Hart Exhibit 15 Part 4 of 4 Docket No. E-2, Sub 1219

OFFICIAL COPY

Apr 13 2020

Table F-3

CONCENTRATION DATA: SOIL 20-3 pH MANIPULATION (mg/L, except as noted)

LC20-3 DETECTION LIMIT NOMINAL pH

		2.0	2.5	3.0	3.5	4.0
Eh (mV)		450	454	433	420	280
A1	0.03	113	40	10.2	2.87	0.71
As	0.01					
B A State of the second s	0.02	0.06	0.081	0.092	0.09	0.082
Ba	0.002	0.372	0.173	0.096	0.066	0.047
C	0.05	0.04	0.52	0.48	0.48	0.12
Ca	0.01	31	31	28.2	23.6	17.4
Cd	0.0001					
C1	0.15	804.31	328.04	166.35	88.7	35.69
Cr	0.0005	0.2663	0.0672	0.0194		
Cu	0.005	1.218	0.7317	0.0487	0.0066	
F	0.1	0.05	0.35	0.33	0.25	0.1
Fe	0.005	102	82	61.6	45.5	30.4
pH units (ACTUAL)	an a	3.15	3.51	3.93	4.33	5.58
K	0.1	21.9	16.3	14.2	12.2	10.9
Li 🥬	0.005	0.173	0.098	0.063	0.044	0.028
Mq	0.1	32.6	7.1	3.7	2.7	1.9
Mn	0.005	4.21	3.21	1.97	1.19	0.792
Mo	0.01	0.09	0.07			
Na	0.03	2.53	2.43	2.4	2.37	2.28
Nistation	0.02	0.09	0.05	0.03	0.03	
Ρ	0.1	0.3	0.19	0.17	0.12	
S04	0.15	56.52	60.25	63.63	67.47	74.7
Si	0.02	58	20	11.2	8.68	6.86
Sr	0.002	1.05	0.842	0.571	0.39	0.246
Zn	0.005	0.489	0.205	0.197	0.122	0.131

F-11

I/A

CONCENTRATION DATA: SOIL 20-3 pH MANIPULATION (mg/L, except as noted)

L	С	2	0	 3	
_	v	۴	v	•	

		4.5	5.0	5.5	6.0	6.5	7.0	7.5
Eh	(mV)	267	137	106	70	61	55	33
A1		0.15	0.05					
As								
В		0.083	0.077	0.063	0.065	0.055	0.059	0.052
Ba		0.053	0.044	0.036	0.032	0.044	0.042	0.035
С		0.16	0.2	0.2	0.44	0.2	0.44	0.72
Ca		10.9	6.73	2.87	2.44	1.88	2.06	1.36
Cd								
C1		19.5	10.77	4.4	4.06	4.88	4.15	4.17
Cr								
Cu								
F		0.04	0.02	0.03		0.01		0.15
Fe		15.5	7.58	1.77	0.86	0.022	0.054	0.009
pН	units							
	(ACTUAL)	4.69	6.37	6.49	6.7	7.28	7.41	7.82
Κ		40.4	61.1	83.1	98.6	125	119	133
Li		0.016	0.008					
Mg		1.2	0.75	0.32	0.26	0.17	0.2	
Mn		0.562	0.343	0.181	0.157	0.034	0.067	
Мо								
Na		2.51	2.66	2.83	2.95	3.14	3.13	3.11
Ni								
Ρ		0.1	0.11	0.15	0.15	0.14	0.12	0.14
S0	4	82.2	92.38	106.97	150.35	122.18	142.74	158.1
Si		5.32	4.15	2.52	1.98	1.08	1.22	0.713
Sr		0.277	0.199	0.095	0.08	0.062	0.069	0.042
Zn		0.116	0.045	0.067	0.074	0.082	0.053	0.044

CONCENTRATION DATA: SOIL 20-3 pH MANIPULATION (mg/L, except as noted)

LC20-3

		8.0	8.5	9.0	9.5	10.0	10.5	11.0
Eh	(mV)	20	-24	-26	-55	-87	-103	-166
A1		0.04	0.091	0.18	0.33	1.63	9.73	25.5
As								
В		0.051	0.048	0.049	0.053	0.073	0.097	0.1
Ba		0.034	0.011	0.004	0.005			
С		1.2	1.64	2	2.84	5.32	12.28	6.64
Ca		0.76	0.43	0.15	0.07	0.02	0.02	0.04
Cd								
C1		4.63	4.89	4.22	5.47	6.17	6.19	6.1
Cr								
Cu								
F		0.3	0.37	0.5	0.68	1.34	1.61	1.51
Fe		0.018	0.011	0.016	0.102	0.034	0.226	0.026
рН	units							
	(ACTUAL) 7.73	7.71	8.2	8.97	9.77	10.18	10.81
K		148	145	153	162	185	258	376
Li								
Mg								
Mn								
Мо							0.01	0.02
Na		3.11	2.97	2.91	2.8	2.03	1.47	1.31
Ni								
P		0.26	0.37	0.53	0.73	4	11.5	17.5
S04		172.4	166.5	174.19	178.92	180.5	193.48	181.02
Si		0.542	0.498	0.485	0.536	0.678	1.87	4.84
Sr		0.024	0.012	0.004	0.003			
Zn		0.043	0.007	0.046	0.012	0.01	0.012	0.041

CONCENTRATION DATA: SOIL 20-3 pH MANIPULATION (mg/L, except as noted)

LC20-3

	11.5	12.0	N-1	N-2	N-3
Eh (mV)	-179	-182	-73	-65	-49
A1	45	82	0.24	0.24	0.28
As					
В	0.108	0.11	0.073	0.082	0.078
Ba			0.044	0.039	0.04
С	8.48	10.48	0.24	0.28	0.36
Ca	0.03	0.08	11.2	12.7	12.7
Cd					
C1	6.24	4.38	3.97	3.87	4.29
Cr					
Cu					
F	1.36	0.83	0.07	0.04	0.06
Fe	0.463	0.093	18	20.8	19.8
pH units	11 50	10.00	7 40	7 51	7 47
(ACTUAL)	11.50	12.08	7.43	/.54	10.0
K	580	1020	13.3	12.4	12.2
L1			1.25	0.019	1 42
Mg			1.25	0 562	0 561
Ma	0 00	0.14	0.501	0.505	0.501
MO	1.26	1.06	2 26	2 22	2 2
Nd N:	1.50	1.90	2.20	6.66	2.5
N I	<u>,,, o</u>	26.3	0 10		
r 504	101 26	102 20	7/ 97	8/1 1/1	84 44
504	0 12	22 0	5 17	6 04	6 1
51 Sw	9.13	22.0	0 161	0.04	0.1
sr 7.	0.014	0 012	0.101	0.104	0.103
Zn	0.014	0.013	0.003	0.090	0.008

CONCENTRATION DATA: SOIL LC12 pH MANIPULATION (mg/L, except as noted)

LC12 DETECTION LIMIT NOMINAL pH

		2.0	2.5	3.0	3.5	4.0
Eh (mv)		799	764	732	689	663
A1	0.03	78	20.8	6.38	0.27	
As	0.01					
B	0.02				0.035	0.042
Ba	0.002	17.7	10.5	6.26	1.36	0.416
C	0.05	0.08	0.08	0.12	0.24	4.68
Ca	0.01	3.4	2.25	2.16	1.26	0.576
Cd	0.0001	0.0022	0.0018	0.0026	0.0021	0.003
C1	0.15	1042.75	283.27	148.91	63.27	32.33
Cr	0.0005	0.023	0.0025	0.0005	0.0007	
Cu	0.005	0.0883	0.114	0.0189		0.071
F	0.1	0.13	0.33	0.3	0.15	0.52
Fe	0.005	26	0.871	0.11		
pH units		1.94	2.56	3.02	3.91	4.31
K	0.1	17.7	11	8.9	11.3	4.1
li	0.005	0.122	0.025	0.01		
Μα	0.1	40.3	24.5	21.3	14.5	7.59
Mn	0.005	6.42	3.38	2.89	1.72	0.876
Мо	0.01					
Na se se	0.03	1.18	1.24	1.07	1.29	1.18
Ni	0.02	0.11				
Ρ	0.1					
S04	0.15	3.18	1.03	3.29	1.92	2.41
Si	0.02	54.8	17.8	9.86	5.38	3.3
.Sr	0.002	0.075	0.054	0.046	0.025	0.009
7n	0.005	0.812	0.35	0.269	0.19	0.117

CONCENTRATION DATA: SOIL LC12 pH MANIPULATION (mg/L, except as noted)

	r	1	2
L	ι	Τ	۷

	4.5	5.0	5.5	6.0	6.5	7.0	7.5
Eh	(mV) 635	622	593	587	574	569	569
A1	0.03			v			
As							
В	0.073	0.068	0.065	0.065	0.06	0.063	0.054
Ba	0.149	0.018	0.051	0.065	0.068	0.014	0.021
С	4.4	2.92	0.68	0.4	0.8	7.28	6.6
Ca	0.327	0.093	0.071	0.026	0.071	0.019	
Cd	0.0011	0.0008	0.0005	0.0008			0.008
C1	17.24	1.32	2.53	2.55	3	3.52	2.3
Cr		0.0006	0.009	0.9	0.009	0.0006	0.0008
Cu			0.0232	0.0249	0.011		0.0085
F	0.12	0.04	0.04	0.17	0.05	0.05	0.09
Fe	0.013	0.018	0.009	0.267	0.006	0.007	0.007
рH	units						
	(ACIUAL) 4.65	5.08	5.35	5.45	5.62	5.73	6.05
К 	3.8	1.4	5.9	6.2	10.8	7.3	9.7
L1							
Mg	3.88	0.58	0.45	0.23	0.36	0.1	0.11
Mn	0.693	0.084	0.48	0.055	0.038	0.009	0.01
Мо					,		
Na	1.17	0.88	1.12	1.18	1.24	0.78	0.89
Ni							
Р							
S04	3.65	5.64	13.38	7.82	15.39	6.72	11.78
Si	2.52	1.8	1.54	1.43	1.1	1.05	0.81
Sr	0.005				*		
Zn	0.102	0.07	0.055	0.052	0.064	0.036	0.033

CONCENTRATION DATA: SOIL LC12 pH MANIPULATION (mg/L, except as noted)

LC12

	8.0) 8.5	9.0	9.5	10.0	10.5	11.0
Eh	(mV) 556	5 546	517	486	476	459	448
A1		0.06	0.17	0.55	0.57	4.47	10.1
As							
В	0.06	L 0.051	0.046	0.065	0.065	0.074	0.077
Ba	0.06	0.016	0.006	0.007	0.008	0.005	0.005
С	2.64	6.48	8.64	4.16	14.36	32.48	13.04
Ca	0.028	3 0.36	0.071	0.051	0.033	0.01	
Cd	0.000	5 0.0022	0.0007	0.0007			0.002
C1	3.9	3.55	4.5	2.67	3.59	3.38	2.45
Cr	0.001	3 0.0035	0.008	0.0068	0.0101	0.0085	0.0186
Cu		0.024	0.011	0.007	0.008		
F	0.1	1 0.33	1.25	1.86	2.15	3.14	2.55
Fe	0.0	1 0.023	0.04	0.237	0.035	0.026	0.015
pН	units						
	(ACTUAL) 6.2	5 6.89	8.16	9.05	9.53	10.38	10.73
К	1	4 12.2	17.3	18.4	26.5	51.8	104
Li							
Mg	0.1	8 0.32					
Mn	0.01	4 s. 4	0.008	0.024	0.007	0.007	0.006
Мо							
Na	1.0	9 0.85	0.88	0.71	0.9	0.76	0.87
Ni							
Ρ							
S0	4 17.4	9 12.32	13.48	11.7	18.45	19.74	26.61
Si	0.7	6 0.52	0.41	0.54	0.41	1.17	2.61
Sr							
Zn	0.05	5 0.044	0.022	0.092	0.092	0.012	0.018

CONCENTRATION DATA: SOIL LC12 pH MANIPULATION (mg/L, except as noted)

	_C12		
	8949	11.5	12.0
Eh	(mV)	429	339
A1		28.8	83
As			
В		0.079	0.09
Ba			0.005
С		39.04	141.6
Ca			0.067
Cd			0.0005
C1		2.54	4.44
Cr		0.0186	0.0257
Cu		0.017	0.024
F		2.42	1.96
Fe			0.027
рН	units (ACTUAL)	11.3	11.94
К	、 ,	295	1090
Li			
Mg			
Mn			
Мо			
Na		1.22	3.54
Ni			
Ρ			
S04	4	29.11	39.63
Si		10.8	36.7
Sr			
Zn		0.022	0.03

Appendix G MONITOR WELL LOGS • •

Well Id:	LMW-01	Bc	orehole Id: L	C-03 Page1 of
Deptn Below Land Surface (ft)	Core Intervals	Well Constructio	on Lithology	Geologic Description
• 0				Top of Casing 668.035 ft Land Surface 666.2 ft
				Saprolite/Fill yellowish-red silty clay, abundant mica
D		grout Orout		Saprolite/Fill orangish-yellow silty sand, trace amounts of mica
10				Saprolite/Fill dark brown pebbly-sandy-silty-clay
15				Saprolite/Fill light brown silty clay, abundant mica
n Maria ang pangangan Tang tang pangangan Tang tang pangangangan Tang tang pangangangan Tang tang panganganganganganganganganganganganganga				Alluvial Deposits? light brown pebbly-sandy-silt -
20				Alluvial Deposits? light brown silty clay to sandy-silty-clay
				sandy silt, abundant mica with trace amounts of clay
25 				
30				
35				
			L	्रिया स्थिति स्थिति स्थिति स्थिति

Well Id:	LMW-02	2	Boreh	ole Id: L	C-04 Page1of 2
Depth Below Land Surface (ft)	Core Intervals	Well Const	ruction	Lithology	Geologic Description
- 0					Top of Casing 697.890 ft Land Surface 696.4 ft
- 5					
- 10					Fill dark brownish-red pebbly- sandy-silty-clay, abundant mica
- 15		grout	grout		
- 20					Fill/Soil greenish-brown silty clay, trace amounts of sand and mica
- 25					Fill brownish-red pebbly-silty- clay
- 30					Saprolite/Fill dark red silty clay, extremely micaceous with trace amounts of mafic minerals
- 35		L 1 0 2 Diame	4 6 8 1 ter (inches))	Geo Trans. inc.

	Well Id:	LMW-03	3	Boreh	ole ld: l	C-05 Pagel of 1
De Be La Su	pth low nd rface (ft)	Core Intervals	Well Constr	ruction	Lithology	Geologic Description
- 1	0					Top of Casing 697.504 ft Land Surface 694.5 ft
	5					Saprolite reddish-brown clayey- silt, abundant mica
	10		grout	grout		
	15			∑ °		Saprolite reddish-brown sandy- clayey-silt, abundant mica
	20	Ι				Saprolite dark brown to blackish-greenish-brown clayey silt, abundant mica
- :	25					Saprolite grayish-green silty clay, trace amounts of mica Auger Refusal
	30					
	35		L I I O 2 4 Diamete	6 8 10 r (inches)		Geo Trans, inc.

.

G-7

Well Id:	LMW-04	Boreh	ole Id: L	C-08 Page2of2
Depth Below Land Surface (ft)	Core Intervals	Well Construction	Lithology	Geologic Description
-35				Partially Weathered Bedrock, Schist/Gneiss Auger Refusal
- 40				
-				
-				
			×	
-				
-				Ťe.
		Diameter (inches)	<u>í</u>	Geo rans, inc.

Well Id:	LMW-06	Во	rehole Id: L(C-10	Page1of1
Depth Below Land Surface (ft)	Core Intervals	Well Constructio	n Lithology	Geologic [escription
- 0				Top of Casing Land Surface	695.708 ft 693.7 ft
- 5		grout		Saprolite reddis brownish-red clayey mica	h-brown to -silt, abundant
- 10					
- 15				Saprolite browni clayey-silt, abunda	sh-gray sandy- ant mica
- 20					
- 25			~		
- 30					
- 35		L <u>LL</u> 0246 Diameter (inc	1 8 10 ches)		Geo Trans, inc.

v

Well Id:	LMW-07	Boreho	ole Id: L	C-12 Page 2 of 2
Depth Below Land Surface (ft)	Core Intervals	Well Construction	Lithology	Geologic Description
- 35				
- 40		17777A grou		Unweathered BedrockGneiss/Schist
- 45				Water producing fractures
- 50			<u>2727275</u>	r
-				
-		L <u>II</u> J 0246810 Diameter (inches)		GeoTrans, inc.

th ow d ace(ft)	Core Intervals	Well Construc	tion	Lithology	Geologic Description
					Top of Casing 695.923 ft
				<u>.</u>	Land Surface 696.4 ft Fill grayish-white sandy grave
					Saprolite/Fill brownish-red clayey silt, abundant mica, trac amounts of sand; boulders encoun
					tered at 6 feet
					Saprolite dark red silty clay
) 					abundant mita
· .					
5	13 A.C	grout	grout		
0					
इ.स.					Saprolite orangish-red to bro clayey silt, abundant mica, alte nating hard and soft layers
D					
U		Ţ			
35		L <u>I</u> 0 2 4 Diameter	1 1 6 8 (inche	J 10 9)] G

Well Id:	LMW-0	8 Boreh	ole Id: L	C-11 Page2of2
Depth Below Land Surface (ft)	Core Intervals	Well Construction	Lithology	Geologic Description
- 35				
- 40	.Т			Saprolite brown to black sandy silt, partially consolidated, highly weathered schist Auger Refusal
-		0 2 4 6 8 10 Diameter (inches)		Geo Trans, inc.

Well Id:	LMW-0	9 Boreh	ole ld: L	-C-13	Page2of 2
Depth Below Land Surface (ft)	Core Intervals	Well Construction	Lithology	Geologic Descriptic	on
- 35	<u> </u>			Alluvial Deposits grayish- pebbly-sandy-clayey-silt	white
- 40					
-					
-					
-					
-					
-		0 2 4 6 8 10 Diameter (inches)			Geo .

*

•

Below Land Surface (ft)	Core Intervals	Well Construction	Lithology	Geologic Description
- 35				
				Alluvial Deposits grayish- white pebbly-sandy-clayey-silt
- 40				
Д. Д.				
Maria ang sa Santari Maria				
		n an		
		0 2 4 6 8 10		

Γ	Well Id:	LMW-10)		Boreho	ole ld: L	C-14 Page1 of 1
DBL	epth elow and	Core Intervals	Well Const	ruc	tion	Lithology	Geologic Description
3	0		T				Top of Casing 676.982 ft Land Surface 673.3 ft
	5						
	10		grout		grout		Fill reddish-brown pebbly- sandy-clayey-silt
	15						
	20			Ţ			
	25						Alluvial Deposits? brown silty sand, well sorted
	- 30	T					Alluvial Deposits greenish- brown clayey sand Saprolite whitish-gray sandy silt, abundant mica Gneiss whitish-gray, highly weathered Auger Refusal
	- 35		L L O 2 Diame	4 eter	6 8 1 (inches	0	Geo Trans, inc.

Depth Below Land Surface (#)	Core Intervals	Well Construction	Lithology	Geologic Description
0		•		Top of Casing 750.832 ft
•				Land Surface 746.4 ft
5		thorage		Saprolite red clayey silt, abundant mica
				Saprolite light brown sandy- clayey-silt Auger Refusal
15				
20				Partially Weathered Bedrock Gneiss/Schist?, white to tan, alternating hard and soft layers, fractured, abundant feldspar, quartz and biotite
25		grout		
30				
35				

Well Id:	LMW-11	Boreho	ole Id: LC	C-16 Page2of2
Depth Below Land Surface (ft)	Core Intervals	Well Construction	Lithology	Geologic Description
- 35		static		
- 40		grout grout		Unweathered BedrockGneiss/Schist, white to tan, fractured, abundant feldspar, quartz and biotite
- 45				
- 50		1111111111111111111111111111111111111		
- 55				Fractures
- 60				
- 65				
-		L <u>I I I I</u> 0 2 4 6 8 1 Diameter (inches	0	Geo

Well Id:	LMW-12	Boret	nole Id: LC	C-17 Page2of2
Depth Below Land Surface (ft)	Core Intervals	Well Construction	Lithology	Geologic Description
- 35 - 40	Ţ			
-				
				9
-				
-				
-		0 2 4 6 8 1 Diameter (inches	L 10 (s)	Geo Trans, inc.

Well Id: LMW-14 Borehole Id: LC-19 Page1of						
Depth Below Land Surface (ft)	Core Intervals	Well Construc	tion	Lithology	Geologic Description	
- 0	T	Ţ			Top of Casing 727.789 ft Land Surface 725.0 ft Ash gray clayey-sandy-silt Ash gray pebbly-silty-clay,	
- 5					Ash gray to greenish-gray pebbly-sandy-silt, varved layering present in sample	
- 10		grout	grout		Ash gray silty clay to clayey silt, trace amounts of sand Ash gray pebbly sand, trace amounts of clay	
- 15					Ash gray sandy silt Saprolite brownish-red silty	
- 20					Clay to clayey silt, abundant mica Partially Weathered BedrockGneiss, grayish-white feldspar/quartz veins	
- 25					Auger Refusal	
- 30					р	
- 35		U 1 1 0 2 4 Diameter	6 8 1 (inches	0	Geo Trans, inc.	

	Well Id:	LMW-16		Boreh	ole Id: L(C-21 Pagelof1
DBLS	epth elow and urface (ft)	Core Intervals	Well Construe	ction	Lithology	Geologic Description
-	0					Top of Casing 694.617 ft Land Surface 693.5 ft
.	5					Saprolite/Fill? red to brownish- red sandy silt, trace amounts of mica and clay
	10		grout	grout		Saprolite light beige to
	15					silt, trace amounts of sand
	20					saprofite fight red silty clay, sand and pebble size quartz and feldspar fragments present in samples
	25					Saprolite red clayey silt, increasing clay content with depth Auger Refusal
	30					
	- 35		L <u>II</u> 024 Diameter	6 8 1 r (inches	0	Geo Trans, inc.

Well Id:	LMW-18		Boreh	ole Id: L	C-23 Page1of4
Depth Below	Core	Well		Lithology	Geologic Description
Land Surface (ft)	Intervals	Construction		LIUIDIOGY	Geologic Description
					Top of Casing 824.722 ft
- 0				Lingely in the last a	Land Surface 820.5 ft
					Saprolite red sandy silt, abundant sand size quartz fragments
- 5					Auger Refusal
					Partially Westhered Pedrock Control
					gray to white, abundant feldspar and
- 10					quality, trace amounts of mica
					Saprolite golden-brown sandy
4 5					silt, abundant mica
- 15					
		grou	grou		
					Partially Weathered BedrockGneiss, grayish-white, abundant feldspar and
- 20					quartz, abundant fractures
			D		
- 25					
		HANKIN .	H H H		Security colder by a nod
			ANNA I		sandy silt, trace amounts of clay
			MANA AND AND AND AND AND AND AND AND AND		
- 30		15 FEB	and the		
			ANTHUR		
		AN DELIG			
		and the second	interes a		
- 35			Ent		
			6 8 10		GeoTrans.inc.
L	A	1	S. 1000000		

G-29

Well Id:	LMW-18	Boreho	ole ld: L	C-23 Page3of 4
Depth Below Land Surface (ft)	Core Intervals	Well Construction	Lithology	Geologic Description
- 70				
- 75		建設に対応に対応に対応 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		Gneiss alternating hard and soft
- 80				layers
- 85				Gneiss increasing biotite content
- 90				
- 95				Fractures
- 100				
- 105		<u> </u>		Geo Trans, inc.

Well Id:	LMW-22	e Boreho	ole id: No	ne Page of
Depth Below Land Surface (ft)	Core Intervals	Well Construction	Lithology	Geologic Description
- 0				Top of Casing 726.89 ft Land Surface 725.0 ft Ash gray clayey-sandy-silt Ash gray pebbly-silty-clay, abundant pebble size coal rejects
- 5				Ash gray to greenish-gray pebbly-sandy-silt, varved layering present in sample
- 10				
- 15				
- 20				
- 25				
- 30				
- 35		0 2 4 6 8 1 Diameter (inches	0	Geo Trans.inc.

Well Id:	LMW-25		Boreh	ole ld: LC	C-29 Page 1 of 3
Depth Below Land Surface (ft)	Core Intervais	Well Constru	uction	Lithology	Geologic Description
- 0 - 5 - 10 - 15 - 20		grout	grout		Land Surface ≈679 ft Saprolite/Fill? reddish-brown silty-clayey-sand, sand size quartz and mica. Saprolite/Fill? brown clayey- silty-sand, abundant sand size mica, trace shale fragments and organic matter
- 25 -					
- 30 	-				Alluvium silvery-gray pebbly sand, poorly sorted, angular grains
		024 Diamet	6 8 1 er (inches	a	GeoTrans.inc.

Weil Id: LMW-25 Borehole Id: LC-29 Page2o					
lepth leiow .and jurface (ft)	Core Intervals	Well Construction	Lithology	Geologic Description	
	angen angen Angen angen Angen a				
35	- 41.11				
			· · · · · · · · ·		
40					
	6-84.				
	ander Processioner Processioner	· · · · · · · · · · · · · · · · · · ·			
	a Malancia de Constante de Cons				
45					
		3 3 4			
50		Broi		Saprolite white to black to	
				yellowish-orange silty sand,	
				biotite, amphibolite and	
				magnetite(?)	
_					
55					
	an da				
60					
				an an an an Araba an	
65					
4) 1944 -					
- 70					
- 10					
	and the second		11 (1) (1) (1)		

G-35

Well Id:	LMW-25	Borah	ole Id: L	C-29 Page 3 of 3
Deoth Below Land Surtace (it)	Core Intervals	Well Construction	Lithology	Geologic Description
- 70				
75				
80				
85				
-				
-				
		0 2 4 6 8 10 Diamater (inches)		Geo Lan inc.

wen id.		Dorau	UIA IG. L	
)eoth Selow and Surface (ft)	Core Intervals	Well Construction	Lithology	Geologic Description
		Abandoned		
n	n sa karanta An ay sa kara			Land Surface≈647±4 ft
5				Alluvium/Fill? reddish-brown silty-sandy-clay, fine to medium grained sand size mica
5				Alluvium olive-green sandy-silty- clay interbedded with reddish-brown silty sandy;clay, abundant organic matter
10				Alluvium black to olive-green clayey-silty sand, sand is medium to coarse grained, with quartz, feldspar, amphibolite, magnetite(?) and trace mica Soil black to dark brown silty
				Sand, abundant organic matter
- 15				
				Saprolite white to black silty sand, foliated, with biotite, amphibolite and magnetite(?)
- 20				
				Refusal
- 25				
•				
-				
- 30				
- 35				
	e - 1942		A	

G-37

Well Id:	LMW-24		Boreh	ole Id: L	C-25 Pagel of 1
Depth Below Land Surface (ft)	Core Intervals	Well Construc	ction	Lithology	Geologic Description
- 0					Land Surface≈656 ft
- - 5 -					Alluvium/Fill? reddish-brown to yellowish-brown silty-clayey-sand, abundant medium grained sand size mica
- 10		grout	grout		Alluvium reddish-yellow to yellowish-green silty-pebbly-sand, poorly sorted, medium to coarse grained sand size quartz and mica, trace organics
- 15					Soil? dark-brown clayey-silty- sand, abundant mica Alluvium yellowish-brown clayey- silty-sand, angular quartz and mica
- 20					sand grains, trace mica, quartz and feldspar pebbles, trace organics Saprolite white to black silty sand, foliated, with quartz
- 25					feldspar, biotite, amphibolite and magnetite (?), quartz phenocrypts (1-2 cm) present
- 30					
- 35		024 Diameter	1 J 3 8 10 (inches)		Geo Trans, inc.

Appendix H WATER LEVEL ELEVATIONS

H-3

H-4

WATER LEVEL ELEVATIONS FOR LMW16, LMW03, AND LMW13

t

H-7

H-10

Appendix I SLUG-TEST ANALYSES

. A .

ł

Appendix J SOURCE APPORTIONMENT CALCULATIONS

A method to estimate the relative mixing of waters from different sources downgradient of the ash pond is described in this section. Three sources were considered in this treatment: groundwater, ash pond water, and ash delta water. Average compositions of the groundwater and ash pond water analyses were used in the calculations.

A source apportionment approach was used to estimate the relative amounts of each of these three water sources present in the well samples collected between the ash pond and the river. The chemical species which were included in these calculations were selected on the basis that minimal losses or increases would occur due to interactions with the soils between the ash pond and the sampling points. Eight species were initially considered, including chloride, total organic carbon, calcium, strontium, sulfate, sodium, potassium, and silicon. Chloride was dropped from the list since the well samples consistently showed higher chloride levels than the concentrations in any of the source streams. The remaining seven species were then used to regress the relative amounts of the three sources for each of the well samples.

An iterative, trial and error routine was used to obtain a best fit of the compositions. A set of equations was defined for each well sample of the following mathematical form:

where:

 C_{n} = the concentration of species, n, in the source, i

= the fraction of source, i, in the well sample

 $\sum_{i} C_{n_{i}} \cdot F_{i} = C_{n_{s}}$

= the concentration of species, n, in the well sample, s.

(J-1)

A set of simultaneous equations was generated from the previous expression for each well sample. The fractions of each source, F_i , were selected to minimize the absolute value of relative errors between the calculated concentrations and the measured values such that:

$$\sum_{n} \left[\frac{(C_{n_{s}} - C'_{n_{s}})}{(C_{n_{s}} + C'_{n_{s}})/2} \right]^{2} = \text{minimum} (J-2)$$

where:

C'

$$C_{n_s}$$
 = the calculated concentration of species, n,
in a particular sample, s.
 C' = the measured concentration of species, n, in

the sample, s.

The fractions were also subjected to the conservation constraint that:

$$\Sigma_{i} F_{i} = 1$$
 (J-3)

The results of these calculations are summarized in Table J-1. These results indjcate that most of the water at each of the sampling points comes from the groundwater supply. In general, the closer to the ash pond, the higher the fraction of ash pond water predicted for the samples. In the case of wells L-5, L-6, and L-7, the proportion of ash pond water increases with the depth at which the sample is collected. The calculated contribution of solution associated with the ash delta is generally quite low, but in general represents about 5 to 10% of the volume of most samples.

The comparison of the measured concentrations to the calculated values is also presented graphically. Figure J-1 shows measured data versus the calculated values along with a least square fit line and a line representing a perfect fit of the calculated values. The graphs for the remainder of the samples are presented in Figures J-2 through J-13.

Table J-1

SUMMARY OF SOURCE APPORTIONMENT CALCULATIONS

				Chem	ical Species	(mg/L)				Mixing Fractions	an in the the
Wel	L ID	TOC	<u>Ca</u>	Sr	<u>so</u> 4	Na	<u>_K</u>	Si	Ground Water	Ash Pond	Ash Delta
	Meas.	8.3	11	.074	45	4.4	2.7	12	0.84	0.13	0.02
	Calc.	8.8	13	.070	39	5.0	3.4	15			
L-2	Meas.	13	30	0.21	145	9.8	2.0	17	0.54	0.36	0.10
1. T T	Calc.	9.0	37	0.18	149	6.2	4.7	13			
L-3	Meas.	11	19	0.14	87	9.2	2.3	10	0.58	0.37	0.05
	Calc.	7.8	22	0.15	82	6.1	4.3	13			
L-4	Meas.	17	24	0.14	114	9.7	2.7	18	0.73	0.20	0.07
	Calc.	9.5	27	0.12	105	5.5	4.0	15			
L-5	Meas.	15	40	0.31	171	15	3.5	15	0.51	0.36	0.13
	Calc.	10	46	0.19	191	6.4	5.0	14			
L-6	Meas.	10	5	0.01	49	6.9	3.1	4.8	0.97	0.00	0.03
	Calc.	10		0.04	37	4.6	3.0	17			
L-7	Meas.	6.0	72	0.24	142	12	8.7	13	0.16	0.71	0.13
	Calc.	7.4	48	0.29	207	7.7	6.0	9.5			
L-8	Meas.	17	24	0.14	125	14	2.3	15	0.78	0.14	0.08
	Calc.	10	30	0.11	116	5.3	3.9	16			
L-9	Meas.	14	17	0.14	77	9.6	3.9	6.9	0.57	0.39	0.04
	Calc.	7.5	20	0.15	72	6.1	4.3	12			
L-10	Meas.	30	27	0.15	79	9.2	2.7	10	0.55	0.40	0.05
	Calc	7.7*	23	0.16	85	6.2	4.4	12			
L-13	Meas.	18	30	0.18	136	14	3.5	12	0.66	0.25	0.09
	Calc.	10	35	0.14	140	5.8	4.3	15			
L-16	Meas.	18	37	0.2	122	11	3.9	15	0.65	0.25	0.10
	Calc.	10	37	0.15	151	5.8	4.4	15			
L-17	Meas.	13	14	0.12	58	8.2	Ε	12	0.69	0.28	0.03
	Calc.	8.1	16	0.15	55	5.6	- 19 (Al e - 1997)	14			

E - Analytical Error Suspected * - Species was not used in regression calculation

ں 3-2

Measured Concentrations (mg/L)

Figure J-1

4-ل

Source Apportionment Results L-1

J-5

Source Apportionment Results L-3

Measured Concentrations (mg/L)

Figure J-3

J-7

Measured Concentrations (mg/L)

Figure J-4

Measured Concentrations (mg/L)

Figure J-5

J--8

J-10

Figure J-8

J-11

*

Measured Concentrations (mg/L)

Figure J-9

J-13

Measured Concentrations (mg/L)

Figure J-11

J-15

Measured Concentrations (mg/L)

Figure J-12

,

Figure J-13

Appendix K QUALITY CONTROL RESULTS

Laboratory Quality Control

Almost all of the QC tests carried out in the laboratory fell within control limits, but a few exceptions exist. The exceptions are associated with low concentrations of a few analytes: ammonia, nitrate/nitrite, total phosphate, chloride and organic carbon, usually with analyses carried out on samples collected during Event I.

Correlation coefficients fell slightly below the specified limits for Event I for ammonia, total phosphate and total organic carbon (TOC). Correlation coefficients also were below the control limit for one batch of the Event II samples analyzed for ammonia and for nitrate/nitrite.

Chloride quality control check sample recoveries were below the control limit of 95 percent for three batches. Erratic recovery of control samples was experienced for one batch of Event II nitrate/nitrite analyses.

Poor percentage reproducibility was observed for bromide, chloride, and sulfate present at low concentrations. All bromide concentrations were near the analytical detection limit and all chloride concentrations were low. Relatively high variability often occurs at low analyte concentrations. Poor reproducibility for sulfate was observed only at low concentrations. Sulfate concentrations ranged as high as 2000 mg/L and duplicate agreement was excellent for samples containing 10 mg/L or higher concentrations. The high percentage differences observed at low sulfate concentrations should not present a problem in interpreting sulfate migration data.

A few matrix spikes were outside control limits for Event I analyses. Tests that exhibited high spike recovery were: ammonia, bromide, chloride, and fluoride. Matrix spike duplicate agreement was poor for ammonia for Event I.

With the exception of bromide, the analytes for which there were some laboratory quality control shortfalls were not of major significance to this study. Bromide could come from the boiler chemical cleaning waste, but all bromide concentrations were very low. The results of laboratory quality control tests associated with analysis of chemical species of major interest to the codisposal study all fell within pre-established control limits.

Field Blanks and Duplicates

<u>Field Blanks</u>. Concentrations of all but three species were negligible in field blanks. High concentrations of ammonia, nitrate/nitrite, and total phosphorous were observed in field blanks either from Event I, from Event II or from both. Ammonia concentrations in field blanks were high relative to measured ammonia concentrations in other samples from both Event I and Event II. For each event, the highest ammonia concentration measured in a sample was less than 3.5 times the field blank. The total phosphate concentration in the field blank for Event I was higher than the total phosphate concentration measured in most of the other samples. Only one Event I sample had a total phosphate concentration greater than twice the concentration in the field blank. The Event II field blank had a concentration of nitrate/nitrite that was comparable to or higher than the nitrate/nitrite concentration in about half of the samples analyzed.

The grass surrounding the ash pond was fertilized during Event I. It is possible that a small amount of wind-blown fertilizer contaminated the field blank. The grass was not fertilized during Event II, but again, some contaminant containing ammonia and nitrate evidently entered the field blank. These high field blanks indicate that the corresponding analyses should be considered to be approximate and that the possibility exists that some of the measured values represent sample contamination.

As indicated above, field blanks contained negligible amounts of the other chemical species examined for this project and there is no reason to suspect contamination for other substances. Field blank results are given in Appendix C; for Event I the field blank had the Sample ID L-050, and for Event II the field blank had the Sample ID L-111.

<u>Field Duplicates</u>. Concentrations of all but four species agreed with each other in field duplicates. The four species for which agreement was poor in at least one set of field duplicates were: ammonia, nitrate/nitrite, total phosphate, and total organic carbon (TOC). Nitrate/nitrite, phosphate, and TOC concentrations in field duplicates agreed well for Event I but not for Event II. Field duplicate agreement for ammonia was poor for Events I and II. For Event II, in the field duplicates from downgradient well LMW-03, significantly higher ammonia, nitrate/nitrite, total phosphate, and total organic carbon (TOC) concentrations were present in Sample ID L-055 than in the field duplicate L-108. These data again indicate the possibility of contamination with a material containing these species.

Pooled values for field duplicates and analytical duplicates for anions and ammonia are listed in Table K-1 and pooled values for metals are listed in Table K-2. The values in Tables K-1 and K-2 indicate that variability was higher for field replicates than for analytical replicates. This is as expected.

Quality Assurance Results

<u>Audit Sample Recoveries</u>. Analytical results for aqueous audit samples are listed in Tables K-3 and K-4. Recoveries for total dissolved solids (filterable residue) were 99 percent for Event I and 49 percent for Event II. Recoveries for ammonia and anions fell within the range 80 to 110 percent. Recoveries for elements measured by atomic absorption spectrophotometry fell in the range 99 to 120 percent except for magnesium with a very low recovery of 4 percent. Recoveries for elemental analysis by inductively coupled argon plasma spectrometry fell in the range 95 to 110 percent except for a low recovery for selenium of 30 percent.

Figure K-1 illustrates measured and NBS certified concentrations for major elements reported as oxides in NBS Standard Reference Material 1633, fly ash. Recoveries of major elements certified by NBS were excellent except for sodium. The sodium concentration measured by Radian was about a factor of two higher than the NBS certified value.

<u>Analysis by two Analytical Methods</u>. Figure K-2 indicates the results when silicon in aqueous samples was analyzed by a spectrophotometric technique and by ICPES. All but two values agree with each other. The spectrophotometric technique did not give accurate results when the silicon concentration was very high.

<u>Analysis by Two Laboratories</u>. Table K-5 lists results obtained on four samples measured in Radian's laboratories and in Battelle's laboratories. Large differences between measurements made in the two laboratories were observed for carbonate, fluoride for LMW-11 Radian sample ID L-048, nitrate/nitrite, and organic carbon. For carbonate, pH changed between Radian and Battelle for L-040 and L-041. Chloride concentrations were low and other data indicate a high variability for chloride. Fluoride agreed fairly well except for sample L-048. Nitrate/nitrite concentrations were near the detection limit for three of the four samples and the large percent deviation would be expected for these samples. The nitrate/nitrite concentration

POOLED COEFFICIENTS OF VARIATION FOR FIELD AND LABORATORY DUPLICATES

	Field Dupl Coefficient of	icates Degrees	<u>Analytical Duplicates</u> Coefficient of Degree		
Analyte	(%)	of <u>Freedom</u>	(%)	ot <u>Freedom</u>	
Alkalinity	70	3	Not Analyzed	0	
Bromide	3	3	4	5	
Chloride	7	3	12	4	
Fluoride -	10	3	3	3	
Nitrate/Nitrite as N	32	3	2	4	
Phosphate	37	3	2	3	
Sulfate	9	3	5	8	
Total Inorganic Carbon	1	2	3	27	
Total Organic Carbon	16	3	9	47	

POOLED COEFFICIENTS OF VARIATION FOR DUPLICATES FOR ELEMENTAL CONCENTRATIONS

	<u>Field Dup</u>	<u>olicates</u>	<u>Laboratory Duplicates</u>		
<u>Analyte</u>	of Variation <u>%</u>	Degrees of <u>Freedom</u>	Coefficient of <u>Variation^a</u>	Degrees of <u>Freedom</u>	
Arsenic (HGAA) Barium (ICP)	 68	- 3	6 1	3 5	
Calcium (ICP) Iron (ICP)	2 47	3 3		ź	
Iron (FAA) Magnesium (ICP) Magnesium (FAA) Manganese Potassium ICP	 2 2.5 0	3 3 3 3 3 3 3		- - 0	
Potassium (FAA)	7	3	1	5	
Selenium (HGAA) Silicon (ICP) Sodium (ICP) Sodium (FAA)	5 4 3	- 3 3 3 3	4 - 0.6	3 - - 5	
Selenium (HGAA)			4	3	

^aIncludes analytical duplicate analyses on solid samples.

AUDIT SAMPLE RECOVERIES FOR WATER ANALYSIS FOR ANIONS AND FOR ELEMENTS BY ATOMIC ABSORPTION FOR L STATION, EVENTS 1 AND 2

Property	<u> Event 1</u> Measured/ <u>True (%)</u>	<u> Event 2</u> Measured/ <u>True (%)</u>
WATER QUALITY VARIABLES Filterable Residue	99.3	49
ANIONS AND AMMONIA Ammonia Carbonate Chloride	ą.	82 82 118
Nitrate/Nitrite Organic Carbon Phosphate, total Sulfate	78.4	111 100 100 99
ELEMENTS BY AA Arsenic, hydride AA Calcium, flame AA Chromium, graphite AA Copper, graphite AA Lead, graphite AA Magnesium, flame AA Potassium, flame AA Selenium, hydride AA Sodium, flame AA	100 100 100 100 110 100 NC 100 NC	100 80 99 110 NC 97 NC 120 FP

NC = Not Calculated FP = False Positive AA = Atomic Absorption Spectrophotometry

AUDIT SAMPLE RECOVERIES FOR WATER ANALYSIS FOR ELEMENTS BY INDUCTIVELY COUPLED PLASMA SPECTROMETRY FOR L-STATION, EVENTS 1 AND 2

Element	<u>Event 1</u> Measured/ <u>True (%)</u>	<u> Event 2</u> Measured/ <u>True (%)</u>
Aluminum	NC	NC
Antimony	100	98
Arsenic	100	108
Barium	NC	NC
Beryllium	96	102
Boron	NC States	NC
Cadmium	100	110
Calcium	100	110
Chromium	95	100
Cobalt	96	100
Copper	94	100
Iron	96	100
Lead	99	95
Magnesium	NC	110
Manganese	97	100
Molybdenum	100	99
NICKEI	99	110
Potassium Selenium	NC 100	NC
Selenium		NL
Silver	NC	NC NC
Sodium	NC NC	NC
Strontium ICPES	NC	NC
Thallium	NC	NC
Vanadium	97	100
7 inc	NC ST	NC
		IIU

NC = Not Calculated FP = False Positive

Figure K-1. Measured vs. NBS Certified Concentrations of Major Elements

CONCENTRATIONS MEASURED BY RADIAN AND BY BATTELLE ON SPLIT SAMPLES

		LMW-14 L-040	LMW-14 L-040 Battelle	Relative Standard	LMW-15 L-041	LMW-15 L-041 Battelle	Relative Standard	LMW-17 L-042	LMW-17 L-042 Battelle	Relative Standard	LMW-11 L-048	LMW-11 L-048 Battelle	Relative Standard
Deserve	Unite	Radian	PNL	Deviation									
Property	Units	vatue	vatue	(%)	vatue	value	(%)	vatue	vatue	(%)	value	value	(%)
WATER QUALITY VA	RIABLES												
pH (field)	pH units	4.4	2.88	NC	4.2	2.74	NC	5.8	6.7	NC	6.1	7.05	NC
ANIONS AND AMMON	IA IN AQUEOU	S MEDIA											
Carbonate (TIC)	mg HCO3/L	310	95.5	53	256	22.4	84	119	35.6	54	264	117	39
Chloride	mg Cl/L	2.3	3.9	26	2.4	3.8	23	5.7	6.3	5	4.3	7	24
Fluoride (Dir)	mg F/L	1.7	1.59	3	0.52	0.72	16	0.082	NM	NC	0.033	0.22	74
Nitrate/Nitrite	mg N/L	0.23	0.11	35	<0.05	0.15	NC	0.07	0.12	25	2.9	3.1	3
Organic Carbon	mg C/L	NM	0.5	NC	<0.5	0.4	NC	1.6	0.4	60	4.6	0.6	77
Sulfate (only)	mg SO4/L	2060	2020	1	1200	1200	0	60	59	1	2.0	1.4	18
ELEMENTS IN AQUE	DUS MEDIA BY	AA											
Arsenic	mg/L	0.002	0.014	75	<0.002	<0.00002	NC	<0.002	NM	NC	<0.002	NM	NC
ELEMENTS IN AQUE	DUS MEDIA BY	ICPES											
Aluminum	mg/L	9.1	9.9	4	12	12	0	<0.2	0.12	NC	<0.2	NM	NC
Barium	mg/L	0.02	0.025	11	0.01	0.012	9	0.82	0.872	3	0.14	0.143	1
Boron	mg/L	<0.6	0.12	NC	<0.6	0.33	NC	0.90	0.99	5	<0.6	0.03	NC
Calcium	mg/L	430	470	4	190	200	3	11	11.4	2	9.1	9.5	2
Copper	mg/L	<0.02	0.015	NC	<0.02	0.013	NC	<0.02	NM	NC	<0.02	NM	NC
Iron	mg/L	110	127	7	280	311	5	0.25	0.18	16	<0.04	0.032	NC
Magnesium	mg/L	64	70	4	18	20	5	9.2	9.7	3	3.0	3.3	5
Manganese	mg/L	120	131	4	10	11.4	7	0.05	0.042	9	0.040	0.042	2
Potassium	mg/L	10	12	9	10	15	20	<3	NM	NC	4.0	4.7	8
Silicon	mg/L	38	39	1	14	15	3	11	11	0	14	14	0
Sodium	mg/L	10	11	5	11	11	0	11	11.3	1	9.0	9.2	1
Strontium	mg/L	0.61	0.56	4	0.64	0.61	2	0.094	0.1	3	0.11	0.11	0
Zinc	mg/L	0.79	0.8	1	0.1	0.06	25	0.39	0.4	1	0.09	0.09	0

Note that Radian's pH measurements were made in the field and Battelle's were made in the laboratory

NM = Not Measured

NC = Not Calculated

was higher in the fourth sample (L-048) and results agreed well between the two laboratories. Sulfate concentrations agreed well. Organic carbon concentrations also were near detection limit and exhibited the expected high relative standard deviation.

Arsenic concentration was measured by hydride generation on only two samples. In one case the two measurements indicated concentrations below respective detection limits. In the other case, the Radian value was near the detection limit and the results did not agree very well.

All but four of the 48 pairs of measurements made by ICPES agreed within 10 percent relative standard deviation. There appeared to be no pattern exhibited by the four measurements that differed by more than 10 percent relative standard deviation. In no case did the measurements made by the two laboratories differ by more than 25 percent relative standard deviation.

Data Evaluation

<u>Calculated vs Measured Alkalinity</u>. Calculated and measured alkalinities for Event I and Event II are plotted in Figure K-3. There is generally fair agreement between the two values.

<u>Charge Balances</u>. Charge balances were calculated for aqueous sample analysis. Results are summarized in Table K-6. Alkalinity was calculated as the bicarbonate anion since this was the form most likely to be present at the sample pH's. Most charges balanced within 10 percent although a few higher values were observed. In some cases large charge imbalances are associated with low total ionic concentrations. For one of the duplicates for downstream river water, Event I,(Sample ID, L-030) the poor agreement points to an unacceptable alkalinity measurement.

<u>Agreement Between Sum of Constituents and TDS</u>. Figure K-4 illustrates the agreement between the sum of the constituents and filterable residue (TDS) for Events I and II. In both cases agreement was good.

<u>Major Oxide Summations for Solid Samples</u>. Major oxide sums are listed in Table K-7. Oxide sums ranged from 88 to 100 percent, indicating generally good recovery for the major elements.

Figure K-3. Calculated vs. Measured Alkalinity, L1

CHARGE BALANCE SUMMARY FOR L STATION, EVENTS 1 AND 2

	Event 1					Event 2 Second Second				
Sample Location ID	Sum of Cations (+) <u>(meq/L</u>	Sum of Anions (-) <u>(meq/L)</u>	Charge Balance (%)	Sample <u>ID</u>	Sum of Cations (+) <u>(meq/L)</u>	Sum of Anions (-) <u>(meq/L)</u>	Charge Balance (%)			
Ash Delta Wells LMW-14 L-040 LMW-15 L-041 LMW-20	39.36 24.20 No Sample	43.05 25.08	-4.5 -1.8	L-066 L-067 L-072	34.08 22.78 1.18	34.21 23.44 1.59	-0.2 -1.4 -14.9			
Upgradient Wells LMW-11 L-048 LMW-11DUP L-049 LMW-12 L-037 LMW-18 L-051 LMW-19 L-039	1.25 1.24 0.97 1.18 0.72	1.01 1.02 0.86 1.03 0.74	10.6 9.6 6.4 7.0 -1.2	L-063 L-064 L-070 L-071	1.18 No S 0.97 0.89 0.53	1.41 ample 1.27 1.01 0.59	-8.7 -13.2 -6.4 -5.6			
Downgradient Wells LMW-01 L-032 LMW-02 L-045 LMW-03 L-027 LMW-03DUP LMW-04 L-047 LMW-05 L-028 LMW-06 L-035 LMW-06 L-035 LMW-07 L-046 LMW-08 L-043 LMW-09 L-034 LMW-10 L-038 LMW-13 L-044 LMW-16 L-036 LMW-17 L-042	1.41 2.20 3.09 No S 4.47 4.29 1.28 4.68 3.13 2.72 2.15 N 3.68 1.86	1.43 3.56 2.88 ample 4.15 4.25 1.38 4.74 3.03 2.61 2.14 Not Analyzed 3.70 1.84	-1.0 -23.7 3.6 3.6 0.5 -3.7 -0.6 1.6 2.1 0.1 d -0.2 0.6	L-053 L-054 L-055 L-108 L-056 L-057 L-058 L-059 L-060 L-061 L-062 L-063 L-068 L-069	$ \begin{array}{r} 1.36\\ 3.48\\ 2.41\\ 2.49\\ 2.89\\ 4.24\\ 1.15\\ 5.86\\ 3.05\\ 2.49\\ 2.47\\ 3.36\\ 3.45\\ 1.89\\ \end{array} $	1.67 3.79 2.64 2.60 3.59 4.51 1.57 4.84 3.29 2.82 2.81 3.98 3.70 1.92	-10.2 -4.3 -4.6 -2.2 -10.8 -3.2 -15.4 9.5 -3.8 -6.1 -6.4 -8.5 -3.4 -0.9			
River Water US (5w) L-029 DS (5w) L-030 DS (5w)DUP L-031	0.35 0.39 0.39	0.29 0.13 0.35	9.3 49.8 4.8	L-092 L-093	0.33 0.34	0.36 0.36	-4.9 -2.9			
Pond Water AP1/PPA1 L-033 Field Blanks Field Blank L-050	1.11 0.04	0.94	8.6 42.6	L-109 L-111	1.21 0.02	1.32 0.05	-4.1 -48.9			

 \overline{Calcul} ated with flame AA data when available Charge Balance = 100 x (Cations - Anions)/(Cations + Anions)

Figure K-4. Agreement Between Sum of Constituents and TDS

<u>Location</u>	<u>Sample_ID</u>	Oxide Total <u>(wt%)</u>	Undetermined (wt%)
LMW-12	L-010	97.38	2.62
LMW-12	L-011	101.87	-1.87
LMW-12	L-012	98.10	1.90
LMW-12	L-013	98.62	1.38
LMW-14	L-014	100.39	-0.39
LMW-14	L-015	93.61	6.39
LMW-14	L-016	88.17	11.83
LMW-14	L-017	96.26	3.74
LMW-14	L-018	99.87	0.13
LMW-14	L-019	88.60	11.40
LMW-14	L-019DUP	98.35	. 1.65
LMW-14	L-020	90.01	9.99
LMW-14	L-020DUP	99.51	0.49
LMW-14	L-021	97.08	2.92
LMW-14	L-022	88.74	11.26
LMW-14	L-023	98.29	1.71
LMW-14	L-024	98.38	1.62
Fusion	Blank	0.72	99.28
NBS	SRM 1633	88.10	11.90

MAJOR ELEMENT OXIDE SUMS IN SOLIDS FROM L STATION

.

. • *

ر بر ال بر ال