FORK	D	115.00	13.20		
22	KINGS FORK	D	230.00	34.50		
23	KINGS MILL	D	115.00	34.50		
24	KINGS MILL	D	230.00	34.50		
25	KITTY HAWK	D	34.50	13.20		
26	KITTY HAWK	D	115.00	34.50	13.20	
27	KITTY HAWK	T	230.00	115.00	13.20	
28	KITTY HAWK	D	230.00	34.50	13.20	
29	LABURNUM	D	34.50	4.16		
30	LADYSMITH	Т	500.00	230.00		
31	LAFAYETTE	D	34.50	4.16		
32	LAKE GASTON	D	115.00	34.50		
	LAKELAND	D	34.50	4.16		
34	LAKERIDGE	D	230.00	34.50		
35	LAKESIDE		115.00	13.20		
	LAKESIDE		230.00		13.20	
37		D	230.00	34.50		
	LAKESIDE	D	230.00			
	LANCASTER	D	115.00	34.50		
	LANCASTER	D	115.00	13.20		
-10			113.00	10.20		

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Logation of Substation	Character of Substation	V	VOLTAGE (In MVa)		
No.	Name and Location of Substation (a)	Character of Substation (b)	Primary (C)	Secondary (d)	Tertiary (e)	
1		(0)	230.00	115.00	13.20	
2	LANDSTOWN	D	230.00	34.50	13.20	
	LANEXA		115.00	13.20		
		T	230.00	115.00	13.20	
		D	34,50	4.16		
		D	115.00	34.50		
			115.00	12.50		
	LEBANON	D	115.00	34.50		
	LEBANON	D	115.00	13.20		
	LEE D.P.	D	34.50	13.20		
	LEESBURG	D	34.50	13.20		
	LEMON	D	34.50	13.20		
		D	34.50			
	LENOX LEXINGTON		230.00	4.16	13.20	
	LEXINGTON				13.20	
			500.00	230.00		
	LIGHTFOOT	D	230.00	34.50		
		D	34.50	12.50		
		D	34.50	13.20		
	LOCKS	D	115.00	34.50		
	LOCKS	D	115.00	13.20		
	LOCKS	T	230.00	115.00	13.20	
22	LONDON BRIDGE	D	115.00	34.50	13.20	
23	LONG CREEK	D	115.00	34.50	13.20	
24	LOUDOUN	Т	230.00	115.00	13.20	
25	LOUDOUN	Т	500.00	230.00		
26	LOUISA	D	230.00	34.50		
27	LOVETTSVILLE	D	138.00	34.50		
28	LOW MOOR	Т	230.00	138.00	13.20	
29	LYNNHAVEN	D	34.50	13.20		
30	LYNNHAVEN	D	230.00	34.50	13.20	
31	MADISON ST	D	13.20	4.16		
32	MAGRUDER	D	115.00	34.50		
33	MAGRUDER	D	115.00	13.20		
	MANCHESTER	D	115.00	13.20		
35	MANTEO	D	34.50		· -	
_	MARGARETTSVILLE		115.00	13.20		
	MASSANUTTEN	D	34.50	12.50		
	MATHEWS	D	34.50	13.20		
	MCKENNEY	D	34.50	13.20		
	MCLAUGHLIN		34.50	4.16		
70				-, 10		

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is:         (1)       X An Original         (2)       A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	V	OLTAGE (In MV	'a)
No.	(a)	(b)	Primary (c)	Secondary (d)	Tertiary (e)
1		(0)	115.00		13.20
2	MCLEAN	D	34.50	13.20	
	MECHANICSVILLE		34.50		
	MERCK 5	D	115.00		
<u> </u>	MERCURY	0	115.00		
	MERRIFIELD		34.50		
			34.50	13.20	
8	METCALF	D	115.00	12.50	
	MIDDLEBURG		115.00	34.50	···
	MIDDLETON D.P.		34.50	13.20	
	MIDLOTHIAN 34.5		230.00		
	MIDLOTHIAN 500		500.00	230.00	34.50
	MINE ROAD		230.00	34.50	
	MONTROSS	D	34.50		<u> </u>
15	MORRISVILLE	т	500.00	230.00	
	MOUNT EAGLE		230.00	34.50	
	MOUNT LAUREL		115.00	12.50	
		D	230.00	· · · · ·	
	MT JACKSON	D	115.00	34.50	·
	MT STORM (N.BRANCH)		500.00	115.00	13.20
	MURPHY	O	115.00	34.50	<u>_</u>
22	MYRTLE			34.50	
23	NAGS HEAD	D	115.00	34.50	
24	NASH	D	230.00	34.50	13.20
25	NEW MARKET		34.50	12.50	<u>.</u>
26	NEWPORT NEWS #2		23.00	6.00	
27	NEWPORT NEWS #2	D	230.00	23.00	
28	NORTH ANNA 500/22	т	500.00	230.00	
29	NORTH POLE	D	230.00	34.50	
30	NORTH VA. BEACH	D	34.50	13.20	
31	NORTHEAST	D	115.00	13.20	
32	NORTHEAST	Τ	230.00	115.00	13.20
33	NORTHEAST	D	230.00	34.50	<u></u>
34	NORTHERN NECK		115.00	34.50	
35	NORTHERN NECK		230.00	115.00	13.20
36	NORTHWEST	D	115.00	13.20	
37	NORTHWEST	Т	230.00	115.00	13.20
38	NORTHWEST		230.00	34.50	
39	NORVIEW		34.50	4.16	
40	OAK GROVE	D	230.00		

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of2010/Q4		
SUBSTATIONS					

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	V	OLTAGE (In MV	/a)
No.			Primary	Secondary	Tertiary
1	(a) OAK RIDGE	(b)	(c) 115.00	(d) 13.20	(e)
	OAKWOOD	D	115.00	34.50	13.20
	OAKWOOD	D	115.00	13.20	
4	OCCOQUAN	D	230.00	34.50	· -
	OCEAN VIEW	D	34.50	4.16	
6	OFFICE HALL D.P.	D	34.50	13.20	
7	OKISKO	D	34.50	12.50	
8	OLD CHURCH	D	230.00	34.50	
9	ORANGE	D	115.00	34.50	
10	ORANGE	D	115.00	12.50	
11	OTTER RIVER	D	115.00	12.50	
	OX	т	500.00	230.00	
	PAGAN	D	34.50	13.20	· ·=
	PAMPLIN	D	34.50	23.00	
		D	115.00	34.50	
1	PANTEGO	D	115.00	34.50	
	PARMELE	D		12.50	
	PEARSONS		115.00	34.50	
		D			
	PENDER	0	230.00	34.50	10.00
	PENDLETON	D	115.00	34.50	13.20
21	PENINSULA	D	34.50	13.20	
	PENINSULA	D	115.00	34.50	
23	PENINSULA	T	230.00	115.00	13.20
24	PENINSULA	D	230.00	34.50	
25	PENTAGON	T	230.00	69.00	_
26	PERTH	D	115.00	34.50	
27	PHOEBUS	D	23.00	6.00	
	PICKETT STREET	D	34.50	13.20	
29		D	34.50	13.20	
	PINE ST	[D	34.50	11.00	
31	PLAZA	D	115.00	13.20	
32	PLAZA	Т	230.00	115.00	13.20
33	PLAZA	D	230.00	34.50	
34	PLEASANT VIEW	D	230.00	34.50	
35	PLEASANT VIEW 500	ТТ	500.00	230.00	
36	PLYMOUTH	D	115.00	34.50	
37	POE	D	34.50	13.20	
38	POE	Ť	230.00	115.00	13.20
39	POE	D	230.00	34.50	_
	POINT HARBOR	D	230.00	34.50	13.20

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Orlginal (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of2010/Q4	
SUBSTATIONS				

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

2 3 4 5	Name and Location of Substation (a) POOLESVILLE POPLAR CHAPEL PORT NORFOLK PORTSMOUTH	Character of Substation (b) D D	Primary (c) 230.00	Secondary (d)	Tertiary (e)
2 3 4 5	POOLESVILLE POPLAR CHAPEL PORT NORFOLK	D			(e)
2 3 4 5	POPLAR CHAPEL PORT NORFOLK		200.00	34.50	
3 4 5	PORT NORFOLK		115.00	34.50	
4 5		D	34.50	4.16	
5			230.00	115.00	13.20
	POSSUM POINT 230		230.00	115.00	13.2
	POSSUM POINT 500		500.00	230.00	
7	POTOMAC	D	- 34.50	4.16	
	POWHATAN		230.00	34.50	
	PRENTIS PARK	D	34,50	4.16	<u> </u>
	PRINCE GEORGE	D	34.50	13.20	
	PRINCESS ANNE		115.00	34.50	13.2
	PROVIDENCE FORGE	D	115.00	34.50	13.2
	PUNGO RIVER		34.50	13.20	
	PURCELLVILLE		34.50	13.20	
	Q ST		34.50	13.20	
	QUANTICO	D	115.00	13.20	
	RAVENSWORTH		230.00	34.50	
		D		34.50	
		D	115.00		
	REEVES AVE	D	115.00	34.50	13.2
	REEVES AVE	<u> </u>	230.00	115.00	13.2
	REMINGTON	D	115.00	34.50	
			230.00	115.00	13.2
		T	230.00	115.00	13.2
	RESERVOIR	D	34.50	4.16	
-	RESTON	D	230.00	34.50	
		D	115.00	34.50	
		D	115.00	13.20	
		D	230.00	34.50	
	ROBERSONVILLE	D	12.50	4.16	
	ROBERSONVILLE	D	115.00	12.50	
	ROCKBRIDGE	D	46.00	12.50	
	ROCKBRIDGE	D	115.00		
	ROSEMONT	D	34.50	13.20	
	ROSSLYN	D	69.00		
	SANDBRIDGE	D	34.50		
	SAPONY	D	115.00		
	SAPONY	D	230.00	34.50	
38 \$	SCOTLAND NECK	D	115.00		
39 3	SEABOARD	D	115.00	13.20	
40 5	SEAFORD	D	115.00	34.50	

ame of Respondent This Report Is: (1) X An Original (2) A Resubmission		Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	SUBSTATIONS		· · · · · · · · · · · · · · · · · · ·

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	V	OLTAGE (In MV	'a)
No.	(a)	(b)	Primary (C)	Secondary (d)	Tertiary (e)
1	SEWELLS POINT	T	230.00	115.00	13.20
2	SEWELLS POINT	D	230.00	34.50	13.20
	SHACKLEFORD	D	115.00	34.50	-
	SHEA #1	D	34.50	13.20	
	SHEA #1	D	34.50	4.16	
	SHEA #2		115.00	34.50	13.20
7	SHELLBANK		115.00	23.00	
8	SHELLBANK		115.00	13.20	
	SHELLBANK		230.00	115.00	13.20
	SHERWOOD	D	115.00	34.50	
	SHIRLEY DUKE	D	34.50	13.20	
	SHOCKOE	D	115.00	34.50	
	SHOCKOE	0	115.00	13.20	-
	SHORT PUMP	 D	230.00	34.50	
	SIDEBURN		230.00	34.50	
	SINAI	 D	115.00	12.50	
	SISISKY		115.00	13.20	
	SLIGO	 D	230.00	34.50	13.20
	SMITHFIELD		230.00	34.50	
	SOMERSET		115.00	34.50	
	SOUTH BOSTON		115.00	12.50	-
	SOUTH CREEK	D	34.50	12.50	
	SOUTH CREEK		115.00	34.50	
	SOUTH HILL	P	115.00	13.20	
	SOUTH NORFOLK	D	34.50	13.20	
	SOUTH NORFOLK	D	230.00	34.50	13.20
	SOUTH WASHINGTON	 D		4.16	
	SOUTHWEST	 D	230.00	34.50	
	SPRINGFIELD	D	34.50	13.20	
	ST ANDREW	 D	13.20	4.16	
	ST JOHNS	 D	115.00	13.20	-
	ST JOHNS		230.00	115.00	13.20
	STAFFORD	D		34.50	
	STATE FARM		34.50	13.20	
	STAUNTON	D	12.50	4.16	
	STAUNTON		23.00	12.50	
	STAUNTON	D	115.00		
	STAUNTON	 D	115.00	12.50	
	STERLING PARK	D		34.50	
	STONY CREEK	D	34.50	13.20	
		-			

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is:         (1)       X An Original         (2)       A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of2010/Q4
	SUBSTATIONS		•

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

No.		Character of Substation		VOLTAGE (In MVa)		
140.	Name and Location of Substation (a)	(b)	Primary (c)	Secondary (d)	Tertiary (e)	
1	STRATFORD HILLS	(0)	115.00			
	STUART GARDENS	 P	23.00		-	
	STUARTS DRAFT		115.00	23.00		
	STUMPY LAKE	D	230.00	34.50	13.20	
	SUFFOLK	D	115.00	13.20		
	SUFFOLK	D	115.00	34.50		
	SUFFOLK	т	230.00	115.00	13.2	
	SUFFOLK	D	230.00	34.50		
	SUFFOLK	т	500.00	230.00		
	SULLY	P	230.00	34.50		
	SUNBURY	D	230.00	34.50		
			230.00	34.50	-	
	ТАВВ		230.00	34.50		
	TAPPAHANNOCK		34.50	4.16		
	TAR RIVER	D	115.00	12.50		
	TARBORO		115.00	13.20	-	
	TARBORO	т	230.00	115.00	13.20	
	TARBORO	і т	230.00	115.00		
	TAUSSIG		115.00	34.50	13.2	
	TAUSSIG	D	115.00	13.20		
	TEMPLE AVE.	D	115.00	34.50		
22	THALIA	D	34.50	13.20		
23	THALIA	D	230.00	34.50	13.20	
24	THIRD STREET	D	23.00	12.50		
	THIRD STREET	D	23.00	4.16		
	THOLE ST	D	115.00	34.50	13.2	
	THOMPSONS CORNER	D	115.00	34.50	13.2	
	THOMPSONS CORNER	D	115.00	13.20		
29	THRASHER	D	230.00	34.50	13.2	
30	TIMBERVILLE	D	115.00	12.50		
31	TITUSTOWN	D	34.50	4.16		
	TOANO	D	115.00			
	TRABUE	D	230.00	34.50		
34	TRAP	D	34.50		<u> </u>	
35	TREGO	D	12.50			
	TREGO	D	115.00	2.40		
	TROWBRIDGE	т	230.00	115.00	13.2	
	TUNIS	D	115.00	34.50		
	TURNER		115.00	34.50	<u></u>	
	TURNER	D	230.00		<u>~</u>	

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of2010/Q4
	SUBSTATIONS	-	

2. Substations which serve only one industrial or street railway customer should not be listed below.

Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.
 Indicate in column (b) the functional character of each substation, designating whether transmission or distribution and whether

Line	Name and Location of Substation	Character of Substation	v	OLTAGE (In MV	/a)
No.	(a)	(b)	Primary (c)	Secondary (d)	Tertiary
1	TWELFTH ST.	0	115.00		(e)
	TWELFTH ST.	D	115.00	13.20	
	TWITTYS CREEK		34.50		
	TWITTYS CREEK	 D	115.00		<del></del>
	TYLER	D	115.00	13.20	
	TYLER		230.00	34.50	
	TYSONS	D	230.00	34.50	<u></u>
	UNIONVILLE DP	D	115.00		
	VALLEY	т	500.00		
	VAN DORN	D	230.00		
11	VERONA	D	115.00		
	VICTORIA	D	115.00	12.50	
	VIENNA	0	34.50	13.20	
	VIRGINIA BEACH	D	115.00	34.50	13.20
15			115.00	13.20	
	VIRGINIA BEACH		230.00	115.00	13.20
17	VIRGINIA HILLS		34.50	13.20	
18	VIRGINIA HILLS	D	230.00	34.50	
19	WAKEFIELD	D	13.20	4.16	
20	WAKEFIELD	D	115.00	34.50	
21	WAKEFIELD	D	115.00	13.20	
22	WALLER	D	230.00	34.50	
23	WALNEY	D	230.00	34.50	
24	WALNUT HILL	D	13.20	4.16	
25	WALTHALL	D	115.00	34.50	
26	WAN	D	115.00	34.50	
27	WAR	D	69.00	13.20	
28	WARRENTON	D	230.00	34.50	
29	WARSAW	D	34.50	13.20	
30	WARWICK	D	115.00	13.20	
31	WARWICK	D	230.00	34.50	
32	WATKINS CORNER	0	115.00	34.50	•
33	WAVERLY	D	115.00	13.20	····
34	WAYNE HILLS	D	23.00	12.50	
35	WAYNESBORO	D	115.00	23.00	
36	WELCO	D	115.00	34.50	
37	WELCO	D	115.00	12.50	
38	WESCOTT	D	34.50	13.20	
39	WEST LANDING	D	230.00	34.50	13.20
40	WEST STAUNTON	D	230.00	23.00	

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	SUBSTATIONS		

2. Substations which serve only one industrial or street railway customer should not be listed below.

3. Substations with capacities of Less than 10 MVa except those serving customers with energy for resale, may be grouped according to functional character, but the number of such substations must be shown.

Line	Name and Location of Substation	Character of Substation	v	OLTAGE (In M\	/a)
No.			Primary	Secondary	Tertiary
1	(a)	(b)	(c) 34.50	(d) 4.16	(e)
	WESTMINSTER		34.50		
	WESTMORELAND		230.00		
4		D	115.00	34.50	
-	WEYERS CAVE	D	115.00		-
	WHEALTON	U	230.00		13.20
- 7		D	115.00		13.20
	WHITEHALL DP		34.50		
	WHITESHOP	D	34.50		·
	WHITESTONE	D	115.00		
11	WILLIAMSBURG	D	34.50		
	WILLOUGHBY	D	34.50		-
	WILLSTON	D	34.50		
	WINCHESTER	D	34.50		<u></u>
	WINCHESTER	D	230.00		
	WINFALL	D	115.00		
					10.00
	WINTERPOCK	D	230.00		13.20
	WOODBRIDGE	D	230.00		
			230.00		
	WOODLAND	D	115.00		-
21	WOODSTOCK	D	34.50		
22		D	23.00		
23		T	230.00		13.20
24	YADKIN	D	230.00		
25		T	500.00	230.00	34.50
26		T	500.00		
27	YORKTOWN	T	230.00	115.00	13.20
28	Total Transmssn & Distribution		91225.20	25136.96	1620.98
29		· · · · <b> </b>			
30					
31					<u></u>
32					
33					
34					
35					
36					
37					
38					
39					
40					

Name of Respondent		This Report	ls:	Date of Report	Year/Period of Repor	ï
VIRGINIA ELECTRIC AND	POWER COMPANY		Original Desubmission	(Mo, Da, Yr) //	End of2010/Q4	
	<u> </u>		Resubmission STATIONS (Continued)	11	ļ	
5. Show in columns (I),	(i) and (k) special e			ctifiers condensers etc	and auxiliary equipme	ent foi
increasing capacity.	(), and (i) special e		retary conventions, re-		and doxindry oquipine	
6. Designate substation	s or major items of e	equipment leased	from others, jointly of	wned with others, or ope	erated otherwise than by	<b>y</b>
reason of sole ownership						
period of lease, and ann						
of co-owner or other part affected in respondent's						
anecieu in respondent s	DOORS OF ACCOUNT.	specity in each ca	158 WIICINEI 165501, CC	-owner, or other party is	s an associated compar	ıy.
Capacity of Substation	Number of	Number of	CONVERSI	ON APPARATUS AND SP		Line
(In Service) (In MVa)	Transformers In Service	Spare Transformers	Type of Equi	pment Number of	of Units Total Capacity	No.
(f)	(g)	(h)	(i)	(j)	(In MVa) (k)	
195	3		<u> </u>		(N)	1
80	2					2
22			-			3
		··· ·				4
22				<u></u>		5
20			{	·—		6
13	2	· · · -				7
11						8
224	2					9
53	3					10
						11
						12
90	2					13
34			<b> </b>			14
42	2					15
327	4		· · · ·			16
95	2	<u>_</u>	<u> </u>			17
150	2				<del>_</del>	18
3	3				<del>_</del>	19
40	2					20
100	2		<u> </u>			20
40	2		ļ			1
50	1					22
168	1					
84		·	·			24 25
45	2		l			
150	2					26 27
22	1		<u> </u>			27
448	2					
168	2				<u>_</u>	29
40	2					30
13	1					31
20	1		<b>.</b>			32
56	1		<u> </u>			33
22	1		<u> </u>			34
60	1	·····	1			35
234	3		ļ			36
75	1					37
14	1					38
20	1					39
6	1					40

•

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	SUBSTATIONS (Continued)	-	
5 Show in columns (I) (i) and (k) special equir	ment such as rotary converters, re	ctifiers condensers etc	and auxiliary equipment for

Capacity of Substation	Number of	Number of	CONVERSION APPARAT	US AND SPECIAL E		Line
(In Service) (In MVa)	Transformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity (in MVa) (k)	No.
(1)	(g)	(h)	()	<u> </u>	(k)	
168	2					1
13	1					2
	2					3
22	1					4
10	4					5
100	2					6
5						7
75		<u></u>				8
13	1					9
22	1					10
168	2					11
22	1					12
192	4	1				13
224	1					14
	3					15
840	3	1				16
224	1					17
13	1					18
52	2					19
7	6	1				20
11	1					21
34	1	1				22
9	1				<u></u>	23
45	2					24
336	4					25
159	2					26
56	1			1		27
6	1					28
3	3			1		29
22	1					30
100	1			· · · ·		31
100	3					32
224	1					33
14	1					34
840	3	1			<u> </u>	35
	3		· · · · · · · · · · · · · · · · · · ·			36
13		-				37
50						38
120	3			{	-	39
34						40
	·					

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	(1) X An Original		Year/Period of Report End of 2010/Q4
	SUBSTATIONS (Continued)	·	

Capacity of Substation	Number of	Number of	CONVERSION APPARAT	US AND SPECIAL E	QUIPMENT	Line
(In Service) (In MVa)	Transformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity (In MVa) (k)	No.
(f)	(g)	(h)	(i)	Ű	(IN MVa) (k)	
30	3	1				1
22	1		· · · · · · · · · · · · · · · · · · ·			2
35	2					3
50	1					4
106	2					5
269	3	1	·			6
67	2		· · · · · · · · · · · · · · · · · · ·			7
13	1			1		8
150	2					9
37	1					10
14	1					11
11	3					12
14	1					13
14	1					14
224	1					15
840	3	1	<u> </u>			16
22	1					17
22	1					18
22	1					19
224	1					20
150	2					21
129	2					22
64	2					23
159	2					24
168	1					25
234	3					26
22	1					27
6	3					28
1680	6	1				29
20	1					30
22	1					31
250						32
840	3	2				33
168						34
56		1				35
5				[		36
168	2					37
22	1					38
5	1					39
15	1					40
	•					
				A		·

Name of Respondent		This Report	ls:	Date of Report	Year/Period of Repor	rt
VIRGINIA ELECTRIC AND	POWER COMPANY		Original Iesubmission	(Mo, Da, Yr) / /	End of2010/Q4	<u>+</u>
			TATIONS (Continued)		Į	
5. Show in columns (I),	(j), and (k) special e			ctifiers, condensers, etc	. and auxiliary equipme	ent for
increasing capacity.						
6. Designate substation						
reason of sole ownership period of lease, and ann						
of co-owner or other par						
affected in respondent's						
	<u> </u>	. <u></u>				
Capacity of Substation	Number of Transformers	Number of Spare		ON APPARATUS AND SP		Line
(In Service) (In MVa)	In Service	Transformers	Type of Equi	pment Number of	of Units Total Capacity (In MVa)	No.
(f)	(g)	(h)	(i)	(j)	(k)	┣
3	1					1
45	2		<u> </u>			
34						
24	2					4
25	2					6
90	2					
67	2		<u> </u>			8
6 120	3		<u> </u>			
5	2					10
22						11
14						12
						13
5						14
67	' 1					15
598	4					16
85	2					17
22						18
5	1	<u></u>				19
95	2				·	20
42	2				•	21
100	2					22
45	2	· · · · · ·				23
6	1				·	24
90	2	· · · · ·				25
14	1	· · · · · · · · · · · · · · · · · · ·	-			26
4	1		+		·	27
6	1					28
22	1			t		29
96	2					30
673	3					31
840	3					32
840	3	······································				33
10	1					34
42	2					35
159	2					36
11	1					37
2	1					38
159	2					39
125	2					40
			1			
			1	1	1	1
			1		1	1

.

Name of Respondent VIRGINIA ELECTRIC AND	POWER COMPANY		ls: Original lesubmission	Date of Report (Mo, Da, Yr)	Year/Period of Repor End of 2010/Q4	
			TATIONS (Continued)	+		
<ol> <li>Show in columns (I), ( ncreasing capacity.</li> <li>Designate substations eason of sole ownership</li> </ol>	s or major items of e	quipment such as equipment leased	rotary converters, ro from others, jointly o	wned with others, or op	erated otherwise than by	1
eriod of lease, and annu f co-owner or other party	ual rent. For any su y, explain basis of s	bstation or equip haring expenses	ment operated other or other accounting	than by reason of sole obetween the parties, and	ownership or lease, give d state amounts and acc is an associated compar	nar our
	hhan the of	Alumbar of				-
Capacity of Substation (In Service) (In MVa)	Number of Transformers In Service	Number of Spare Transformers	Type of Equ	ION APPARATUS AND Si	of Units   Total Capacity	Lin No
<u>(1)</u>	(9)	(h)	()		) (in MVa) ) (k)	
50						╞
20		<u></u>				┢
4	3					┢
45	2		· · · · ·			
168	1					
5	3		. <u> </u>			
24	2		<u> </u>		<del></del>	$\vdash$
6						┢
100	2		·			T
112	1					
5	1					$\left[ - \right]$
	2	· · · · · ·	<u> </u>			┝
22	2					┢
336	2					
95	2					
840	3	<u> </u>	 			
840	3					$\vdash$
22	2		· · · · · · · · · · · · · · · · · · ·			╞
448	2	·				┢
42	2					
22	1					
50	1	•				
224	2	· · · · · · · · · · · · · · · · · · ·				╞
45	2					┢╴
10	1					
42	2					
168	2	· · · ·	ļ			-
45	2		<u> </u>			┣
	2		<u> </u>			┢
75						┼╴
1680	6					
45	2	·	<u> </u>			
13	1					
40	2					

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4			
SUBSTATIONS (Continued)						

increasing capacity. 6. Designate substation reason of sole ownership period of lease, and ann of co-owner or other part	s or major items of o by the respondent ual rent. For any si ty, explain basis of	equipment leased t. For any substation ubstation or equipn sharing expenses of	rotary converters, rectifiers, conde from others, jointly owned with othe on or equipment operated under le nent operated other than by reasor or other accounting between the pa se whether lessor, co-owner, or oth	ers, or operated o ase, give name of of sole ownershi arties, and state a	therwise than by lessor, date and p or lease, give i nounts and acco	, d name ounts
Capacity of Substation	Number of	Number of	CONVERSION APPARATE	IS AND SPECIAL E	QUIPMENT	Line
(In Service) (In MVa)	Transformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity	No.
		(h)	()		(In MVa)	
(f) 45	(g) 2	(1)	<u> </u>	Ű)	(k)	1
9						2
						3
20	1					
5						4
168	2					5
45	2					6
75	1					7
42	2					8
168	1					9
84	1	<u></u>				10
393	4			· · · · · · · · · · · · · · · · · · ·		11
118	2		·			12
159	2		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		13
84					···	14
8			·····			15
						16
5	· 1					
22	1					17
22	1					18
159	2					19
234	3			-		20
7	2					21
11	1					22
22	1	· · · · · · · · · · · · · · · · · · ·				23
448	2					24
	3	1		·		25
13			· - ··	···· <b>···</b>		26
5	1				·	27
50	'	·				28
			···	<u>_</u>		29
67	2				·	30
		· ··—			· · ·	31
5	1					32
196	2					
234	3					33
448	2					34
50	1					35
9	3	1				36
9	1					37
13	1					- 38
22	1	· ·····		<u>-</u>		39
224	1					40

Name of Respondent		This Report Is: (1) X An Orig	Inal Date (Mo. I	la Vi∖ I	ar/Period of Repor	
VIRGINIA ELECTRIC AND	POWER COMPANY		bmission //		1 of2010/Q4	-
		SUBSTA	FIONS (Continued)			
	j), and (k) special e	quipment such as rot	ary converters, rectifiers, co	ondensers, etc. and a	uxiliary equipme	ent
creasing capacity.						
			m others, jointly owned with			
			or equipment operated und nt operated other than by re			
			other accounting between the			
			whether lessor, co-owner, o			
···	Number of	Number of				-
Capacity of Substation	Transformers	Spare -		RATUS AND SPECIAL E		ļĻ
(In Service) (In MVa)	In Service	Transformers	Type of Equipment	Number of Units	Total Capacity (In MVa)	•
(f)	(g)	<u>(h)</u>	(i)	()	<u>(k)</u>	1
14						┢
	1		····			1
	1					
159	2					
448	2					
84	1		<u></u>			
6	3			_		Ĺ
20	1			_		
50	1					
34	1					
22	1					Τ
168	3	1				Γ
56	1					
56	2					
224	- 1				_	Ι
224	6	1				
45	2					Τ
45	1					Γ
74	2					Γ
45	2					
159	2					Γ
75	1					Γ
14	1					Ţ
50	1					Γ
22	1					Ť
112	1					T
28	2	( -				T
9						T
50	1					T
20						T
4	1					t
22	1			·		t
45	<u>1</u>					┢
80	2					┢
392	5			<u> </u>		┢
						1

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
	(1) X An Original (2) A Resubmission	(Mo, Da, Yr) //	End of 2010/Q4
	SUBSTATIONS (Continued)		

Capacity of Substation	Number of	Number of	CONVERSION APPARA	TUS AND SPECIAL E		Line
(In Service) (In MVa)	Transformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity (In MVa) (k)	No.
(1)	(g)	<u>(h)</u>	0	(j)	(K)	
150	2					
14	1					2
336	2					3
11	1					4
9	1					5
124	2					6
45	2		·			7
140	3					8
6	1					9
5	3					10
8	3		l			11
6	1					12
318	4					13
22	1					14
196	4					15
22	1				1	16
14	1					17
20	1					18
7	1					19
40	1				· ··· =	20
14	1					21
25	1					22
56	1		<u> </u>			23
50	1					24
13	1					25
112	2					26
336	2	1				27
75	1	·				28
5	3					29
840	3	1	·			30
6	1					31
22	1	<u></u>	•			32
5	1					33
90	2					34
22	1					35
336		· · ······				36
159						37
56						38
42	2					39
22		· · · · · · · · · · · · · · · · · · ·				40
<u> </u>	' '					
				1		

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	SUBSTATIONS (Continued)		·

Capacity of Substation	Number of	Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT		Line	
(In Service) (In MVa)	Transformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity (In MVa) (k)	No.
(1)	(g)	(h)	(1)	0	(in Mva) (k)	
448	2	· •			1	1
125	2					2
14	1	· · · · · · · · · · · · · · · · · · ·				3
336	2					4
9	2					5
20	1		- <u> </u>			6
13	1		<u> </u>		<b>-</b>	7
22	1					8
22	1					9
7	1		<u> </u>			10
33	2					11
13	1					12
5	1	<u></u>				13
336	2					14
672		1				15
150	2					16
14	1					17
22						18
56			• <u>···</u> ··		<u></u>	19
42			<b>-</b>			20
336						21
56	1					22
45	2					23
336	2					24
1680	6	2				25
45	1		<b>-</b>			26
106	4	1				27
250		1				28
42	2					29
131	2					30
7	6	1	·			31
45	2				-	32
22	1					33
106	2					34
7	1					35
3	3					36
9	1		· ·			37
11	- 1					38
4	1		- · · · -	1		39
19	2					40
						l
				· · · · · ·		L

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4					
SUBSTATIONS (Continued)								
5. Show in columns (i), (j), and (k) special equip	ment such as rotary converters, re	ctifiers, condensers, etc.	and auxiliary equipment for					

increasing capacity. 6. Designate substations or major items of equipment leased from others, jointly owned with others, or operated otherwise than by reason of sole ownership by the respondent. For any substation or equipment operated under lease, give name of lessor, date and parted of lease, and experience. For any substation or equipment operated other than by reason of sole ownership by the respondent.

period of lease, and annual rent. For any substation or equipment operated other than by reason of sole ownership or lease, give name of co-owner or other party, explain basis of sharing expenses or other accounting between the parties, and state amounts and accounts affected in respondent's books of account. Specify in each case whether lessor, co-owner, or other party is an associated company.

Capacity of Substation	Number of Transformers	Number of	CONVERSION APPAR	ATUS AND SPECIAL E		Line
(In Service) (In MVa)	In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity (in MVa) (k)	No
(f)	(g)	(h)	(i)	()	(k)	
106	2		·			
42	2					
40	2					
22	1					
50	1					
40	2		<u> </u>			
22	1					
14	1					
96	3					
4	1					1
159	2					1
840	3		·			1
120	2		······································			1
5	1					1
2220	6	1				
50	1		- · · · · · · · · · · · · · · · · · · ·			1
22						$\square$
125	2					1
22		i				1
100	3	1				
45	. 2					2
22						2
113	6					2
50						
4						2
5	3		<b></b>			
224	2					
672	6	1	• · · · · · · · · · · · · · · · · · · ·			
		·				1 2
	2					3
42	2			<u> </u>		3
224		I				
224	2					
45	2		· · · · · · · · · · · · · · · ·			
168	3	1				
22			_ <u></u>	<u>_</u>		
		·				
168	1					3
252	3					1
5	1					
50	1					
	ł					Í

Name of Respondent	This Report Is:	Date of Report	Year/Period of Report
VIRGINIA ELECTRIC AND POWER COMPANY	(1) [X] An Original (2) A Resubmission	(Mo, Da, Yr) / /	End of 2010/Q4
	SUBSTATIONS (Continued)		

Capacity of Substation	Number of	Number of	f CONVERSION APPARATUS AND SPECIAL EQUIPMENT			Line
(In Service) (In MVa)	Transformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity (In MVa) (k)	No.
(f)	(g)	(h)	(1)	()	(k)	
45	2					•1
168	3					2
42	2					3
150	2					4
9	2					5
6	1					6
5	1					7
50	1					8
22	1					9
22	1				7	10
45	2				Ī	11
1680	6	2				12
13		·····				13
6	3	1				14
42	2			_	·	15
13	1					16
13	1		<u></u>		• • •	17
	1					18
252	3					19
112	2					20
11	1				· · ·	21
45	2			· · ·-		22
224	1					23
45	1					24
504	3					25
45	2					26
5	3				<u>.</u>	27
13						28
	1	<del></del>		· · ·		29
17	2	=				30
42	2					31
					ļ	32
168 56						33
225	3					34
840	3	1				35
			· · · · · · · · · · · · · · · · · · ·			36
45 67				· • • • • • • • • • • • • • • • • • • •		37
	2			.   ·		38
336	2					39
159	2					
34	1					40

Name of Respondent		This Report Is	j: Disional	Date of Report	Year/Period of Repor	t
	POWER COMPANY		esubmission	(Mo, Da, Yr) / /	End of2010/Q4	- 
			ATIONS (Continued)			
<ol> <li>Show in columns (I), increasing capacity.</li> <li>Designate substation</li> </ol>			-		• • •	
reason of sole ownership	by the respondent.	For any substation	on or equipment oper	ated under lease, give i	name of lessor, date an	d
period of lease, and ann						
of co-owner or other part affected in respondent's						
anected in respondents	DOOKS OF BECOUNT, S	pecity in each cas	se whether lessor, co	-owner, or other party is	an associated compar	ıy.
Capacity of Substation	Number of Transformers	Number of Spare	CONVERSIO	ON APPARATUS AND SP	ECIAL EQUIPMENT	Line
(In Service) (In MVa)	In Service	Transformers	Type of Equip	oment Number of	of Units Total Capacity (In MVa)	No.
. (1)	(g)	(h)	(i)	0	(III IVIVA) (K)	
50	1					1
22	1					2
9	2					3
224	1					4
336	2					5
840	3	1				6
6	3					
84	2					9
5	1					10
14						11
40						12
						13
32	2					14
	<u>_</u>					15
	2					16
75						17
22						18
252	3					19
392	2					20
67	2				_	21
224	1					22
224	1					23
12	2					24
234	3					25
22	1					26
42	2					27
159	2					28 29
10	2					30
. 13	1	3				31
56	2					32
6					<u> </u>	33
134	4					34
20						35
						36
34	1		<u></u>			37
22	1					38
	3	1				39
45	2		<u> </u>			40
						ĺ
						1
	1				1	1

Name of Respondent		This Report	ls:	Date of Report	Year/Period of Repor	rt
VIRGINIA ELECTRIC AND		(1) XAn (2) AR	Original Resubmission	(Mo, Da, Yr) / /	End of2010/Q4	
5. Show in columns (I),	(i) and (k) special equ		TATIONS (Continued)	ctifiers condensers etc		ant for
increasing capacity.		•				
6. Designate substation	s or major items of eq	uipment leased	from others, jointly ov	wned with others, or ope	rated otherwise than by	y_
reason of sole ownership period of lease, and ann						
of co-owner or other part						
affected in respondent's						
•						
Capacity of Substation	Number of	Number of	CONVERSI	ON APPARATUS AND SP		Line
(In Service) (In MVa)	Transformers In Service	Spare Transformers	Type of Equip		of Units Total Capacity	No.
(1)	(g)	(h)	()	Ű	(In MVa) (k)	
448	2					1
168	1					2
22	1	**** = ==				3
20	1					4
6	1					5
100	2					6
115	6		<u> </u>			7
20			<u> </u>			9
	2		┼────		<u> </u>	10
45	2		<u>+</u>			11
120	2					12
90	2		<u> </u>			13
225	3		1			14
84			1			15
22	1					16
22	1					17
50	1		T			18
106	2					19 20
22	<u> </u>		<b></b>	ł		20
35	2					22
22	<u> </u>		<del> </del>		<del></del>	23
45	2	<u>-</u>	+			24
22						25
100			<u> </u>		·	26
6	3		<u> </u>			27
224	2					28
42	2					29
5	1					30
13			<u> </u>			31
168	1		<u> </u>			32
159 6	2		<u> </u>			34
7	<u> </u>		<u> </u>			35
9						36
42	4	<u>-</u> -	+			37
20			+			38
243	3					39
4	1		<u>+</u> -			40

Name of Respondent		This Report	ls:	Date of Report	Year/Period of Repor	rt
VIRGINIA ELECTRIC AND	POWER COMPANY		Original Resubmission	(Mo, Da, Yr) / /	End of2010/Q4	L
	· · ·		STATIONS (Continued)	L' '		
5. Show in columns (I),	(j), and (k) special e		and the second secon	ctifiers, condensers, etc	. and auxiliary equipme	ent fo
increasing capacity.						
<ol><li>Designate substation reason of sole ownership</li></ol>						
period of lease, and anni						
of co-owner or other part						
affected in respondent's						
	Number of	Number of				<u> </u>
Capacity of Substation	Transformers	Spare		ON APPARATUS AND SP		
(In Service) (In MVa)	In Service	Transformers	Type of Equi		(In MVa)	No.
(1)	(g)	(h)	(i)		(k)	
45	2					
5	3	<u> </u>				
47	2					
159	2					
40	3		1			
22	1					
448	2					
75	1				···	
840	3		1	·		
150	2				<u>_</u>	1
25	1					1
120	2					1
129	2					1:
3	1	<u> </u>				14
22						1!
20	1	<u> </u>		· · · · ·		10
112				<u> </u>		1
112	1					
56	1					19
22	1					2
22	1	·····				-
40	2					2
224	2					2
9	1	<del></del>				24
4	3					2
50	1					20
140	2					2
42	2	<u> </u>	_			
224	3				<u>_</u>	2
20	1					3
5	1					3
56	2		-		~	3
120	2					34
6	1					3
3	3					3:
6	1				·	
336	2					3
56	2					30
45	1					39
45	1					40

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of 2010/Q4
	SUBSTATIONS (Continued)	-	

Capacity of Substation	Number of	Number of				Line
(In Service) (In MVa)	Transformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity (In MVa) (k)	No.
(1)	(g)	(h)		(i)	<u>(k)</u>	<u> </u>
168	2					1
150	2					2
6	1					3
22	1					4
20	1					5
45	1					6
309	4					7
13	1	·	· · · · · · · · · · · · · · · · · · ·			8
840	3	1	···			9
150			·····	·		10
25			···· <del>·····</del>			11
14						12
42		· · ···	· ···			13
168						14
42	2					15
				-		16
448	2		·			17
36			·		· · · · · · · · · · · · · · · · · · ·	
75						18
3		<u> </u>				19
13		···				20
9	1					21
159	2					22
150	2		·		<u>_</u>	23
4	1					24
34	1					25
78	4	1				26
37	1					27
134	2					28
9	î					29
40	2					30
150	2					31
20	1					32
33			···	·	·····	33
11	1				<u> </u>	34
50	1					35
22	1					36
15		<u>.</u>	· · · ·	-		37
40						38
						39
129					<u> </u>	40
129	2					~

Name of Respondent VIRGINIA ELECTRIC AND POWER COMPANY	This Report Is: (1) X An Original (2) A Resubmission	Date of Report (Mo, Da, Yr) / /	Year/Period of Report End of2010/Q4
·	SUBSTATIONS (Continued)		•

Capacity of Substation Number of Numb		Number of	CONVERSION APPARATUS AND SPECIAL EQUIPMENT			
(In Service) (In MVa)	Transformers In Service	Spare Transformers	Type of Equipment	Number of Units	Total Capacity (In MVa) (k)	Line No.
(f)	(g)	(h)	(i)	()	<u>(k)</u>	
7	2					1
10	1					2
34	1					3
56	2					4
22	1					5
392	2					6
22	1					7
8	1					8
3	3					9
14	1					10
14	1			-		11
13	1					12
14	1		· · · · · · · · · · · · · · · · · · ·			13
67	2	<u></u>				14
150	2					15
45	2	······				16
168	1					17
100	2					18
168	2	-				19
22	1					20
6	2					21
5	3					22
224	1			- <u> </u>		23
75	1			1		24
840	3	1				25
840	3	1			<u> </u>	26
224	1					27
72711	1087	51				28
						29
					<u> </u>	30
		• <del></del>				31
						32
				-		33
· · · · · · · · · · · · · · · · · · ·						34
						35
						36
·						37
			· · · · · · · · · · · · · · · · · · ·			38
						39
· · · · · · · · · · · · · · · · · · ·						40